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Understanding and predicting crystal growth is fundamental to the 
control of functionality in modern materials. Despite investigations 
for more than one hundred years1–5, it is only recently that the 
molecular intricacies of these processes have been revealed by 
scanning probe microscopy6–8. To organize and understand this 
large amount of new information, new rules for crystal growth need 
to be developed and tested. However, because of the complexity and 
variety of different crystal systems, attempts to understand crystal 
growth in detail have so far relied on developing models that are 
usually applicable to only one system9–11. Such models cannot be 
used to achieve the wide scope of understanding that is required to 
create a unified model across crystal types and crystal structures. 
Here we describe a general approach to understanding and, in 
theory, predicting the growth of a wide range of crystal types, 
including the incorporation of defect structures, by simultaneous 
molecular-scale simulation of crystal habit and surface topology 
using a unified kinetic three-dimensional partition model. 
This entails dividing the structure into ‘natural tiles’ or Voronoi 
polyhedra that are metastable and, consequently, temporally 
persistent. As such, these units are then suitable for re-construction 
of the crystal via a Monte Carlo algorithm. We demonstrate our 
approach by predicting the crystal growth of a diverse set of crystal 
types, including zeolites, metal–organic frameworks, calcite, urea 
and l-cystine.

By understanding crystal growth at the molecular scale it is possible 
to control crystal habit, crystal size, the elimination or incorporation of 
defects and the development of intergrowth structures. Because crystals 
are used, for example, in technologies including pharmaceuticals and 
gas storage, as separation materials, in optoelectronic devices and as 
heterogeneous catalysts, such understanding is vital. We can illustrate 
many of the problems that must be addressed in crystal growth by 
considering zeolites12 as an example, which represent a very complex, 
yet important, crystal type that forms the backbone of the heteroge
neous catalysis industry. Zeolites are nanoporous materials for which 
the framework of the material is constructed from a strong, covalently 
bonded network of Si–O and Al–O bonds. The pores of the material 
are filled with water and cations that balance the negative charge on the 
framework. Crystals of zeolites grow from aqueous solutions at tempe
ratures up to about 230 °C and it is well known from nuclear magnetic 
resonance spectroscopy that the solution phase exhibits very complex 
speciation13–16. This is a seemingly intractable problem in terms of 
defining a simple set of rules that govern the hundreds of different 
zeolite structures, let alone the thousands of related crystal structures 
such as metal–organic frameworks (MOFs)17–19. However, the course of 
a crystallization is relatively predictable and, therefore, there must be a 
relatively small number of rules that govern the most important aspects 
of the crystal growth, with subsidiary rules governing deviations.

The starting point in our simplification comes from a general Monte 
Carlo simulation applied to the growth of fats20. In this work it was 
shown that the principal determinant of crystal growth was the local 
internal energy at the crystal surface in relation to the chemical poten
tial of the phase from which the crystal grows. This is a very important 
simplification because it allows the growth medium—solution, melt, 
gas and so on—to be considered to have only a growth potential, and so 
the speciation does not need to be considered in detail. Although this 
growth potential will be a result of the speciation, this can be treated as a 
subsidiary effect to be considered subsequently13–16. In the case of mul
ticomponent crystals—such as MOFs or cocrystals for which species in 
solution, for example, linkers and metal centres, cannot  interchange—a 
driving force for each component needs to be considered, unless the 
stoichiometries of the two phases are matched. For zeolites, or any  
system in which the nutrient is interconverting, a single driving force 
can be considered equivalent to a singlecomponent system.

The crystal structure then needs to be broken down into ‘units of 
growth’, a process that is normally referred to as ‘coarsegraining the 
problem’. To deconstruct the problem, we require a distinction between 
‘unit of growth’ and ‘growth unit’. To identify a growth unit, we need to 
know the growth mechanism, however, a unit of growth is just a suitable 
division of the structure in terms of metastability. If the material of inter
est is a molecular crystal, then a unit of growth would be a single mole
cule, because this represents a strongly bonded entity that remains intact 
during crystallization,  forming relatively weak bonding with neighbours 
to yield the crystal. Such a unit of growth is probably, in many cases, 
the actual growth unit for the crystal, assuming that the unit does not 
dimerize in solution. However, for a zeolite, which is a fully connected 
threedimensional network of covalent bonds, a singlemolecule unit of 
growth is not viable. For our analysis, the unit of growth is any structural 
element that represents a metastable surface structure with small enough 
dimensions to describe all of the intricacies of the crystal formation. As a 
metastable entity it will be persistent in time at the crystal surface during 
growth and can therefore be considered to determine the overall rate of 
crystal growth. For the simulation of the full threedimensional growth 
of a crystal, for example via the development of a kinetic Monte Carlo 
model, only the ratedetermining steps are required.

We now return to the problem of nanoporous zeolites composed of 
condensed tetrahedral silicate units forming cagelike structures. These 
cages are strongly related to metastable surface entities because the 
cage wrapping permits maximum condensation of the cage11. Consider 
a cage within the bulk of the zeolite with all tetrahedral silicon sites 
fully condensed (termed Q4 units). When the same cage is located 
at the surface of the zeolite crystal, most of the silicon sites will lose 
only one bond of condensation, making this structural configuration 
a  minimum in energy for a surface moiety. Of the more than 200 zeolite 
structures, around one quarter consist of Q4 units that will lose only 
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one condensation at the surface (Q4 →  Q3). The other three quarters 
have Q4 units that may lose two condensations (Q4 →  Q2); however, 
these structures will still be at an energy minimum. Therefore, the cages 
become a suitable unit of growth even though they are not the growth 
unit. These cages are threedimensional spacefilling tiles that can be 
computed in a relatively straightforward manner using algorithms 
such as those implemented in ToposPro21,22 (Fig. 1). Consequently, 
this establishes a simplified route to coarsegraining the zeolite problem  
into energetically minimized, metastable, ratedetermining steps 
that, when balanced against a potential energy driving force from 
the growth medium, permits generation of a general kinetic Monte 
Carlo  algorithm for zeolites. We use the socalled ‘natural tiles’ that 
describe the system of minimal cages in a unique and unambiguous 
way according to a strict algorithm21. In this regard it is very  different 
to the diverse systems of secondary building units often chosen by 
structural chemists according to their personal view on how to divide 
up structures. The units of growth are spacefilling and, although the 
crystal is nanoporous, they are considered to fill all space during growth 
(the voids within cages are filled with water and cations). This  property 
is the same for the growth of any crystal, whether nanoporous or not. 

Our approach is extendable to any cagelike structure, regardless of the 
bonding type, so MOFs with extensive coordination bonds are imme
diately treatable.

