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Prostate cancer is the most commonly diagnosed non-skin malignancy 
in men, and resulted in 256,000 deaths worldwide in 2010 (ref. 1).  
Although most men present with localized, potentially curable dis-
ease, current clinical prognostic factors explain only a fraction of the 
heterogeneity of treatment response. These factors therefore do not 
optimally triage individual patients into risk groupings that can be used 
to determine how aggressively the cancer should be treated2,3.

Localized prostate cancers exhibit striking inter-tumoural heter-
ogeneity, at both the genomic4,5 and microenvironmental6 levels. 
In particular, intermediate risk prostate cancers are localized, non-
indolent and clinically heterogeneous. Despite management with 
surgery or radiotherapy, about 30% of men suffer relapses; in 10% of 
these men (approximately 10,000 per year in North America), rapid 
biochemical recurrence can portend prostate-cancer-specific death7. 
Having a rigorous understanding of the genetic factors that drive  
progression and aggression in the initial pre- and post-treatment 
settings is essential for both clinicians and genetic researchers, as 
distinct genomic pathways of progression could define prostate 
cancer sub-types and lead to novel curative therapies. It is important 
to identify the genetic drivers of localized, non-indolent prostate cancer, 
as they cannot be inferred from studies of metastatic castrate-resistant 

prostate cancer (mCRPC) owing to tumour cell selection and adaption 
to androgen deprivation therapy8.

Here we describe, to our knowledge, the largest cohort of prostate 
cancer samples to have been subjected to whole-genome sequencing: 
200 non-indolent localized specimens. We provide saturating discovery 
of recurrent driver single nucleotide variants (SNVs), copy number 
aberrations (CNAs) and genomic rearrangements in this clinical group, 
and associate these with epigenomic profiles. Future studies in other 
clinical settings (for example, early-onset disease) and population-
specific contexts (for example, males of African ancestry) will be critical 
to generalize these findings. We confirm many well characterized 
recurrent molecular aberrations and identify novel prognostic trans-
locations, inversions and epigenetic events. Together, these data provide 
insights into the genomic landscape of localized prostate cancer, and 
highlight molecular aberrations that may help to triage patients for 
precision prostate cancer medicine.

Saturating genomic interrogations
To address the genetic heterogeneity of non-indolent localized prostate 
cancer, we first comprehensively profiled CNAs in 284 localized prostate 
adenocarcinomas (Supplementary Table 1; Supplementary Fig. 1).  

Prostate tumours are highly variable in their response to therapies, but clinically available prognostic factors can explain 
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The profiles recapitulated those previously reported, including 
recurrent allelic gains of MYC and deletions of PTEN, TP53 and NKX3-1  
(Supplementary Results; Supplementary Figs 2–4; Supplementary 
Tables 2–6). Even in this clinically homogeneous population, we 
observed large inter-tumoural heterogeneity in the percentage of the 
genome with a CNA (per cent genome altered (PGA), 0–39.2%)4.

We next performed high-depth whole-genome sequencing (WGS) 
of 130 of these tumours (and matched blood samples), focusing on 
localized tumours amenable to surgery (that is, with a Gleason score 
(GS) of 3 +​ 3, 3 +​ 4 or 4 +​ 3). These were supplemented by 70 pairs of 
tumour and normal tissue samples with publicly available read-level 
WGS data9–12 and 277 read-level exome sequences9,10,12,13, all with 
similar GSs. WGS data covered 84.2 ±​ 2.5% (mean ±​ s.d.) of the non-
repetitive genome to at least 17×​ for tumour samples and 67.1–85.7% 
to 10×​ for normal samples, allowing robust analysis of the entire 
genome. All samples were aligned and profiled for SNVs and genomic 
rearrangements, using well characterized and validated pipelines14  
(Fig. 1a and Supplementary Tables 1, 7–9). Overall, this process 
yielded 477 prostate tumours with analysis of somatic coding SNVs 
(Supplementary Data 1, Extended Data Fig. 1, Fig. 1a). These data give 
62.9–99.9% power to detect recurrent coding and non-coding SNVs 
at 0.5–10% recurrence15 (Supplementary Fig. 5a, b). Similarly we had 
over 99.9% and 44.7% power to detect genomic rearrangements present 
at 10% and 3% recurrence, respectively (Supplementary Fig. 5c).  
To supplement these metrics, we performed RNA abundance profiling 
of 73 tumours, and methylation profiling of 104. We generated 
methylation subtypes through unsupervised machine learning 
(Supplementary Table 1).

We observed a low overall SNV burden, with a median of 0.53 (0.05–
6.92) somatic SNVs per million base pairs across all tumours (Fig. 1a). 
SNV burden was significantly elevated in tumours containing Gleason 
pattern 4, with a median of 1,063, 1,482 and 1,585 in tumours with GSs 
of 3 +​ 3, 3 +​ 4 and 4 +​ 3, respectively (P =​ 1.05 ×​ 10−3; t-test). The 
number of genomic rearrangements was highly variable across tumours 
(median 19, 0–499) and those with any GS 4 component (that is, 3 +​ 4 
or 4 +​ 3) showed elevated rates (median 17 genomic rearrangements 
in GS 3 +​ 3 versus 22 in GS 3 +​ 4 and 4 +​ 3; P =​ 5.11 ×​ 10−4; t-test). 
The number of inversions and translocations was correlated with SNV 

burden (Fig. 1b, Extended Data Fig. 2a; ρ =​ 0.56, P =​ 1.32 ×​ 10−17). 
We found several other associations between mutational burden and  
covariates such as serum prostate-specific antigen (PSA) levels, tumour 
size and ETS gene family fusions (Supplementary Table 9; Extended 
Data Fig. 2).

Somatic SNV profiles
Individual tumours harboured 0–98 exomic SNVs (Fig. 2). The median 
number of non-synonymous SNVs increased with GS (GS 3 +​ 3, 7; 
3 +​ 4, 9; 4 +​ 3, 10; P =​ 0.001, one-way ANOVA; Supplementary Data 1,  
Supplementary Fig. 6). Only six genes were mutated by coding SNVs 
in more than 2% of tumours: SPOP (8.0%; 38/477), TTN (4.4%, 
21/477), TP53 (3.4%; 16/477), MUC16 (2.5%; 12/477), MED12 (2.3%; 
11/477) and FOXA1 (2.3%; 11/477). The AR gene was altered by non-
synonymous SNVs in only 2 out of 477 tumours (one GS 3 +​ 3 and 
one GS 3 +​ 4), while allelic deletions in AR were observed in 4 out of 
284 tumours and amplification in 1 out of 284 tumours. Notably, eight 
tumours (1.75%) harboured mutations in the DNA damage checkpoint 
activator gene ATM. Mutations in several genes, most prominently 
FAT1, were associated with GS (0/78 in GS 3 +​ 3; 0/261 in GS 3 +​ 4; 
5/133 in GS 4 +​ 3; P =​ 0.0048, Fisher’s exact test). Similarly, mutations 
in multiple genes were associated with increased genomic instability as 
measured by PGA; these genes included MYO15A (2.7% in wild type 
versus 6.3% in mutated; false discovery rate (FDR) P =​ 1.01 ×​ 10−11). 
Assuming a median background mutation rate of 2.44 ×​ 10−1 mutations 
per Mbp for transcribed regions (including exons and introns but 
excluding UTRs), we estimate that there remain no genes to be dis-
covered at the ≥​1% rate, but around five undiscovered genes mutated at  
the 0.5% level. The low frequency of these mutations juxtaposed with the 
high rate of CNAs confirms the C-class character of localized prostate  
cancers16.

We next explored the non-coding regions of the genome in the 200 
tumours that underwent WGS. Multiple recurrent noncoding SNVs 
(ncSNVs) (that is, ones with identical genomic position) were detected: 
7 ncSNVs were observed in at least 7 out of 200 patients, and 63 were 
mutated in 4–6 patients. These SNVs are thus present at a similar 
mutation rate (about 2–4%) as TP53, MED12 and FOXA1 (Extended 
Data Fig. 3a). Most tumours harboured at least one recurrent ncSNV  
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Figure 1 | Global mutational profile of localized non-indolent prostate 
cancer. We analysed genomic profiles of 200 localized, non-indolent 
prostate tumours. a, Each column represents an individual tumour that 
underwent WGS, sorted first by GS, then by the number of somatic 
SNVs identified (top). The middle and bottom panels show the number 
of genomic rearrangements (GR) and CNAs, respectively. The clinical 

covariates GS, PSA, T-category, and age are shown, with a colour key for 
each. Box plots to the right show the association between mutation load 
and GS, with P values from one-way ANOVAs. b, Correlation between 
mutation load (PGA, SNV, INV+​CTX and CNA) and clinical variables. 
Background shading indicates Bonferroni-adjusted P values; size and 
colour of dots show Spearman’s correlation.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



1 9  J A N U A R Y  2 0 1 7  |  V O L  5 4 1  |  N A T U R E  |  3 6 1

ARTICLE RESEARCH

(≥​2% recurrence; median: 1 per tumour). There was a strong bias in 
trinucleotide context towards TCT/AGA trinucleotides (from 27/70 
SNVs). Validation of these SNVs in further cohorts will be critical to 
generalize these findings. Several ncSNVs showed trends towards asso-
ciation with GS, PGA and ETS gene fusions, highlighting a potential 
role in driving mutational phenotypes, and the need for larger cohorts 
to uncover these effects. Recurrent ncSNVs were not associated with 
replication time (Supplementary Fig. 7), and encompassed a broad 
range of variant allele frequencies, from clonal to small subclones 
(Extended Data Fig. 3b). Recurrent ncSNVs did not generally localize to 
specific transcription factor binding sites, although genomic rearrange-
ments and CNAs did (Supplementary Results, Extended Data Fig. 3c,  
Supplementary Fig. 8). We therefore considered the potential impact 
of SNVs on chromatin structure, across a wide range of marks from 
multiple cell-types using DeepSEA17 and in a panel of 14 marks charac-
terized in the LNCaP prostate cancer-derived cell line (Extended Data 
Fig. 3d, Supplementary Table 10). Six out of seventy recurrent ncSNVs 
showed evidence of perturbing chromatin structure at q <​ 0.01, but no 
individual chromatin feature was significantly enriched across ncSNVs.

We next quantified trinucleotide mutational signatures with 
non-negative matrix factorization18. Three distinct trinucleotide 
signatures were identified from WGS data (Supplementary Fig. 9a; 
Supplementary Table 11). Signature 2 reflects the deamination profile 
previously reported as a hallmark of sequencing false positives14,18. 
Increased expression of signature 2 showed a marginal positive associa-
tion with T3 (β =​ 0.398; q =​ 0.044; generalized linear model (glm)) and 
a negative association with age (β =​ −​0.015; q =​ 0.022; glm); signature 3 
showed a weak positive association with age (β =​ 0.014; q =​ 0.049; glm). 
By contrast, signature 1 was characterized by a relatively uniform muta-
tional profile and was not associated with age, GS, PSA, or T category 
(Supplementary Table 12). These signatures occur in individual patients 
at different frequencies (Supplementary Fig. 9b, Supplementary  
Table 13). The fraction of SNVs in a tumour attributed to a given signature  
(called its ‘exposure’) were correlated with recurrent CNA segments and 
genomic rearrangement 1-Mbp bins. Supplementary Table 14 shows 
the significant CNA genes (at the 5% FDR corrected level) for each 
signature. There were no significant correlations between the exposures 
of signatures and genomic rearrangements.

Genomic rearrangements in localized prostate cancer have 
not been extensively studied. As expected, the TMPRSS2:ERG 
(T2E) fusion on chromosome 21 was the most recurrent genomic 
rearrangement (38%, 76 out of 200 patients; Extended Data  
Fig. 4a). Other frequent alterations include translocation of 
MMS22L (chr6q16.1) and ARHGAP10 (chr4q31.23) in 12 of 
200 tumours and translocation of chr17p11.1 and chr1q21.2 in 
7 of 200 tumours. These alterations were reflected by several 
chromosome pairs being involved in more inter-chromosomal 
genomic rearrangements than expected (Extended Data Fig. 4b), 
including some without prominent focal genomic rearrangement 
peaks (for example, chr4–chr6: expected 2 CTXs, observed 14 CTXs; 
q <​ 0.001, permutation test). Anticipating that these effects might be 
induced by inter-chromosomal proximity19,20, we compared pair-
wise genomic rearrangement enrichment to Hi-C data measuring 
inter-chromosomal links in the RWPE1 prostate cancer cell line21. 
Translocations between a few chromosome pairs co-localized with 
Hi-C links, but many more were further from Hi-C links than 
expected by chance (Extended Data Fig. 4c).

To further understand regional genomic rearrangement effects, 
we divided the genome into 1-Mbp bins and considered the  
frequency of genomic rearrangements in each (Extended Data  
Fig. 4a, Supplementary Table 15). Six bins had elevated rates of 
inversions: chr3:125–126 Mbp and chr3:129–130 Mbp contained 
inversions in 6% of patients (12 out of 200); chr10:89–90 Mbp 
contained inversions in 5.5% of patients (11 of 200); and chr3:195–
196 Mbp, chr21:39–40 Mbp and chr21:42–43 Mbp all contained 
inversions in 5% of patients (10 of 200). A recurrent inversion 
on chr10:89–90 Mbp in 11 of 200 patients was associated with a 
significant decrease in the mRNA abundance of three genes within it 
(ATAD1, LOC439994, and PTEN (Extended Data Fig. 5a)), suggesting  
a novel mode of PTEN repression. Patients with this inversion 
showed lower PTEN pathway activity than those with deletions of 
PTEN (Extended Data Fig. 5b). This mode of repression may be more 
general than just the PTEN locus: inversions in chr3:129–130 Mbp 
also dysregulate mRNA abundance, with 8 out of 15 genes repressed 
in tumours harbouring the inversion (P <​ 0.05, model-based t-test 
(limma); Extended Data Fig. 5c).
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tumours. We created a consistent, standardized set of somatic SNV 
predictions in the exome from a set of 477 tumours. Tumours are sorted 
by GS (bottom covariates), then by the total number of coding SNVs 
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Localized somatic hyper-mutation
Whereas some tumours are initiated or driven by recurrent point 
mutations, others are driven by focal genomic instability at the level 
of either DNA double-strand breaks (that is, chromothripsis22) or 
single-strand breaks (that is, kataegis18). Using ShatterProof23, we 
detected chromothripsis in 20% of tumours (38 out of 186) with CNA 
data (Fig. 3a; Supplementary Data 2). Chromothripsis was associated 
with larger tumour size (Kendall’s τ =​ 0.23, P =​ 3.07 ×​ 10−4; Extended 
Data Fig. 6a), but not with other clinical variables such as age (P =​ 0.24) 
or GS (P =​ 0.35). Chromothripsis was associated with point mutations 
in FOXA1 (P =​ 0.008) and CNAs in NKX3-1 (P =​ 3.5 ×​ 10−4), CHD1 
(P =​ 1.7 ×​ 10−4) and CDKN1B (P =​ 3.5 ×​ 10−4; Wilcoxon rank-sum 
test). Chromothriptic tumours were also significantly enriched for dele-
tion of a locus on chr8 q36.32–p11.21 containing ADRA1A, PPP3CC 
and several genes other whose mRNA abundance was correlated with 
ShatterProof scores (Extended Data Fig. 7a). Overall CNA burden was 
modestly increased in chromothriptic tumours, as were essentially 
all mutation types, but tumour cellularity was not (Extended Data  
Figs 6b, 7b). Genes within chromothriptic regions largely showed 
reduced mRNA abundance but not methylation, and were greatly 
enriched for genes deleted in tumours without chromothriptic events, 
suggesting that chromothripsis tends to inactivate tumour suppressors 
(Extended Data Fig. 8). Correlations between methylation probes and 
mRNA transcripts changed in regions of chromothripsis, suggesting 
perturbed epigenetic regulation, and genes whose correlation changed 
in chromothriptic tumours were enriched (FDR <​ 5%) in pathways 