To extend our approach to other crystals we use the Voronoi partitioning 
procedure to fill the space with polyhedral units, in a  manner opposite to 
that used for the tiling method: with Voronoi polyhedra, the objects (atoms 
or molecules) occupy the centres, whereas with tiles they occupy vertices. 
Molecular crystals, such as aspirin, urea and water, can be  categorized 
as a threedimensional Voronoi partition, in which the  molecule sits 
at the centre of a Voronoi polyhedron and the faces of the poly hedron 
represent the interactions with neighbouring molecules (Fig. 1).  
Similarly, for ionic crystals, such as calcite and zinc oxide, the ions sit 
at the centres of Voronoi polyhedra with faces representing the interac
tions between cations and anions. In these last two  examples, the network 
of interactions can be considered without needing to introduce three 
dimensional partitioning; however, it is useful to realize that all crystal 
systems can be treated in the same manner. To summarize, we assume the 
units of growth to be polyhedral (tiles or Voronoi polyhedra depending on 
nature of the crystal). The Voronoi partition can also be used for structures 
that have no tiling, for example, for polycatenated networks.

Having partitioned the crystal space, the problem then is to establish 
the energies of all of the threedimensional polyhedral units in any con
figuration and the degree of condensation/attachment at the surface of 
a growing crystal relative to the bulk phase. For complex crystal systems 
there could be thousands of possible types of surface site, although, in 
principle, only a fraction of these will be topologically viable  during 
crystal growth. By interfacing our kinetic Monte Carlo code with 
the threedimensional partitioning approach of ToposPro22, we can 
 compute all of the possible connectivities for any partitioning pattern 
and, consequently, any crystal structure. Then, to a first  approximation, 
the energies of the polyhedral units are directly related to the degree 
of condensation or attachment (see Extended Data Fig. 1 for the LTA 
zeolite system). Secondary energetic effects can be computed at a much 
higher level of simulation to determine subsidiary effects, but most 
structural features are determined purely by connectivity. Common 
defects, such as screw dislocations, can be incorporated by  displacing 
threedimensional polyhedral units to equivalent sites along the screw 
core, resulting in perfect crystal reconnection. Growth modifiers 
can also be simulated by poisoning units of growth accordingly (that 
is, by reducing their probability of growth). This approach permits 
both growth and dissolution at individual surface sites, depending 
on whether the chemical potential of the growth medium is above or 
below the energy of that surface site. In this manner, by changing the 
driving force systematically within the simulation, the equilibrium 
morphology is found when the rates of growth and dissolution are 
balanced. Examples for the LTA and FAU zeolite structures are shown 
in Extended Data Figs 1 and 2, respectively, illustrating how both the 
habit of the crystal and the much more sensitive surface topology can 
be matched with experiment across all crystal faces.

This approach enables straightforward computation of crystals no 
matter what degree of complexity exists in the structure; for example, 
the UOV zeolite structure (Fig. 2 and Extended Data Fig. 3), which has 
a very large unit cell and is constructed from 16 tiles in a mixture of 
open and closed environments, is readily treated in an efficient manner. 
For such a system, even using the same energy penalty for every tile 
 vertex gives both a crystal habit and surface topology very similar to that 
observed experimentally. This computation yields the terrace structure, 
which also includes the nature of the surface termination that, for nano
porous materials, is the gateway to the internal porosity. This approach 
also demonstrates how framework crystals such as NES (Extended Data  
Fig. 4) have great difficulty circumventing large cages that will necessarily  
represent large energy barriers. The resulting crystals are very thin 
plates and any modification to this morphology would require careful 
 attention to the stabilizing of the large cage through templating.

The MFI zeolite framework type, also known as ZSM5—one of 
the most important industrial catalysts—reveals not only the surface 
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Figure 1 | Demonstration of the tiling and Voronoi-polyhedra 
partitioning methods. a, The chabazite structure (CHA), which is 
composed of two cages (tiles), the double 6ring (pink) and chabazite 
cage (green). Both of these tiles consist entirely of Q3 tetrahedra and are 
considered as closed cages or tiles. As the crystal grows (middle), the cages 
condense and the Q3 vertices are converted into Q4 vertices (right), thereby 
stabilizing the cage relative to the solution phase. b, The complex UOV 
structure, which consists of 16 tiles (see Extended Data Fig. 3). One of these 
tiles is shown, one that consists of both Q3 and Q2 vertices and is therefore 
considered as an open cage or tile (see Methods for definition of open 
versus closed cages and tiles). Condensation again results in stabilization 
of these tiles relative to the solution phase. c, A tile representation of the 
molecular crystal urea. The left panel shows the initial Voronoi construction 
with 14 urea neighbours surrounding the central molecule. Four of these 
interactions are very weak and can be neglected, leaving the ten interactions 
represented by the black lines in the right panel. Each interaction passes 
through the face of the tensided tile. Grey, red and blue represent carbon, 
oxygen and nitrogen atoms, respectively, the yellow represents the central 
urea molecule, and the black edges illustrate the Voronoi polyhedron created 
by these molecular interactions.
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structure but also the internal structure of the crystals. Within the bulk 
of the crystal, tiles remain incomplete—in other words, they possess 
dangling silanol groups—consistent with the many internal silanols 
that are wellestablished to be present in ZSM5. The interesting  
discovery is that, because the growth mechanisms on different faces of 
the crystal are necessarily different, the silanols are confined to zones 
of different density within the crystal (Fig. 2 and Extended Data Fig. 5). 
This finding mimics almost exactly the optical birefringence, showing 
zoning identical to that observed experimentally (Extended Data Fig. 5)  
and has been a source of debate for many years23. Similarly, in ETS10, 
which displays rod growth (Extended Data Fig. 6) rather than layer 
growth, the incompleteness of the rods results in internal defects that 
congregate in a zone from the (001) facets to the centre of the crystal, 
as observed experimentally by Raman microscopy24. Our kinetic three 
dimensional partitioning model shows that a straightforward growth 
mechanism can explain these optical phenomena without the need for 
complex arguments related to twinning of the crystals. Common defect 
structures, such as screw dislocations, are able not only to replicate the 
spiral topology, such as in LTA and CHA (Extended Data Figs 1 and 7,  

respectively), but also indicate the relative growth rates of the screw in 
relation to the layer growth. Complex interleaving of screw  formation 
owing to fast and slow growth directions, such as seen in the AEI  
zeolite system (Extended Data Fig. 8), can be faithfully reproduced. 
Also, the direction of the screw core can be interrogated according to 
the multiplicity of the spiral growth emanating at the crystal surface, 
such as in the metal–organic HKUST1 (Extended Data Fig. 9a–d). 
Indeed, MOFs are as readily treated as zeolites using this approach, 
either as cage (partitioned) structures as in HKUST1 or as molecular 
crystals as shown for MOF5 (Extended Data Fig. 9e–i). In the latter 
case, it is necessary also to consider the solvent as an important element 
in the crystal growth, because without it the observed crystal habit and 
surface topology cannot be replicated. MOF5 is a good example of a 
multicomponent crystal, demonstrating the power of our approach to 
this important general class of materials.

Molecular crystals and ionic crystals (Figs 3 and 4, respectively) are 
both amenable to this treatment and, for calcite, the crystallization 
energies are in broad agreement with those calculated using a combi
nation of interatomic potentials and a continuum solvent model (see 
Methods). For the lcystine system, it has been shown25,26 that growth 
on the 〈 001〉  face proceeds predominantly via screw dislocations. When 
this growth mechanism is augmented with the 61 screw axis of the 
crystal structure and with highly anisotropic rates of crystal growth, 
a complex pinwheel surface topology is generated. Our simulations, 
which are based on four independent interaction energies, faithfully 
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Figure 2 | Results of simulations run on various framework types.  
a, LTA (zeolite A) consists of three closed cages (tiles), and the 
experimental morphology can be achieved by adjusting the energy of 
these tiles independently relative to solution (see Extended Data Fig. 1 and 
Supplementary Video 1). b, MFI (also known as ZSM5 or silicalite) is a 
complex structure consisting of 10, all open, tiles. The morphology and 
topology can be simulated very well using different energy penalties for 
large and small tiles. Interrogation of the internal structure of the crystal 
reveals an hourglass structure similar to that observed experimentally 
by optical microscopy. This structure is due to crystallization with 
incomplete condensation of tiles resulting in the silanol groups that are 
known to be present in the ZSM5 structure (see Extended Data Fig. 5 and 
Supplementary Video 4). c, ETS10 is a mixedcoordination octahedral 
and tetrahedral nanoporous framework structure that consists of titanate 
rods that are stacked layer by layer in an orthogonal arrangement. Viewed 
down the [001] axis, as is the case here, the rodbased crystal growth 
mechanism is immediately apparent; such a growth mechanism leads to 
the incorporation of defects (see Extended Data Fig. 6 and Supplementary 
Video 5). d, UOV is one of the most complex zeolite structures, with a 
very large unit cell and 16, both open and closed, tiles. Our methodology 
is able to efficiently grow such a complex structure with both surface 
topography and habit matching experimental observations. The surface 
structure (top) is determined from the calculations, as is the nature of 
partially constructed layers (bottom) at intermediate metastable steps 
(see Extended Data Fig. 3 and Supplementary Video 3). e, MOFs can 
be modelled using two differing methods: first, by treating them as 
multicomponent molecular crystals, with metal clusters and organic 
linkers treated as separate molecules (as in MOF5); and second, by using 
the same treatment as zeolite frameworks (as seen with HKUST1 in 
Extended Data Fig. 9a–d and Supplementary Video 6). Again the crystal 
habit and surface topography match those observed experimentally with 
different crystallization conditions (further examples are shown for 
MOF5 in Extended Data Fig. 9e–i).

Calcitea b Urea

5 kcal mol–1

10 kcal mol–1

15 kcal mol–1

Figure 3 | Simulations of an ionic crystal (calcite) and a molecular crystal 
(urea). a, b, Simulations of calcite (a) and urea (b), demonstrating the 
universality of our approach to different crystal classes. All simulations are 
shown under equilibrium conditions. a, For calcite, the reaction energy for 
the conversion of solubilized ions to the crystal per coordination to the crystal 
is set at 5 kcal mol−1, 10 kcal mol−1 or 15 kcal mol−1. Calculations show 
that the value lies between 10 kcal mol−1 and 15 kcal mol−1, and the crystal 
habit and surface topography of the two corresponding simulations match 
experiment closely. At 5 kcal mol−1, the terrace edges are much more rounded 
than observed experimentally. The main difference between the simulations 
for 10 kcal mol−1 and 15 kcal mol−1 is the terrace density, which can also be 
used as a distinguishing factor. b, For urea, three different reaction energies 
are used, depending primarily on the strength of interaction in the urea 
crystal (discussed in Methods). The large {110} faces are flat and dominated 
by terraces elongated in the c direction of the crystal (vertical in the image). 
The smaller pseudo{111} faces are rough and generated in a large part by 
dissolution when the supersaturation is close to equilibrium.
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reproduce all of these growth features and reveal the importance of the 
interplay between different growth modes in the complete crystalliza
tion mechanism (Fig. 4 and Extended Data Fig. 10).

Finally, the addition of growth modifiers is also readily achieved  
(Fig. 4), and was used to examine the targeting of specific growth sites 
in relation to the effect of these sites on the growth topology, yielding 
similar results to those observed experimentally27. The power of this 
approach is in the general applicability across crystal systems, and it 
provides a window of understanding that can be explored through 
higherlevel calculations on each individual system.
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4 | Results of incorporating screw dislocations in growing LTA, 
l-cystine and calcite crystals. Screw dislocations may be computed using 
our methodology for any crystal system along any crystal direction. This 
method operates according only to topology and does not account for the 
energy of the crystal at the screw core. Nonetheless, it allows all possible 
topologically permitted structures to be tested for growth morphology; 
energy considerations can be determined separately. a, Simulations of 
LTA structure with (right) and without (left) a screw dislocation running 
along [100] through the crystal, vertically. A lengthening of the crystal 
along the [100] direction is immediately apparent, owing to the greater 
ease for growth at the spiral growth front. This demonstrates how the 
relative growth rates of layerbylayer growth versus spiral growth can 
be determined. b, Pinwheel crystal growth formation in the lcystine 
system caused by the 61 screw axis, with hexagonal terraces consisting 
of six individual lcystine layers forming a step bunch circumscribed by 
the slow growth directions. Progression of the step bunches and of single 
steps is the result of a complex interplay between attachment at single step 
edges, step bunches and surface sites that can be seen in Supplementary 
Video 7. c, Screw dislocations in calcite. The left panel shows a single screw 
dislocation with screw core along [100]. Such a dislocation emanates on 
two adjacent {104} crystal faces. Calcite is also known to exhibit double 
screw dislocations and the middle panel shows a double Burgers vector 
screw along [− 2/3, 2/3, 1/6], which has the smallest displacement possible 
for such a double screw. The right panel shows the effect of selective 
‘poisoning’ (via the addition of additives) at twocoordinate sites along 
terrace edges (red dots), which produces rounding of terrace features.
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MethOdS
Growth model and adaptation to nanoporous materials through three- 
dimensional tiling. The growth model is adapted from ref. 20: if units of growth 
can be identified, then the probability for growth relative to the probability of 
dissolution depends only on the stabilization gained by transferring that unit of 
growth from solution to the crystal. As the crystal grows, there will be many sites 
s at which the unit of growth may attach and each of these sites will have its own 
stabilization energy Δ Us. The solution is considered to act only as a driving force 
with a chemical potential Δ μ, without regard for speciation in solution. At 
 equilibrium, that driving force will be such that the rate of growth and the rate of 
dissolution are equal. There are three principal approximations20: (i) that the 
 processes of growth and dissolution are thermodynamically reversible; (ii) that 
upon attachment of a unit of growth to the crystal the energy lost through 
 desolvation is proportional to the energy gained through crystal attachment; and 
(iii) that the entropy change of the growth unit is the same regardless of site type. 
The probabilities for growth (Ps

growth) and dissolution (Ps
dissolution) are then
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where the factor of 0.5 indicates no preference for growth versus dissolution.
In the above approach, the probabilities of growth and dissolution are given 

by the thermodynamics of the process based on units of growth. However, these 
 quantities are also appropriate as proxies for rate constants in kinetic Monte Carlo 
simulations. The justification for this comes from the Bell–Evans–Polanyi  principle, 
as widely used in the field of catalysis. For a series of closely related  chemical 
 processes that have similar transition states, the relative rates are approximately 
determined by a factor that depends only on the difference in thermodynamics for 
the corresponding reactions. Provided that a material is relatively homogeneous, 
the different pathways for addition of a unit of growth will be rather similar and 
likely to have common features to their transition states (for example, desolvation 
of the solution species and surface attachment point). Therefore, we argue that the 
Bell–Evans–Polanyi principle should be equally valid for crystallization  processes 
as for catalysis. Given this, the probabilities of growth versus dissolution will  
determine the relative kinetics of crystal growth to within a time constant.