associated with development (Extended Data Fig. 9; Supplementary 
Table 16). The mRNA abundances of 57 genes were strongly correlated 
with chromothripsis (|​R|​ ≥​ 0.35; Supplementary Table 17). The mRNA 
abundances of several immune genes were negatively correlated with 
chromothripsis, including the proto-oncogene DBL (also called MCF2; 
ρ =​ −​0.43, P =​ 2.0 ×​ 10−4) and CD36 (ρ =​ −​0.39, P =​ 7.0 ×​ 10−4),  
suggesting that immune dysregulation might have a role in chromo-
thripsis, although few infiltrating immune cells were identified in 
primary tumours and their presence was not correlated with chromo-
thripsis (Extended Data Fig. 6d–f).

To quantify kataegis, we developed a sliding-window approach using 
the binomial test, a test for base change enrichment and an assessment 
of the expected proportion of variants within a given window. We 
detected kataegis in 46 out of 200 samples (23%; Fig. 3b, Supplementary 
Data 3). Kataegic tumours were significantly enriched for CHD1  
deletion (15 out of 45 (33%) with kataegis versus 16 out of 141 (11.3%) 
without kataegis; P =​ 0.001, prop-test). Additionally, kataegis was 
preferentially found in tumours with SNVs or CNAs in SPOP (P =​ 0.05, 
prop-test) or genomic rearrangements in regions on 4q (129–130 Mbp; 
FDR q =​ 0.002, prop-test) or 6q (126–127 Mbp; FDR q =​ 0.006, prop-
test). Furthermore, tumours with kataegic events showed significantly 
elevated genomic instability (Extended Data Fig. 6c; P =​ 7.52 ×​ 10−3, 
t-test). Kataegis was more likely to occur in tumours with elevated 
Gleason grade (13% of GS 3 +​ 3 samples had kataegic events versus 
19% of GS 3 +​ 4 and 39% of GS 4 +​ 3 samples; Kendall’s τ =​ 0.21, FDR 
q =​ 0.004).
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Recurrent aberrations predict outcome
To characterize recurrent events better in localized prostate cancer, 
we evaluated the association of each of these with patient survival. 
Of the 200 patients whose samples were whole-genome sequenced, 
130 had available data on disease relapse, as measured by biochemical 
recurrence (BCR, see Methods), with a median 7.96-year follow-up. 
We systematically evaluated the clinical relevance of 40 recurrent 
genomic alterations in localized prostate cancer: three measures of 
mutation density, kataegis, chromothripsis, five recurrent coding SNVs, 
six recurrent non-coding SNVs, six methylation events, six recurrent 
translocations, four recurrent inversions and eight CNAs. For each, we 
employed univariate CoxPH modelling (Fig. 4a). Only one SNV was 
predictive of patient outcome: all patients with point mutations in ATM 
suffered relapse (Fig. 4b). A recurrent inter-chromosomal transloca-
tion breakpoint at the chromosome 7 centromere (chr7:61–62 Mbp) 
and amplification of MYC were also prognostic for BCR24. By contrast, 
no measures of mutation intensity (that is, PGA or the number of 
genomic rearrangements or SNVs) or density (that is, chromothripsis 
or kataegis) were associated with BCR, although PGA showed a strong 
trend towards an effect.

Methylation status was much more tightly associated with patient 
outcome than any other genomic characteristic: of the nine events 
significantly (P <​ 0.05; Wald test) associated with disease recurrence, 
six involved DNA methylation. For example, hyper-methylation of a 
probe 5′​ of a transcriptional elongation regulator (TCERG1L) showed 
a strong association with poor outcome (hazard ratio (HR) =​ 2.90; 95% 
CI, 1.30–6.30; P =​ 0.007). Another probe on the 3′​ end of TCERG1L 

showed the inverse association, with hypo-methylation associated 
with good outcome (HR =​ 0.17; 95% CI, 0.06–0.49; P =​ 9.45 ×​ 10−4; 
Fig. 4c). Of the six prognostic methylation events, five were validated 
in an independent cohort of 100 intermediate-risk patients (Extended 
Data Fig. 10a–f).

Finally, we evaluated whether these events could be integrated 
into a multi-modal biomarker to predict disease relapse. We applied  
multivariate CoxPH modelling using cross-validation to test 
the outcome of a multi-modal biomarker: T-category, ACTL6B 
hyper-methylation, TCERGL1 hypo-methylation, the chr7:61 Mbp 
CTX, ATM SNVs, and MYC CNA. This signature was highly discrimi
native of patients who would experience disease relapse, with an area 
under the ROC curve of 0.83 (95% CI: 0.80–0.86), as compared to 
that of 0.61 for the validated PGA biomarker6,25 (Fig. 4d), and with 
a concordance index of 0.79. This discriminative ability predicted 
differences in patient survival (HR =​ 4.71; 95% CI, 2.17–10.24; 
P =​ 9.00 ×​ 10−5; Wald test; Extended Data Fig. 10g, h).

Discussion
We used WGS to identify recurrent mutational events outside the 
exome in localized, non-indolent prostate cancer. Because of the 
paucity of driver and prognostic coding aberrations, consideration of 
the entire prostate cancer genome may be critical in biomarker studies 
to find driver aberrations that have been missed in smaller studies4,10.  
For example, we identified several inversions associated with 
decreases in mRNA abundance, potentially representing a novel 
mode of tumour-suppressor inactivation. Replication of our newly 
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Figure 4 | Multi-modal prediction of disease relapse. a, We defined 
40 properties of prostate cancers, including mutation density, presence/
absence of chromothripsis and kataegis and a series of recurrent somatic 
mutations. For each, we calculated the association with BCR using a 
CoxPH model and show the HR, 95% CI and P value (Wald test).  
b, Kaplan–Meier plot of biochemical relapse-free survival proportion of 
patients with and without ATM nonsynonymous SNVs. c, Kaplan–Meier 

plot of biochemical relapse-free survival proportion of patients with and 
without hypermethylation of TCERG1L at the 5′​ and hypomethylation 
of TCERG1L at the 3′​ probe. d, Receiver operating characteristic (ROC) 
curves for a multi-modal biomarker predicting biochemical recurrence, 
tested via cross-validation (yellow) and a PGA marker (green). Blue dots 
represent the operating point (maximum balanced accuracy). AUC, area 
under the curve.
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identified alterations and candidate biomarkers in additional  
datasets and with additional technologies will be a key next step 
towards clinical translation. Similarly, functional and mechanistic 
evaluation of the mutational profiles described here will be impor-
tant to understand their role in driving aggressive prostate cancer. 
This study focused solely on index lesions of each tumour, and as such 
does not directly account for the large spatio-genomic heterogeneity of 
prostate cancer, except through its large sample size4,5. Understanding 
of this heterogeneity and the associated evolutionary history of the 
disease will be an important next step in understanding the aetiology 
of prostate cancer.