The two principal problems when considering framework crystals such as  
zeolites or MOFs is (i) to identify the units of growth and (ii) to determine in a 
simple manner the stabilization energies associated with these units of growth. The 
units of growth must be distinguished from the growth units. The latter requires 
full knowledge of the mechanism of growth and the speciation within the solution. 
The former is a suitable coarsegraining of the problem into ratedetermining 
steps that, for nanoporous materials, are the metastable closedcage structures. 
This coarsegraining must be sensible in terms of metastability and small enough 
to capture the essential growth features, but also large enough to ensure efficiency 
of calculation. This final provision can be illustrated by reference to MOFs, for 
which the crystal could be grown as a molecular crystal based on metal clusters, 
organic linkers and solvent, but as closed cages that are known to be metastable.

Closed cages are readily determined using the approach of threedimensional 
tiling achieved by the ToposPro code22, which computes natural tiles21. Of the 229 
zeolite frameworks studied, 54 (less than one quarter) of all of the structure codes 
are constructed entirely from closed cages or tiles made up of Q3 tetrahedrally 
coordinated atoms. The remaining 175 structure codes are constructed from tiles 
that include some Q2 tetrahedrally coordinated atoms (socalled open cages or 
tiles). Of these 175 frameworks, 120 are composed entirely of open tiles and 55 
include a mixture of open and closed tiles. Nonetheless, these tile types meet the 
coarsegraining criteria in terms of both metastability and size. Any tiling other 
than the natural tiling will be a summation of natural tiles and so, in a crystal 
growth model, will decrease the resolution of the coarsegraining unnecessarily. 
These larger tiles will themselves be created as the crystal grows. The natural tiles 
also automatically select tiles that are all Q3 initially, followed by tiles with both Q3 
and Q2 (no Q1 or Q0), and therefore represent the lowestenergy metastable states.

The relative Δ Us values associated with these tiles is then necessary to compute 
probabilities for growth versus probabilities for dissolution. Absolute energies are 
not required. It is known from experiments28,29 that the condensation free energy 
for the reaction

+ − − +− −�Al(OH) H SiO (aq) [(OH) Al O Si(OH) ] H O4 4 4
0

3 3 2

is − 4.2 kcal mol−1 and so we can expect each condensation of a unit of growth 
to result in a change of about this size in relative Δ Us value. Therefore, to a first 
approximation, the Δ Us values for a particular tile will form a uniform ladder of 

energies with spacing of a few kcal mol−1 (because the entropy is approximated 
to be the same for all sites in the crystal, Δ Ss =  0 and Δ Us ≡  Δ Gs, where Δ Ss and  
Δ Gs are the entropy and free energy changes from surface site to bulk solid 
 respectively). The ladder will range from the tile in its native form consisting of 
Q3 and Q2 units for tetrahedral framework structures to the fully condensed allQ4 
form. Different chemical condensations will necessarily change the energy spacing 
as will the stabilization of different cage types through hydration. As a consequence, 
each cage type can be given a different, independent, energy spacing. The same  
philosophy can be used for any framework type, whether tetrahedral or not, with 
the energies depending only on the degree of condensation of the tile. So, for 
 example, octahedral frameworks, combinations of octahedral and tetrahedral 
frameworks, and any other combination are readily treated. An example of the 
ladders of Δ Us values for the simple LTA system is given in Extended Data Fig. 1.  
For complex systems such as UOV, which has 16 tile types (Extended Data Fig. 3),  
the number of site types is very large (1,843); however, only a fraction of these are 
actually ever populated, in this case 168. All of the other tiles that are required  
for the calculations on systems presented here are given in Extended Data  
Figures 1–10.

The crystals are seeded by growing the first few units at high supersaturation and 
then dropping the supersaturation to that of the growing medium. The supersatu
ration level is easily determined because the simulation can be run to equilibrium 
(equal growth and dissolution rates) and then the supersaturation set relative to 
that equilibrium driving chemical potential. The seed is inserted  manually because 
we are growing only one crystal. In the future, competitive growth of crystals,  
such as Ostwald ripening, could be considered through the inclusion of multiple 
nuclei.

The goal of this work is to find a generic algorithm that is able to readily 
describe all of the most important aspects of ‘classical’ crystal growth, across any 
 crystal  system. The trigger for this endeavour is that, with the advent of scanning 
probe techniques, in particular atomic force microscopy (AFM), the number of 
 experimental parameters available for simulation is much larger than when the 
only parameter was the crystal habit. The question then arises of whether a model 
can be derived in which there are fewer parameters than there are experimental 
observations (an overdetermined model). For example, with zeolite A, the experi
mental observables are crystal morphology or aspect ratio, terrace morphology on 
three different facets under different supersaturation conditions, terrace density 
and terrace heights. This corresponds to about twelve observable parameters with 
which we are fitting three energy parameters. As a consequence, by performing 
hundreds of simulations we are able to pinpoint with quite a high degree of accu
racy the free energies associated with the ratedetermining steps in this process, 
for this system.

Now consider the UOV system. There are a similar number of experimental 
observables as for zeolite A; however, the potential number of energy parameters 
for the model is 16, making the problem underdetermined. An assumption there
fore needs to be made. In this case, the assumption we make is that the free energy 
for condensation of the different cages per Si–O–Si condensation is the same, 
thereby reducing the number of parameters from 16 to 1. Despite this  assumption, 
we obtain a remarkably good fit with experiments. We need to be aware of the 
assumption that we have made and predicate further conclusions with that in 
mind; however, because the mechanism of crystallization of UOV was completely 
unknown without these simulations, the gain in knowledge is substantial despite 
the assumption made. It should be noted that our approach cannot be used blindly 
and requires very careful consideration of any system that is studied. Nevertheless, 
it provides a route to quickly study the basics of crystal growth for any system, in 
which the number of fitting parameters will be similar to or less than the number 
of experimental variables. Peculiarities for a given system would need to be layered 
on top of this approach.

Different polymorphs can be readily treated because they just represent different 
crystalline networks and therefore a different threedimensional partitioning of 
space. For example, the different zeolite structures in their purely siliceous forms 
are all polymorphs of silica. Although we have not addressed the possibility of  
predicting competition between polymorphs here, our approach could be 
extended: if the different structures are put on a relative scale, then the probability 
for nucleation of different polymorphs could be tested. This extension would not 
be straightforward because effecting nucleation via Monte Carlo techniques is 
technically demanding, owing to the propensity of the system to be perpetually 
dissolving.

Defects and stacking faults are very important and we believe our approach 
can be extended to include them. However, at this stage our focus was on  keeping 
the algorithms generic and efficient. Defects and intergrowths are by nature 
 systemspecific; consequently, so far we have considered only the most common 
defect, the screw dislocation. Whether it will be more beneficial to add capability 
for handling other defects to our algorithms in a bespoke manner for each system 
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or to develop protocols for introducing some more common intergrowths and 
defects is yet to be determined.