Our data also highlight the differences in mutational profiles 
between localized intermediate risk cancers and metastatic castrate 
resistant prostate cancer (mCRPC). Nearly 50% of mCRPCs harbour 
mutations in AR, ETS genes, TP53 and PTEN and about 20% have 
aberrations in DNA damage response genes (for example, BRCA1, 
BRCA2 and ATM, which may portend sensitivity to poly-ADP ribose 
polymerase (PARP) inhibitors26–28). Furthermore, more than 60% of 
mCRPCs contain clinically actionable mutations that are not related to 
AR8. By contrast, non-SNV mutations dominate the driver landscape 
of localized, non-indolent prostate cancer. No single gene was mutated 
at more than 10% frequency and the only gene in which SNVs were 
prognostic was ATM.

In the modern era of PSA screening, many patients initially present  
with aggressive non-indolent prostate cancers with aggressivity. We show 
that localized disease has a different biology from advanced mCRPCs, 
which have undergone significant selective pressure, often through 
multiple courses of treatment29. As recurrent SNV driver aberrations 
are rare in localized disease, genetically unstable localized tumours 
requiring intensified therapy may benefit from widespread genotoxic 
chemotherapy as supported by clinical trials in treatment-naive,  
metastatic disease30. Similarly, the development of novel therapeutics 
will be improved by a robust understanding of the non-exomic drivers 
of aggression in localized prostate cancer.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Patient cohort. All patients underwent either image-guided radiotherapy (IGRT) 
or radical prostatectomy (RadP), with curative intent, for pathologically confirmed 
prostate cancer. All patients were hormone naive at the time of definitive local 
therapy. In the IGRT cohort, a single ultrasound-guided needle biopsy was obtained 
before the start of therapy, as previously described6. Fresh-frozen RadP specimens 
were obtained from the University Health Network (UHN) Pathology BioBank 
or from the Genito-Urinary BioBank of the Centre Hospitalier Universitaire de 
Québec (CHUQ). Whole blood was collected and informed consent, consistent  
with local Research Ethics Board (REB) and International Cancer Genome 
Consortium (ICGC) guidelines, was obtained at the time of clinical follow-up. 
Previously collected tumour tissue was used, following University Health Network 
REB-approved study protocols (UHN 06-0822-CE, UHN 11-0024-CE, CHUQ 
2012-913:H12-03-192). To confirm GS and tumour cellularity, all tumour 
specimens were independently evaluated by two genitourinary pathologists 
(T.v.d.K., B.T.) on scanned, haematoxylin and eosin (H&E)-stained slides. Serum 
PSA is reported based on the reading at the time of diagnosis, and is given in ng/ml. 
Pathological (RadP samples) and clinical (IGRT samples) T category was reported 
using standard National Comprehensive Cancer Network (NCCN) criteria (http://
www.nccn.org/professionals/physician_gls/pdf/prostate.pdf). All patients were 
N0M0 as an entry criterion for the study. For IGRT patients, BCR was defined as 
a rise in PSA concentration of more than 2.0 ng/ml above the nadir (after radio-
therapy, PSA levels drop and stabilize at the nadir). For RadP patients, BCR was 
defined as two consecutive post-RadP PSA measurements of more than 0.2 ng/ml  
(backdated to the date of the first increase). If a patient has successful salvage 
radiation therapy, this is not BCR. If PSA continues to rise after radiation therapy, 
BCR is backdated to first PSA >​ 0.2. If patient gets other salvage treatment (such 
as hormones or chemotherapy), this is considered BCR.
Sample processing. At UHN, selected samples were cut into 60 ×​ 10-μ​m sections, 
with an H&E-stained 4-μ​m section every 10 cuts. H&E-stained sections were 
marked by a genitourinary pathologist (T.v.d.K. or B.T.) to indicate areas suitable 
for macro-dissection (that is, more than 70% tumour cellularity). Manual macro- 
dissection was performed using sterile scalpel blades, and DNA was obtained by 
phenol:chloroform extraction, as previously reported4. DNA was extracted from 
whole blood using an ArchivePure DNA Blood Kit (5 PRIME, Inc.) at the Applied 
Molecular Profiling Laboratory at the Princess Margaret Cancer Centre.

At CHU de Québec, initial quality control was performed as described above 
and, if the surface of tumoural glands was considered large enough, 2 cores 
with 1mm diameter were taken from the tumoural zone using a sterile biopsy 
punch (Miltex). Tissues were immediately disrupted in ATL buffer using Minilys 
homogeneizer (Bertin Technologies, Montigny, France). DNA was extracted from 
the lysate using QIAmp DNA mini kit (Qiagen, Hilden, Germany). The same kit 
was used to generate DNA extractions on blood samples.

All DNA samples were quantified using a Qubit 2.0 Fluorometer 
(Life Technologies) and assessed for purity using a Nanodrop ND-1000 
spectrophotometer.
SNP microarray data generation. SNP microarrays were performed with 200 ng 
of DNA on Affymetrix OncoScan FFPE Express 2.0 and 3.0 arrays. Where DNA 
quantities were limiting (88 samples), we used whole-genome amplification (WGA; 
WGA2, Sigma-Aldrich), and confirmed that WGA gDNA did not significantly 
alter CNA profiles4.
Methylation microarray data generation. Illumina Infinium HumanMethylation 
450k BeadChip kits were used to assess global methylation, using 500 ng of input 
genomic DNA at the McGill University and Genome Quebec Innovation Centre 
(Montreal, QC). All samples were processed from fresh-frozen prostate cancer 
tissue. In total, there were 104 unique samples from 6 different processing batches 
in the discovery cohort. The validation cohort comprised 100 methylomes, 
processed identically.
mRNA microarray data generation. Total RNA was extracted from alternating 
adjacent sections, using the mirVana miRNA Isolation Kit (Life Technologies), 
according to the manufacturer’s instructions. In total, three batches were profiled at 
two locations. For batch 1 samples, 150 ng total RNA was assayed on the Affymetrix 
Human Gene 2.0 ST array (HuGene 2.0 ST) at The Centre for Applied Genomics 
(The Hospital for Sick Children, Ontario, Canada). For samples in batches 2 and 
3, 100 ng total RNA was assayed on the Affymetrix Human Transcriptome Array 
2.0 (HTA 2.0) and HuGene 2.0 ST, respectively, at the London Regional Genomics 
Centre (Robarts Research Institute, London, Ontario, Canada).
Whole-genome sequencing. Qubit (Life Technologies; Cat #Q32854) quantified 
gDNA (50 ng) was sheared to 300-bp fragments using the Covaris S2 Ultra-
sonicator (Covaris Inc.) followed by 3×​ volume AMPure XP SPRI bead clean-up 
(Beckman Coulter Genomics; Cat#A63881). The bead–DNA mixture was 
transferred to a 96-well PCR plate (Eppendorf; Cat#0030133404) for the remainder 

of library construction and all subsequent SPRI bead clean-ups. Libraries were 
constructed using enzymatic reagents from KAPA Library Preparation Kits 
(KAPA Biosystems; Cat#KK8201) according to protocols as described for end 
repair, A-tailing, and adaptor ligation31. Adaptor-ligated libraries were enriched 
using optimized PCR conditions by adding 3 μ​l Illumina F & R PE enrichment 
primers (Integrated DNA Technologies), 75 μ​l 2×​ KAPA HiFi HotStart ReadyMix 
(KAPA Biosystems; Cat#KK2602) and 33 μ​l nuclease-free water (Life Technologies; 
Cat#AM993) to 36 μ​l eluted DNA and amplified across three individual PCR 
reaction tubes. Libraries were incubated in Verti 96-well Thermal Cyclers (Life 
Technologies) for 45 s at 98 °C and cycled 10 times for 15 s at 98 °C, 30 s at 65 °C, 
and 30 s at 72 °C. Following a 0.6×​ SPRI bead clean-up, post-PCR enriched libraries  
were eluted in 40 μ​l elution buffer (Qiagen; Cat#19086) and validated using 
Agilent Bioanalyzer High Sensitivity DNA Kit (Agilent Technologies; Cat#5067-
4626). Libraries were quantified on the Illumina Eco Real-Time PCR Instrument 
(Illumina Inc.) using KAPA Illumina Library Quantification Kits (KAPA 
Biosciences; Cat#KK4835) according to the standard manufacturer’s protocol. 
2 ×​ 101 cycle paired-end sequencing was carried out for all libraries on the Illumina 
HiSeq 2000 platform (Illumina Inc.), and samples were sequenced to a minimum 
coverage depth of 50×​ and 30×​ for tumour and normal samples, respectively.  
A subset of the non-tumour reference samples was sequenced using the Illumina 
FastTrack Sequencing service. Sample preparation is described at www.illumina.
com/content/dam/illumina-marketing/documents/services/FastTrackServices_
Methods_Tech_Note.pdf.
SNP microarray data analysis. Affymetrix OncoScan FFPE Express 2.0 (n =​ 4) 
and 3.0 SNP (n =​ 280) microarrays were hybridized using 200 ng WGA (n =​ 88 
IGRT biopsies) or genomic DNA (n =​ 137 RadP samples; n =​ 59 IGRT biopsies). 
We compared genomic DNA and WGA DNA from three independent specimens 
to confirm that WGA did not significantly affect the CNV and SNP profiles. We 
also evaluated inter-assay variability by analysing duplicate genomic and WGA 
DNA samples4.

Analysis of Affymetrix OncoScan FFPE Express 2.0 SNP probe assays was 
performed by Affymetrix using BioDiscovery’s Nexus Copy NumberTM software 
(http://www.biodiscovery.com/software/nexus-copy-number/). The data from 
Affymetrix were processed in batches based on version and in some cases LiftOver 
(http://genome.ucsc.edu/cgi-bin/hgLiftOver) was used to map aberrations from 
genome reference hg18 to hg19 (http://genome.ucsc.edu/). When the lift-over 
process deleted a portion of the CNA, the CNA was removed from the analysis.

Analysis of Affymetrix OncoScan FFPE Express 3.0 SNP probe assays was 
performed using.OSCHP files generated by OncoScan Console 1.1 using a custom 
reference. A custom reference, which included 119 normal blood samples from 
male patients with prostate cancer, 2 normal blood samples from females with 
anaplastic thyroid cancer, and 10 female hapmap cell line samples was created to 
combat artefacts resulting from differences in sample preparation (FFPE versus 
Fresh Frozen). BioDiscovery’s Nexus ExpressTM for OncoScan 3 Software was used 
to call CNAs using the SNP-FASST2 algorithm with default parameters except that 
the minimum number of probes per segment was changed from 3 to 20. When 
necessary, samples were re-centred using the Nexus ExpressTM software, choosing 
regions that showed diploid log2ratio and B allele frequency profiles.

Gene level CNAs for each patient were identified by overlapping CN segments, 
with RefGene (2014-07-15) annotation, using BEDTools (v2.17.0)32. To account for 
technical noise, a CNV blacklist was created from matched normal blood samples. 
Regions were added to the blacklist if they were seen in at least 75% of normal 
samples and filtered from downstream analyses. PGA was calculated for each 
sample by dividing the number of base pairs that were involved in a copy number 
change by the total length of the genome.

Copy number clustering was performed with the BioConductor package 
ConsensusClusterPlus (v1.8.1)33 using 1,000 iterations of hierarchical clustering 
with 80% subsampling of the genes for the number of clusters ranging from 2 to 12. 
Clustering was performed using Ward’s method on Jaccard distances.

We used GISTIC2.0 (v2.0.22) to study the recurrence of gene level CNVs in 
our sample set34. As input to GISTIC2.0, a profile for each sample was created that 
segmented each chromosome into regions with neutral, CN loss, and CN gain 
events. The average copy number intensity for each segment was obtained from 
the SNP array analysis. GISTIC2.0 was run with the following parameters changed 
from default (-genegistic 1 -smallmem 1 -broad 1 -brlen 0.5 -conf 0.99 -rx 0).

To test for associations between copy number state and categorical clinical 
variables, T category and GS, two-sided proportion tests were performed as 
implemented in R (v3.1.3). Copy number segment data were mapped to the 
RefGene annotation, classifying each gene’s state as ‘gain’, ‘deletion’ or ‘neutral’. 
Genes that did not have gains or deletions in 5% of all patients were removed 
from the analysis. Proportion tests were done separately for gains and deletions. 
P values were FDR adjusted to account for multiple testing. Similarly, to test for 
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associations between copy number state and the continuous variable PSA, two-
sided, unpaired t-tests were performed at the gene. Levene’s test was used to test for 
equal variance between groups and Welsh’s adjustment was applied if unequal var-
iance was discovered. P values were FDR adjusted to account for multiple testing.

Our 284 samples were assigned to known prostate cancer cluster classifications6,35  
by comparing our CNA profiles to their cluster centroids. The cluster centroids 
were defined as the median copy number of each gene in the patients assigned to 
that subtype, rounded to the nearest integer copy number. Patients were assigned 
to the cluster that had the most similar copy number profile based on the Jaccard 
distance metric.

To estimate the cellularity and purity of our cancer tumour samples we used 
the qpure (v1.1) and ASCAT (v2.1) algorithms36,37. Both programs require 
log R ratio (LRR) and B allele frequency (BAF) values obtained from the SNP 
array probes. These values were computed for the OncoScan 2.0 array platform 
by using the two intensity values provided for each probe corresponding to the 
hybridization of each probe using the following equations: LRR =​ log2(X +​ Y) and  
BAF =​ Y/(X +​ Y) where Y and X are intensity values corresponding to the minor 
and major alleles, respectively. For the OncoScan 3.0 array platform, LRR and 
BAF values were obtained from the.OSCHP files. We used qpure to compute 
the cellularity of our sample with default parameters and selected the output 
(tumorpurity.mixture.gam.adjust) as our cellularity estimate. We used ASCAT to 
compute tumour ploidy and to estimate the aberrant cell fraction for each sample.

The vcflib-tools suite (https://github.com/ekg/vcflib) was used to annotate and 
compare genotype calls from WGS and the OncoScan FFPE SNP assays. In-house 
scripts were used to create VCF files for OncoScan data from the OSCHP files. 
Validation rates (sensitivity) were calculated using TP/TP +​ FN. A true positive 
(TP) is identified when both platforms identify a position as AA or AR, where  
R refers to the reference allele in hg19 and A refers to an alternative allele. A false 
negative (FN) is identified by the following pairings: AA_AR, AA_RR or AR_RR 
(Supplementary Table 1).
Whole-genome sequencing data analysis. Each lane of raw sequencing reads 
was aligned against human reference build hg19 using bwa (v0.5.7)38. Lane-level 
BAMs from the same library were merged, marking duplicates using picard (v1.92). 
Library level BAMs from each sample were merged without marking duplicates. 
The Genome Analysis Toolkit (GATK v2.4.9) was used for local realignment and 
base quality recalibration, processing tumour/normal pairs together39. Separate 
tumour and normal sample level BAMs were extracted, headers were corrected 
using samtools (v0.1.9)40 and files were indexed with picard (v1.107).