Our technique can be used for cocrystals with the modification that the  driving 
force for each component would need to be considered separately, although these 
driving forces would be linked by the stoichiometry of the growing crystal. In 
principle, any type of interaction can be considered because we are just fitting 
experimental data. If those interactions are to be computed ab initio for subse
quent comparison, then different types of interaction may pose different levels 
of complexity.

In the case of the zeolite A system, the energy parameters were refined by per
forming more than one thousand calculations that help to pinpoint the solution 
(see Extended Data Fig. 1g). In this instance, the crystal features are sensitive to 
the energy parameters (as might be expected), which, consequently, enables the 
refinement to be precise. Precision will vary from system to system depending on 
the number of experimental variables versus the number of fitting parameters. 
Similarly, the rigour of the comparison will depend on what experimental data 
are available that can be compared. For example, measurement of supersaturation 
for a molecular crystal might be straightforward, but for a zeolite growing from a 
gel is extremely difficult. Nonetheless, the supersaturation can become a variable 
that can be addressed by comparing surface nucleation densities. Also, the rigour 
of the comparison required depends on the question being asked. For example, if 
the question is, “how can the aspect ratio of a unidimensional nanoporous system 
be changed so that the pore length is short, to improve diffusion to a catalytically 
active centre?” then what is important is, “which parameters influence the aspect 
ratio of the crystal?” For zeolite L, improving diffusion of a guest species to a 
catalytically active centre means stabilizing the large cages, which can be achieved 
through specific templating. To make such a determination, the specific free 
 energies of condensation need to be known to an accuracy of only 0.5 kcal mol−1 
or less. But it is crucial to know the general mechanism of crystal growth that our 
simulation provides. Most materials chemists consider the trends to be the most 
important thing in terms of influencing outcome. If the experimental dataset is 
large and the number of fitting parameters is small, as is the case for zeolite A, 
then the free energies of condensation can be determined to an accuracy of about 
0.2 kcal mol−1.

To further test our methodology we looked at crystal growth of the lcystine 
 system, which has been studied extensively by AFM25,26 because of its involvement 
in the pathogenesis of cystine kidney stones. In previous work, detailed images 
were recorded of the development of complex screw dislocations emanating from 
the [001] facet, and a Hartman–Perdok analysis is able to describe many of the 
 features observed. Using our approach we are similarly able to simulate all of 
the main features observed in the lcystine system (see Extended Data Fig. 10),  
including the rounded and fractal features that a Hartman–Perdok analysis will not 
expose. By running multiple simulations in a similar manner to those  performed 
for the zeolite A system, we are able to refine the free energies of crystallization of all 
of the principal interactions in lcystine. For example, the two slow growth direc
tions (labelled A+  and A−  in refs 25 and 26) must differ by about 1–2 kcal mol−1 
to explain the step bunches with a total height of one unit cell in the c direc
tion (Extended Data Fig. 10b). If the difference between these growth  energies is 
removed or reduced, the height of the step bunches is only half a unit cell in the 
c direction, owing to the symmetry that is repeated every three lcystine  layers. 
However, what is most interesting from this work is the separation between the 
step bunches, which changes markedly with either supersaturation or with changes 
in the four binding energies. This stepbunch separation is discussed at length in  
ref. 25, in which lattice strain is used to account for deviations between the separa
tion expected from a Hartman–Perdok analysis and that observed in experiments. 
It is clear from our simulations that the rate of advancement of the slow steps that 
define the characteristic pinwheel pattern do not result from binding at this step 
edge followed by kink growth. Their advancement is precipitated by  nucleation 
and terrace growth on the side of the step bunches (〈 100〉  facets) as well as  surface 
nucleation. Because of the strong anisotropy of the binding energy in these  crystals, 
nucleation at a 〈 100〉  surface site is energetically more favourable than binding 
at a highercoordination edge site of an individual slow step. Consequently, the 
rate of growth of the 〈 100〉  facets and the slow steps is governed by the same 
process. This effect can be seen in supplementary video 1 of ref. 30, wherein the 
slow steps are seen to advance principally as a result of advancement of the step 
bunches; we reproduce this effect in Supplementary Video 7. Step advancement 
in the slow growth direction is further enhanced by birthandspread nucleation 
on the 〈 001〉  facet. For this complicated system, being able to visualize the  crystal 
growth in three dimensions helped to disentangle these competing processes. 
The outcome of a reversal of the handedness of the screw dislocation is shown in 
Extended Data Fig. 10c. Because the overall advancement of terraces is  governed 
by the  crystallography of the material rather than by the handedness of the screw 

 dislocation, the pattern of growth is remarkably similar, independently of the 
handedness of the screw dislocation. Indeed, far from the screw core it would  
be impossible to distinguish the handedness of the screw core. By contrast, near 
the screw core the terrace structure is necessarily different and is the distinguishing 
factor between opposite handedness. We simulated both lcystine and dcystine 
(Extended Data Fig. 10d) and, as expected, the presentations of the surface features 
have obvious opposite handedness. The free energies of binding that we determine 
directly by simulation of experiment can be compared with the value calculated 
directly from the experimental solubility of lcystine31.
CrystalGrower growth code. The CrystalGrower growth code is written in Fortran 95.  
Input polyhedral units (tiles or Voronoi polyhedra) and their connectivities 
(partitioning) are provided via an interface with ToposPro22. ToposPro builds 
natural tiling or Voronoi partition in accordance with strict and unambiguous 
algorithms21,22. As a result, all of the information for a given polyhedral unit in 
terms of the initial vertex condensation is provided for CrystalGrower. Polyhedral 
units neighbouring through faces are identified because these are considered as 
possible growth sites. Polyhedral units neighbouring through edges or vertices 
are considered too unstable to act as sensible ratedetermining units of growth. 
Further information that can be subsequently used to determine the consequences 
of condensation of polyhedral units on vertex condensation is also provided. 
All information is provided in P1 symmetry in the primitive unit cell. The low  
symmetry is necessary because crystal symmetry is broken at the crystal  surface; 
the primitive cell is used to ensure the most efficient calculation. Equating  
the crystal network to a network of polyhedral units also provides an effective 
route for enumeration of screw dislocations. These are computed by dividing  
the  network of polyhedral units by a plane up to the screw core, translating all 
of the  polyhedral units on one side of the plane along the screw direction to an 
equivalent  position, and then reconnecting the network. This procedure results in 
a new, fully  connected network with no dangling bonds. Adjacency matrices for 
polyhedral units are computed for the screw and for the perfect structure such that 
lookup tables can be generated to maintain efficient crystalgrowth computation 
even in the presence of such dislocations. The algorithm is completely generic and 
permits screw dislocations to be generated for any structure in any direction. The 
energetics of the screw dislocations are not determined and only some dislocations 
will be energetically feasible. CrystalGrower treats the problem simply as a network, 
but the stability of screw dislocation structures could be tested separately using 
energyminimization methods30.

The key to the program lies in efficient identification of all possible site types for 
growth; this is done once on initiation for both the perfect structure and any screw 
dislocations. These site types are not recomputed at each growth or  dissolution 
iteration when an efficient algorithm permits identification of sitetype changes 
as the crystal is modified. Probabilities for growth and dissolution are computed 
at each iteration as the number of changes of each site type and the driving 
 potential Δ μ. The value of Δ μ can be varied according to a number of protocols; 
 however, most importantly it can be allowed to proceed asymptotically towards the 
 equilibrium value Δ μe by lowering Δ μ for growth and raising Δ μ for  dissolution. 
When Δ μe is found, the numbers of unknowns to be determined is reduced.

The code allows the energy ladders of Δ Us values to be determined inde
pendently for each tile (Extended Data Fig. 1), and different weightings can be 
applied to different Qn vertices. The code further permits the poisoning of sites 
to simulate the addition of growth modifiers. Also, effects of chemical ordering 
on Δ Us values within the lattice (for example, Zn/P ordering in framework zinc 
phosphates or Si/Al ordering in high alumina zeolites) can be computed.

To treat molecular crystals or ionic crystals, site types are determined according 
to the number of Voronoi polyhedra rather than the number of tile vertices of 
type Qn. The philosophy is that the molecule or ion sits within a Voronoi polyhe
dron built for its centre of mass and that the faces of the polyhedron represent the 
interactions with neighbours. Each face (or neighbour) can be given a weighting 
to represent its contribution to the Δ Us values. All other computation is identical 
to that for framework crystals, and screw dislocations and growth modifiers may 
be added accordingly.
CrystalGrower visualization code. The CrystalGrower visualization code is  written 
primarily in C+ +  using OpenGL libraries, and calls to the Windows API. This 
code was designed to analyse the results of the kinetic Monte Carlo calculations 
performed by the CrystalGrower growth code and allow users to observe the 
 morphology and surface structure of the grown crystal, while also manipulating 
the crystal in real time. Two information files are required to construct and  display  
the polyhedral units that compose the crystal framework, both of which are 
 generated during a simulation run by CrystalGrower.

Two distinct steps are taken to draw the crystal structure. The first, using 
the partition information file output by CrystalGrower, builds a model of each 
 polyhedral unit using a small number of parameters for each polyhedral unit (such 
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as the number of vertices, the number of faces and whether the faces are flat or 
nonflat). This model will be a sphere in the case of molecular crystal. Once the 
parameters for each unit are calculated, the entire unit is stored as a memory object 
that allows quick, easy access from the graphics card. A series of spheres are also 
generated per unit for nonmolecular crystals, with radii defined by the rootmean
square of the (x, y, z) coordinates of the polyhedral unit, multiplied by a scaling 
factor to allow changes to be made to the size of the sphere while visualizing the 
crystal structure as spheres. The second step uses another output file generated by 
CrystalGrower, which provides the visualization package with the (x, y, z) coordi
nates for each unit cell grown in a run, along with information relating to the type 
of unit to draw. Coupling these coordinates with those in the partition file, the 
polyhedral unit is drawn at the correct position to be visualized. After completing 
the drawing of all of the units for one particular type, the entire array of units for 
this type is then stored as a new memory object. Storing the results of this second 
step as another memory object is important because it greatly improves the speed of 
the program, allowing realtime manipulation of a large number of objects (about 
300,000) on a graphics cards with greater than 2 GB of dedicated graphics memory.
Calcite calculations. The energetics for individual growth or dissolution steps were 
computed using a combination of interatomic potentials and a continuum solvation 
model. Here the COSMO solvation model32 was used, with atomic radii fitted 
such that the experimental hydration free energies of calcium and carbonate were 
reproduced. A modified force field was then developed by refitting the calcium–
carbonate interaction of an earlier model33, such that the energy difference between 
calcite and the ions in aqueous solution was consistent with the experimental  
solubility. Starting from the optimized bulk structure of calcite commensurate with 
this model, a rhombohedral nanoparticle of calcite was cleaved with dimensions 
of 16 ×  16 ×  4 atomic rows oriented such that the long edges run parallel to either 
the acute or the obtuse stepedge directions. The top layer of this particle was 
then reduced in size by two molecular layers along each edge to create an island 
on the surface. Using this structure as a starting point, with the bottom two layers 
of the slab held fixed during optimization to reproduce the effect of the calcite 
bulk,  various mechanistic pathways for the growth or dissolution of the island 
were explored. This includes the removal of each of the four distinct ions from 
both the acute and obtuse step edges, as well as the corresponding additions of 
ions to each step.

Results from these calculations show that the site types for Ca2+ and CO3
2− 

fall broadly into groups that depend on the connectivity of the ion within the 
lattice. The difference in reaction energy between the ion in solution and the ion 
in the crystal is 10–15 kcal mol−1 per ligand for both Ca2+ and CO3

2−. To provide 

more accurate results for future studies it will be important to use explicit solvent 
 molecules.
Other features that are revealed using CrystalGrower. Although the approach 
is principally designed to interrogate and simulate crystal surface structure and 
 crystal habit, it is also able to probe internal defects that arise as a result of the 
growth mechanism. This is particularly relevant in the two structures MFI and 
ETS10, both of which are known to exhibit birefringence when viewed under an 
optical or Raman microscope, respectively. It transpires from our initial studies 
using CrystalGrower that structures with open cages have a tendency to  crystallize 
in a manner that leaves some tiles incomplete, resulting in a high  number of 
 internal silanol groups. MFI and ETS10 (Extended Data Figs 5 and 6) both 
show internal defect density patterns that almost exactly mimic the birefringence 
observed experimentally. This is a much more appealing pathway to explaining 
such effects than that invoking complex twinning mechanisms. We will use this 
technique in the future to explore a range of framework structures that are known 
to exhibit such effects.
Experimental methods. AFM images were acquired using a JPK instruments 
Nano Wizard II. Images were taken in contact mode. Standard silicon nitride tips 
(NP Bruker Probes), with a nominal radius of 20 nm and a nominal spring constant 
of 0.58 N m−1, were used.
Data availability. The data that support the findings of this study are available 
from M.W.A. and A.R.H. (adam.hill@manchester.ac.uk) on reasonable request.
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Extended Data Figure 1 | See next page for caption.
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Extended Data Figure 1 | Experimental and simulated data for the 
LTA framework with energy level diagram. a, A schematic of energy 
ladders for the LTA structure. Double 4rings (D4Rs) are shown in 
yellow, sodalite (β ) cages are shown in magenta and α  cages are shown 
in cyan. Each level on the energy ladders, moving from bulk to the 
top, corresponds to the loss of coordination (or gain in hydration) of 
one Q4 site to a Q3 site. In the case of a double 4ring, the bottom level 
corresponds to a cage with zero Q3 sites and eight Q4 sites, whereas the 
top level corresponds to a fully solvated double 4ring with zero Q4 sites 
and eight Q3 sites. The driving force Δ μ, which is the chemical potential 
of the solution, can be considered as a single value for a zeolite in which 
the nutrient is interconverting. However, for a system with species that do 
not interconvert, such as a cocrystal, more than one driving force would 
be required—although these driving forces would be interrelated by the 
stoichiometry of solution species and their relative rates of consumption. 
b–f, The LTA structure consists of three tiles (b) connected in a cubic 
lattice (c). Typical crystals exhibit three facets, each with a unique terrace 