Germline SNVs were generated using GATK (v2.4.9). First, UnifiedGenotyper 
was run on the realigned and recalibrated normal and tumour BAMs together 
followed by VariantRecalibrator and ApplyRecalibration. In addition, indels, 
somatic SNVs and ambiguous SNVs that had more than one alternate base 
separated by comma were removed. We referred to the GATK best practices to 
develop this pipeline (https://www.broadinstitute.org/gatk/guide/best-practices). 
The germline SNVs were used to filter somatic SNVs detected by SomaticSniper 
(v1.0.2)41.

To confirm that there was no cross-individual contamination, ContEst 
(v1.0.24530) was applied to all 130 normal and tumour sequences42. Both sample 
and lane-level analyses were performed (Supplementary Fig. 10). Regarding the 
required input VCFs, genotype information was gained from the germline SNVs 
generated by GATK (v2.4.9) and the VCF for population allele frequencies for 
each SNP in HapMap (hg19) was downloaded from https://www.broadinstitute.
org/cancer/cga/contest_download.

Positions in read maps were deemed ‘callable’ if they had a minimum coverage of 
10×​ in normal and 17×​ in tumour samples as calculated using BEDTools (v2.18.2).

Somatic SNVs were predicted using SomaticSniper (v1.0.2). First, somatic SNV 
candidates were detected using bam-somaticsniper with the default parameters 
except -q option (mapping quality threshold). The -q was set to 1 instead of 0 
as recommended by the developer. To filter the candidate SNVs, a pileup indel 
file was generated for both normal BAM and tumour BAM file using SAMtools 
(v0.1.6). SomaticSniper (v1.0.2) package provides a series of Perl scripts to filter 
out possible false positives (http://gmt.genome.wustl.edu/packages/somatic-
sniper/documentation.html). First, standard and LOH filtering were performed 
using the pileup indel files and then, bam-readcount filter was also performed 
(bam-readcount downloaded on 10 January 2014) with a mapping quality filter 
-q 1 (otherwise default settings). In addition, we ran the false positive filter. 
Subsequently, a high confidence filter was used with the default parameters. 
The final VCF file that contains high-confidence somatic SNVs was used in the 
downstream analysis.

After somatic SNV calling using SomaticSniper (v1.0.2), identified SNVs in 
positions that were not considered ‘callable’ were removed and then were passed 
through an annotation pipeline. SNVs were functionally annotated by ANNOVAR 

(v2015-06-17)43, using the RefGene database. Nonsynonymous, stop-loss, stop-gain 
and splice-site SNVs (based on RefGene annotations) were considered functional. If 
more than one mutation was found in a sample for a gene, then the mutation of the 
higher priority functional class was used for visualization. SNVs were filtered using 
tabixpp (3b299cc0911debadc435fdae60bbb72bd10f6d84), removing SNVs found 
in any of the following databases: dbSNP141 (modified to remove somatic and 
clinical variants, with variants with the following flags excluded: SAO =​ 2/3, PM, 
CDA, TPA, MUT and OM)44, 1000 Genomes Project (v3), Complete Genomics 
69 whole genomes, duplicate gene database (v68)45, ENCODE DAC and Duke 
Mapability Consensus Excludable databases (comprising poorly mapping reads, 
repeat regions, and mitochondrial and ribosomal DNA)46, invalidated somatic 
SNVs from 68 human colorectal cancer exomes (unpublished data) using the 
AccuSNP platform (Roche NimbleGen), germline SNPs from all 477 samples used 
in this study and additional 10 WGS samples from prostate cancer patients with 
higher GS, and the Fuentes database of likely false-positive variants47. SNVs were 
whitelisted (and retained, independently of their presence in other filters) if they 
were contained within the Catalogue of Somatic Mutations in Cancer (COSMIC) 
database (v70)48 (Supplementary Data 1). The mutation rate per megabase 
of DNA was calculated by dividing the number of somatic point mutations  
after validation by the count of callable loci ×​ 106 (Supplementary Table 7).

For each patient, aligned tumour and normal BAM files were used to call 
genomic rearrangements in Delly (v0.5.5)49 at a minimum median mapping quality 
of 20 and a paired-end cut-off of five. A list of somatic variants were produced by 
removing germline mutations from the resulting VCF files, which were further 
filtered using a consolidated list of structural variants from 124 normal samples. 
To identify genes affected by the genomic rearrangements, bed files were generated 
for each sample from deleted regions, and breakpoints from inversions, inter-
chromosomal translocations, and tandem duplications. The resultant bed files were 
examined with SnpEff (v3.5)50 and gene names were subsequently extracted for 
downstream analyses. Recurrent translocation events were visualized using Circos 
(v0.67-4)51. Input files were bed files containing paired translocation breakpoints 
and the number of samples in which the event was observed.

Events involving ERG or ETV genes were collectively referred to as ETS events. 
Genomic rearrangement called using Delly49 were examined in all public data 
sets and CPC-GENE samples to determine whether breakpoints led to a T2E 
fusion or were found in both 1-Mbp bins surrounding the following gene pairs: 
ERG:SLC45A3, ERG:NDRG1, ETV1:TMPRSS2, ETV4:TMPRSS2, ETV1:SLC45A3, 
ETV4:SLC45A3, ETV1:NDRG1 and ETV4:NDRG1. ETS calls for CPC-GENE 
samples were further augmented using ERG immunohistochemistry, deletion 
calls between TMPRSS2 and ERG loci in either aCGH or OncoScan SNP array 
data, and TMPRSS2:ERG transcript fusion calls in RNA sequencing (RNA-seq).  
In addition, ETS status from the Berger9, Baca10, TCGA12 and Barbieri13 data 
sets were retrieved from their corresponding supplementary tables or online 
documents when applicable and consolidated with Delly breakpoint data.
Methylation microarray data analysis. All methylation analyses were performed 
in R statistical environment (v3.2.1). The IDAT files were loaded and converted 
to raw intensity values with the use of wateRmelon package (v1.8.0) from the 
BioConductor (v3.1) open-source project. Quality control was conducted using 
the minfi package (v1.14.0) (no outlier samples were detected). Batch effect was 
also examined across six batches using mclust package (v5.1.0) and no batch 
effect was found (adjusted Rand index, 0.06). Raw methylation intensity levels 
were then pre-processed using Dasen52. Probe filtering was conducted after the 
normalization. For each probe, a detection P value was computed to indicate 
whether the signal for the corresponding genomic position was distinguishable 
from the background noise. Probes having 1% of samples with a detection P <​ 0.05 
were removed (1,751 probes). We also filtered probes based on SNPs (65 probes) 
and non-CpG methylation probes (3,088 probes). Next, we used the DMRcate 
package (v1.4.2)53 to further filter out 27,309 probes that are known to cross-
hybridize to multiple locations in the genome54 and 17,168 probes that contain a 
SNP with an annotated minor allele frequency of greater than 5% with a maximum 
distance of two nucleotides to the nearest CpG site. Average intensity levels were 
taken for technical replicates. Annotation to chromosome location, probe position, 
and gene symbol was conducted using the IlluminaHumanMethylation450kanno.
ilmn12.hg19 package (v0.2.1). Subtype analysis was performed using 
ConsensusClusterPlus (v1.22.0)33 with k-means and Pearson’s correlation as the 
similarity metric. Tumour purities were assessed with LUMP55.