shape (d), all of which can be reproduced along with the crystal habit in 
a simulation that treats the crystallization energy of each tile separately 
(e, top); a prediction of the surface termination on (100) can also be 
made (e, bottom). Screw dislocations along [100] in the LTA structure 
are ubiquitous and the same set of parameters also reproduces the nature 
of this defect (f). Supplementary Video 1 shows the screw dislocation 
growing through the simulation. The simulated crystals shown in e and f 
are approximately 0.15 μ m ×  0.15 μ m ×  0.15 μ m and 0.20 μ m ×  0.15 μ m  
×  0.15 μ m in size, respectively; Δ Us(α ) =  1 kcal mol−1, Δ Us(β ) =   
5.4 kcal mol−1, Δ Us(D4R) =  8 kcal mol−1. g, A ternary plot consisting of 
1,176 simulation data points, corresponding to exploring the energy space 
at 2% intervals. All images are recorded at equilibrium driving force. The 
highest destabilization for each cage is at the corner at which its name 
appears, and the corresponding axes are colour coded. The directions 
of the grid lines for each axis can be seen in the small diagram top right. 
Examples of interesting morphologies for particular energy combinations 
are highlighted.
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Extended Data Figure 2 | Experimental and simulated data for the 
FAU framework. a, b, The FAU structure consists of three tiles (a) 
connected in a facecentredcubic lattice (b). c–e, A simulation in 
which the supersaturation is decreased from high (50 kcal mol−1) to 
low (1 kcal mol−1) at the halfway point, with Δ Us =  2 kcal mol−1 (c), 
matches scanning electron microscopy (SEM; d) and AFM (e) data on a 
zinc phosphate structure, in terms of both the octahedral habit and the 

triangular terraces on the (111) face with correct orientation.  
f, Simulations with the same parameters as for c with varying zoom 
distances show the surface structure predicted for this simulation. 
Supplementary Video 2 shows an example of how a FAU crystal  
grows at both high and low supersaturation. The simulated crystal shown 
in c and f has an approximate size of 0.20 μ m ×  0.20 μ m ×  0.20 μ m.
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Extended Data Figure 3 | Experimental and simulated data for the UOV 
framework. a, b, The UOV structure represents one of the most complex 
framework systems, with a particularly large unit cell with dimensions of 
1.27 nm ×  2.20 nm ×  3.88 nm, and consists of 16 different tile types (a)  
connected in an orthorhombic lattice (b). c, The germanosilicate 
crystallites that adopt this framework structure, although intergrown, 
show very well defined shape bounded by six faces. d, e, Simulation 

confirms the two large faces to be {100} (d) and the four side faces to  
be {013} (e, left). Simulations also reveal the structure at the crystal 
surface on the side wall (e, left) and top face (e, right), with differing 
colouring methods; Δ Us =  2 kcal mol−1. Supplementary Video 3 shows an 
example of how a UOV crystal grows at both high and low supersaturation 
values. The simulated crystal shown in all of these examples is 
approximately 0.050 μ m ×  0.75 μ m ×  1.40 μ m in size.
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Extended Data Figure 4 | See next page for caption.
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Extended Data Figure 4 | Experimental and simulated data for the  
NES framework. a, b, The NES framework can usually be expressed with 
four different tile types. The tile with the largest number of vertices,  
‘tnes’, can be split into three smaller tiles (green, cyan and blue) to give a 
total of six tiles of similar size (a) that combine to form an orthorhombic 
lattice (b). These three tiles can no longer be referred to as natural tiles, 
but they were still generated using the ToposPro software. These tiles 
play the part of units of growth and are required because CrystalGrower 
utilizes connections through faces, making frameworks that share only 
corners and edges between small tiles, such as NES, difficult to grow 
over reasonable timescales. c, d, AFM and SEM micrographs show 
the morphology of aluminosilicate crystals that adopt this framework 
structure to be long and waferlike with rounded terraces (c), which can be 

reproduced with simulations using the six smaller tiles chosen (d);  
Δ Us =  2 kcal mol−1. e, Lowering the energy penalty for the largest cage, 
Δ Us =  1 kcal mol−1 compared to other cages at 3 kcal mol−1, changes the 
morphology of the crystal markedly, thickening the crystal considerably 
(left and top right). This is an observable example of a structure being 
constrained in its propagation in a particular direction owing to the 
difficulty in growing such large cages. Investigating the surface structure 
(bottom right) shows that the surface is almost entirely terminated by the 
largest tile (blue) in the framework, again highlighting this observation. 
The simulated crystal shown in d is approximately 0.05 μ m ×  0.40 μ m  
×  0.15 μ m, whereas the example in e is estimated to be 0.10 μ m ×  0.20 μ m  
×  0.15 μ m in size.
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Extended Data Figure 5 | Experimental and simulated data for the MFI 
framework. a, b, The MFI structure consists of ten tile types (a) connected 
in an orthorhombic lattice (b). c, A consistent feature in MFI crystals is the 
optical hourglass effect seen in crystals of silicalite. There has been much 
conjecture about the origin of this hourglass effect. However, the fact that 
the optical birefringence, seen in these 300μ mlong crystals, is located in 
sectors bounded by the crystal faces is a good indication that the origin is 
a result of the mechanism for crystal growth being different on different 
faces of the crystal. d, Our simulations reflect well the crystal habit and 
surface topology and allow investigation of the surface termination;  
Δ Us =  2 kcal mol−1 for small tiles and Δ Us =  4 kcal mol−1 for large tiles. 

e, The internal structure shows that the density of silanol groups mirrors 
very closely the sectoring of the crystal, because only tiles with incomplete 
coordination are shown. Such a change in crystal chemistry would,  
almost certainly, be associated with a change in the refractive index  
of the crystal and hence the observed optical effect. Supplementary  
Video 4 demonstrates growth of the hourglass feature as the simulation 
progresses and shows how different tiles express this feature to differing 
degrees. The simulated crystal shown in d is approximately  
0.10 μ m ×  0.05 μ m ×  0.40 μ m in size, whereas the crystal shown  
in e is approximately 0.10 μ m ×  0.05 μ m ×  0.20 μ m.
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Extended Data Figure 6 | Experimental and simulated data for the 
titanosilicate material ETS-10. a, b, ETS10 is a nanoporous titanosilicate 
with a structure consisting of five tiles (a) connected in a monoclinic 
lattice (b). c, The structure has a very similar symmetry to zeolite β ; 
however, the titanium is incorporated into titania rods surrounded by 
silica. Highresolution electron microscopy courtesy of O. Terasaki.  
d, e, These rods run alternately in orthogonal [110] and [110] directions 
and are found to be the dominant components for the crystal growth.  