For survival analyses, we used 91 samples as our training set, β-values from 
those were logit-transformed to M-values and median dichotomized to calculate 
a fold-change per probe. Probes with log2FoldChange >​1 were then selected 
for univariate CoxPH modelling. Six probes associated with prostate cancer 
progression as well as with high absolute log2HR values (MIR129-2, ACTL6B, 
TCERG1L-3′​, TCERG1L-5′​, TUBA3C, SOX14) and P <​ 0.01 were then selected. 
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These were validated in an independent cohort of 100 prostate tumours processed 
identically by using the median from our training set to dichotomize values from 
the validation set followed by univariate CoxPH modelling (Extended Data  
Fig. 10a–f).

Methylation was obtained from EGA (EGAS00001000682)56 and pre-processed 
using the same methods as our own Illumina 450k arrays, as described above. As 
reported in their study, samples 2_TU_1, 2_TU_9, 3_TU_5, 4_LNM_2, 5_TU_10, 
5_LNM_2 were removed. Using data from the five remaining patients (n =​ 80), the 
coefficient of variance (CV) was calculated across the different samples, per patient 
in the 20,000 probes used in our survival analysis. Using this distribution of CV, the 
percentile was calculated for the six probes used in our biomarker. The median CV 
percentile values were: 26% (cg18360873), 75% (cg03943081), 16% (cg08756887), 
60% (cg08073312), 89% (cg26990587) and 66% (cg14944647).
Significance analysis of coding SNVs (SeqSig). To identify genes recurrently 
altered by non-synonymous mutations and to gain information from the whole 
genome, we developed a mathematical model called SeqSig. This model has the 
following assumptions: A1, only coding regions are considered; A2, only base 
substitutions are considered, not indels or other structural variants; and A3, for 
each patient, mutations are independent among nucleotides and homogeneous 
across all positions on coding regions, that is, there exists a genome-wise transition 
probability matrix Q =​ (qxy)x,y∈{T,C,G,A}.

On the basis of the above assumptions, one can compute the non-synonymous 
mutation probability for each codon and thus the non-synonymous mutation 
probability for each gene of each patient, if Q is known.

To be able to extract background mutation information from the available 
patient DNA sequences, we have to assume that only a small amount of mutations 
are cancer driver mutations. For each patient, we compare the observed DNA 
sequence to the reference (hg19 is used here), and compute the transition frequency 
fxy where x,y ∈​ {T,C,G,A}. One natural estimate for qxy is:
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With assumption A3, one can estimate the background mutation rate (probability 
of random mutation with no natural selection) for each gene. In the paper, we 
compute the background rate for non-synonymous mutation and refer to it as 
BMR, which can be calculated by using the transition matrix, reference genome 
and the codon table.

For a given gene, assume that BMRs p0i of patient i =​ 1,2,…,n computed as above 
is known. Assume the true mutation rate is pi, then we have:

≈Y pBernoulli( )i i

Where Y =​ 1 if patient i has a non-synonymous mutation on given gene, and Y =​ 0 
otherwise.

The hypothesis test is thus:
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This is a multi-testing problem, and the null hypothesis may be somehow too 
strong to be easily rejected as it requires all patients to follow the BMRs. In order 
to test in an overall sense, we assume the following model:
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Where wi is some weight for patient i. When wi =​ 1, the above is a model  
with common odds ratio among patients. One may also chose wi =​ −​logp0i or 
wi =​ −​logp0i/(1 −​ p0i) (assuming p0i <​ 0.5, which is almost always true as p0i is 
usually very small), giving more weights to patients with small BMRs, as one may 
argue that since mutations on those patients are more ‘difficult’, observing muta-
tions on them should give more evidence. Under this model, the hypothesis test 
(1) becomes:

β β>=H H: 0 versus : 0 (3)A0

It is easy to show by the factorization theorem that:
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is a sufficient statistic for β. Obviously, there is a positive relation between β and 
E(T), the expectation of T.

Many standard tests exist for (3), such as the likelihood ratio test, score test and 
the Wald-type test, which all require a ‘sufficiently’ large sample size. However, 
in many practical situations, samples are usually not abundant. We instead use 
convolution law to find the exact distribution of T under H0. Owing to the positive 
relation of β and E(T), we can get the P value of (3) by P =​ P(T >​ Tobs|​H0) where Tobs 
is the observed T. We can reject H0 under a predefined significance level α if P <​ α.

In this paper, wi =​ −​logp0i/(1 −​ p0i) is used, under which T is equivalent to the 
convolution test statistic used by MuSiC and MutSig (v1.x). However, the general 
model (2) allows for different choices of wi, and clinical variables can also be 
incorporated through the values of wi.
Coding SNV power analysis. Based on the median background mutation rate 
of 2.44 ×​ 10−1 mutations per Mbp for transcribed regions (including exons and 
introns but excluding UTRs) of the genome (which was obtained by considering 
only bases that are callable for at least 90% of the whole genome samples—all bases 
were considered callable for the exome samples), there may be about five SNVs at 
the 0.5% level that are still to be discovered. With a cohort of 477 samples, there 
is enough power to find all SNVs altered at the 1% level and above, whereas at the 
0.5% level, we have about 76% power to detect aberrations in the coding regions of 
the genome (that is, the exons) (Supplementary Fig. 5a). BEDTools (v2.21.0) was 
used to intersect multiple bed files to find callable bases (as defined above) present 
in at least 90% of samples.
Non-coding SNV power analysis. A similar procedure was done for non-coding 
SNV power analysis as for coding SNV power analyses. We considered only bases 
outside the transcribed regions (including exons, introns and UTRs), and calcu-
lated the background mutation frequencies for each base (median background 
mutation rate =​ 8.89 ×​ 10−1 mutations per Mbp) and subsequently power using 
SeqSig (Supplementary Fig. 5b).
Transcription factor binding site analysis. To determine whether TFBSs were 
mutated more than expected by chance, we first downloaded TFBS data from 
ENCODE (ChIP-seq narrow peaks) and ref. 57. LiftOver (genome.ucsc.edu/cgi-
bin/hgLiftOver) was used to convert between the hg18 and hg19 assemblies for the 
Caco2 and PC3 cell-line data (all options set to default, minimum ratio of bases 
that must remap =​ 95, min ratio of alignment blocks or exons that must map =​ 1; 
about 0.03–3.2% of bases failed to convert). We then adjusted the TFBS data as 
well as the aberration data bed files by taking into account callable bases. To obtain 
genomic rearrangement data, we flanked the genomic rearrangement breakpoints, 
excluding deletions, by 10 kbp (Extended Data Fig. 3b) and 1 kbp (Supplementary 
Fig. 8) to show robustness. The adjusted TFBS bed files were then intersected using 
BEDTools (v2.18.2) with each of the adjusted aberration data bed files, followed by 
a binomial test. The test was performed for each sample and TFBS combination to 
see if we observe more aberrations in TFBS than expected by chance; the results 
were FDR adjusted. Before visualizing, the adjusted P values of replicate TFBS cell 
lines were averaged, reducing the total TFBS cell line count to 58. Correlations 
between recurrence of each TFBS and CNAs as well as genomic rearrangement 
breakpoints flanked with 10 kbp, with FDR adjustment of P values, revealed clinical 
associations (Supplementary Table 18).
Recurrent non-coding SNV analyses. Non-coding SNVs (ncSNVs) identified in 
intergenic regions, introns, splicing sites, 1 kbp upstream of transcription start sites 
or 1 kbp downstream of transcription end sites were extracted from the filtered 
variant matrix. We used the most recurrent 70 ncSNVs, all of which were found 
in at least four samples, as our set of recurrent ncSNVs for the following analyses 
(Supplementary Data 1). First, WebLogo (v3.4) was used for motif discovery in 
terms of the 10 bp up- and down-stream of ncSNVs58. Second, the variant allele 
frequency of the ncSNVs was calculated based on the number of reads supporting 
the alternative base divided by the total number of reads using SomaticSniper VCFs 
(Extended Data Fig. 3a, b). Third, to see association between the recurrent ncSNVs 
and replication time, the replication time of genomic regions (bin size: 100 kbp) 
that harbour a recurrent ncSNV was plotted59 (Supplementary Fig. 7). Fourth, 
DeepSEA was used to predict the chromatin effects of the recurrent ncSNVs17. 
The data were generated on the DeepSEA website (http://deepsea.princeton.edu/
job/sequence/create/) (version 10/22/2015). Features that have at least one ncSNV 
with DeepSEA E-value <​ 0.01 were selected as important features. In addition, we 
obtained ChIP-Seq data sets generated using the LNCaP cell line and investigated 
if any of the regulatory regions identified by the ChIP-Seq experiments were over-
lapped with the ncSNVs. A permutation test was performed (104 −​ 1 iterations) 
for each ncSNV to determine whether the mean of the E-values for the important 
features was less than expected by chance alone. The same analysis was performed 
for ncSNVs (recurrent ncSNVs versus all ncSNVs) for each feature. Computed  
P values were then FDR adjusted (Extended Data Fig. 3c, Supplementary Table 10).
Trinucleotide mutation signature analysis. For each SNV in the unfiltered 
recurrent variant matrix, the 5′​ and 3′​ bases were extracted from the hg19 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://deepsea.princeton.edu/job/sequence/create/
http://deepsea.princeton.edu/job/sequence/create/