f, Because the rods do not always connect and heal inside the crystal 
structure, there is a high concentration of internal silianol groups in a 
sector from the (001) faces to the centre of the crystal. Such sectoring in 
ETS10 has been observed in Raman microscopy24. Supplementary Video 
5 demonstrates how the rods in the ETS10 framework grow in alternating 
orthogonal directions. The simulated crystals shown in d and f are 
approximately 0.25 μ m ×  0.25 μ m ×  0.05 μ m and 0.10 μ m ×  0.10 μ m  
×  0.10 μ m in size, respectively; Δ Us =  2 kcal mol−1.
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Extended Data Figure 7 | Experimental and simulated data for the  
CHA framework. a, b, The CHA structure consists of two tiles (a) 
connected in a monoclinic lattice (b). c, Typical silicoaluminophosphate  
(SAPO34) crystals show distorted cube morphology when viewed  
using SEM, exhibiting {100} faces with isotropic growth of terraces.  
d, e, Many screw dislocations can be observed in this system (e) and one 

such dislocation with a screw core running along [100] is reproduced by 
simulations (d); Δ Us =  2 kcal mol−1. f, Simulations predict that the surface 
terminates at the double 6rings. The simulated crystal shown in d has an 
approximate size of 1.50 μ m ×  0.10 μ m ×  0.10 μ m due to elongation caused 
by the screw dislocation.
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Extended Data Figure 8 | Experimental and simulated data for the AEI 
framework. a, b, The AEI structure consists of two tiles (a) connected 
in an orthorhombic lattice (b). c, The structure is related to CHA in that 
it can be built by connecting double 6rings. However, because of the 
alternating orientation of these units along the c direction, the fast and 
slow growth rates switch along the a and b directions (shown on AFM 

of aluminophosphate (AlPO18). d–f, The result is complex, interleaved 
spiral growth that is faithfully simulated using our space partitioning 
methodology; Δ Us =  2 kcal mol−1. The simulated crystal shown in d–f 
is approximately 1.70 μ m ×  0.05 μ m ×  0.05 μ m in size due to elongation 
caused by the screw dislocation.
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Extended Data Figure 9 | Experimental and simulated data for two 
metal–organic frameworks, HKUST-1 and MOF-5. a–d, HKUST1,  
a porous MOF of copper trimesate, Cu3[(O2C)3C6H3]2(H2O)3. By 
partitioning the structure with nodes at metal clusters and tile edges along 
linkers, the HKUST1 structure consists of three tiles (a) connected in a 
facecentred cubic lattice (b). Such a partitioning produces simulation 
results (d) that are in excellent agreement with experiments in terms of 
both the crystal habit and the terrace topology of the prevalent screw 
dislocations (c). The simulation predicts that the screw core runs along 
[110], not perpendicular to the {111} faces because such a screw core 
would result in multiple spirals (d); Δ Us =  2 kcal mol−1 for small tiles and 
Δ Us =  5 kcal mol−1 for large tiles. Simulations also allow investigation 
of the surface termination for this framework (d). Supplementary 
Video 6 shows the screw dislocation growing and migrating across 
the surface of the crystal. The approximate size of the crystal shown 
in d is 0.35 μ m ×  0.35 μ m ×  0.35 μ m. e–i, MOF5 (Zn4O(bdc)3, where 
bdc is 1,4benzenedicarboxylate), a porous MOF with a simple cubic 
arrangement of metal centres (red) and linkers (grey), along with a solvent 
molecule occupying the centre of each cube (purple) (e, left). Treating 
the structure as a multicomponent molecular crystal in lieu of a standard 

tilepartition as used in other cases, the framework can also be partitioned 
into Voronoi polyhedra to demonstrate the interactions between each of 
the linkers, metal centres and solvent molecules (e, right). Square terracing 
on the (100) face (f) can be in one of two orientations, depending on the 
synthesis conditions. The crystal morphology can also be changed to 
exhibit {111} faces as an octahedral crystal, again depending on synthesis 
conditions (g, left), as opposed to only {100} faces (g, right) in a cubic 
crystal. {111} faces exhibited by the crystal are much more isotropic (h) 
compared to the {100} faces (f) and do not adopt the different orientations 
demonstrated by the {100} faces. The simple cubic network alone will not 
permit the development of {111} faces and is immediately an indication 
of the importance of the solvent N,N′ diethylformamide (DEF) in the 
preparation. By varying the driving forces for binding of the linker, 
metal centre and solvent in the final crystal, all crystal habits and surface 
topologies may be generated (f–h). Double spirals through growth at  
screw dislocations on the (100) face can also be simulated (i). The 
estimated sizes of the crystals shown are: f, 0.76 μ m ×  0.75 μ m ×  0.75 μ m  
and 0.70 μ m ×  0.80 μ m ×  0.80 μ m; g, 0.50 μ m ×  0.50 μ m ×  0.50 μ m and 
0.75 μ m ×  0.75 μ m ×  0.75 μ m; h, 0.50 μ m ×  0.50 μ m ×  0.50 μ m; and  
i, 0.75 μ m ×  0.75 μ m ×  0.75 μ m.
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Extended Data Figure 10 | See next page for caption.
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Extended Data Figure 10 | Collection of simulated data for l-cystine 
along with a single simulation of d-cystine. a, A suite of calculations 
of the crystal growth of lcystine at a supersaturation of 0.6 kcal mol−1 
viewed down the [001] direction, showing characteristic pinwheel surface 
topology and hexagonal step bunching. Simulations are based on four 
characteristic free energies of crystallization: (i) in the strong binding 
direction where lcystine molecules are bound by two hydrogen bonds 
and S….S contacts; (ii) and (iii) in the weak, slow growth directions, 
labelled A+  and A−  in refs 25 and 26, with one hydrogen bond; and (iv) in 
the c direction with two hydrogen bonds. Interaction types (ii) and (iii) are 
maintained at half the strength of (iv), with a minimal difference between 
(ii) and (iii). These interactions can be combined into 491 growth sites that 
are computed in the simulation. The grid explores the effect of changing 
the relative magnitude of interaction (i) (number on the x axis), relative to 
the sum of the other interactions (number on the y axis); all values given 
in kcal mol−1. When all of these interactions are too weak, isotropic sticky 
growth is observed; when they are too high, the growth is too geometrical. 
The optimum balance is highlighted (black outline), for which the sum 
of the free energies of crystallization is 7.0 kcal mol−1, compared to the 
value of 4.3 kcal mol−1 derived from the solubility of lcystine at pH 7 

directly31. Similar to the results of ref. 25, the step bunching is closer 
than observed experimentally because lattice strain at the screw core 
weakens interactions and prevents the core region, which is advancing by 
attachment to the slow step alone, from forming a closed hexagonal step 
bunch as quickly as predicted. b, A set of simulations demonstrating the 
effect of small differences in the energy of slow growth directions A+  and 
A− ; energies given in kcal mol−1. If there were no difference in energy, 
then the pinwheel structure would have a step bunch height of only half a 
unit cell, owing to the symmetry that is produced every 180° turn around 
the screw core. A difference of 0.1 kcal mol−1 is sufficient to eradicate this 
symmetry and make the step bunches one unit cell high. c, Reversal of the 
handedness of the screw core is not immediately apparent because the pin
wheel structure and handedness remain the same whatever the handedness 
of the screw core as this is driven by the symmetry of the crystal structure 
at the molecular level. However, differences can be observed in the surface 
topology close to the screw core, depending on whether the handedness 
of the crystal structure is the same or the reverse of the handedness of the 
screw core. d, lcystine and dcystine present identical surface structures 
with opposite handedness, as expected.
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