ARTICLERESEARCH

reference using BEDTools (v2.17.0) and tabulated into the 96 trinucleotide 
mutation categories for each patient, and were then input into the NMF (v0.20.6) 
R package60. Factorizations were generated for ranks 2 to 20. Rank 3 was selected 
as a balance between the cophenetic and dispersion metrics. We extracted the 
coefficient (trinucleotide signatures) and basis (signature exposures) matrices from 
the NMF run. The coefficient matrix was normalized such that each signature 
could be interpreted as a distribution over the trinucleotide mutational categories18 
(Supplementary Table 11). The basis matrix was then scaled by the inverse of the 
coefficient normalizing matrix. The scaled basis matrix was then normalized per 
patient (Supplementary Table 13).
Statistical analyses. The survey of PGA, SNV, CNA and genomic rearrangement 
(including inversions and translocations, separately) data in Fig. 1 and Extended 
Data Fig. 2b was performed by applying appropriate models for each data type 
against explanatory variables, including GS, pre-treatment PSA, age at treatment 
(or age at diagnosis when age at treatment was unavailable), T-category and 
T2E status. Linear regression was used to find associations between PGA 
and continuous variables, and a non-parametric approach was taken to find 
associations between PGA and the categorical variables using the Kruskal–Wallis 
test. Associations between SNV counts and continuous variables were found using 
linear regression and one-way ANOVA for categorical variables. CNA, inversion 
and translocation counts were modelled using a negative binomial generalized 
linear model for both continuous and categorical clinical variables. For all data 
types, the mean, median, IQR (25%, 75%), and the overall effect P value for all 
clinical variables were reported (Supplementary Table 9). Extended Data Fig. 2b 
displays boxplots of explanatory variables for each data type and reports the overall 
effect P value corresponding to an appropriate statistic. The experiments were not 
randomized and the investigators were not blinded to allocation during experi-
ments and outcome assessment.
Interchromosomal translocation enrichment and spatial proximity. Delly49 
outputs two breakpoints for each interchromosomal translocation. The break-
points were permuted within each sample in a permutation test (106 iterations) 
to determine whether some chromosome combinations were more abundant 
in translocations than expected by chance alone. The resulting P values were 
corrected using FDR. To determine whether breakpoints occurred closer to or 
further from spatially proximal chromosomal regions than expected by chance 
alone, a HiC data set of prostate epithelial cells (GSE37752) was retrieved from 
the NCBI Gene Expression Omnibus21. Because the HiC data set was originally 
generated using hg18, LiftOver was used to convert the positions to hg19. HiC 
points missing a coordinate as a result of the conversion were stripped from the 
data set. Perl (v5.18.2) and R (v3.1.3) scripts were used to calculate the shortest 
distance between a translocation and its nearest HiC point and the mean of the 
distances for each chromosome combination was compared to a null distribution 
of distances (50-bp bins) generated from all possible pairs of positions in each 
chromosome combination. P values were corrected using FDR.
mRNA abundance analysis. All mRNA analysis was performed using R (v3.2.1). 
Background correction, normalization algorithms and annotation were imple-
mented in the oligo (v1.32.0) package from the BioConductor (v3.0) open-source 
project. The Robust multichip average (RMA) algorithm was applied to the raw 
intensity data60. Annotations were performed using hugene20sttranscriptcluster.
db (v2.13.0) and hta20sttranscriptcluster.db (v8.3.1). The sva package (v3.14.0) 
was used to correct for batch effects between different arrays. Annotated data 
from HuGene 2.0 ST and HTA 2.0 were combined into one data set based on 
Entrez Gene IDs. The mRNA expression values were averaged amongst duplicated 
Entrez Gene IDs. To test the association between mRNA profile and genomic  
rearrangement (inversion specifically), we used a linear model to compare the 
mRNA abundance from patients with and without inversions. Genes are selected 
based on the inversion windows (chr3:129–130 Mbp and chr10:89–90 Mbp). For 
each gene, mRNA abundances were re-normalized and centred by the median 
across all patients. Chromothripsis scores were also compared with mRNA 
abundance levels. For each gene, Spearman’s correlation was calculated between 
the maximal chromothripsis score per patient and each gene’s respective mRNA 
abundance levels across all patients; the correlation coefficients and P values were 
subsequently computed (Supplementary Table 17).

To determine whether PTEN inversions have different effects on the PTEN 
network from copy losses, the top ten genes most correlated with PTEN mRNA 
abundances as calculated using Spearman’s ρ were examined. The per sample mean 
mRNA abundances of the ten genes was used as a proxy for PTEN activity and 
ultimately overall effects of PTEN inactivation (Extended Data Fig. 5).

To determine the level of infiltrating immune cells in 73 samples with 
mRNA data, the ‘Estimate of STromal and Immune cells in Malignant Tumours’ 
(ESTIMATE) method was used, as implemented in the estimate R package 
(v1.0.11)61. In 23 samples (22 with RNA data), the percent of infiltrating immune 

cells was measured by a pathologist by screening all available levels of each case for 
inflammatory cells (which were mostly lymphocytes) located within the tumour 
areas and scored semiquantitatively the percentage of lymphocytes based on visual 
estimation. Overall, <​1% indicated scattered lymphocytes comprising less than 
1% of tumour surface. The presence of aggregates, arbitrarily defined as more than  
30 lymphocytes packed together, and the average number of aggregates for each 
case taking into account the number of them per level were counted.
Chromothripsis and kataegis. Chromothripsis scores were generated using 
ShatterProof (v0.14) with default settings23. Samples with a max ShatterProof 
score over 0.517 were defined as having chromothriptic characteristics. Full lists 
of putative chromothripsis events are shown in the Circos plots (Supplementary 
Table 7; Supplementary Data 2).

Recurrent somatic variants were used to quantify kataegis in each sample. An 
overlapping sliding window exact binomial test was conducted to test whether the 
proportion of variants within given window size was higher than expected. The 
observed frequency was calculated by dividing the number of variants in a sliding 
window over the number of bases in that window. The expected frequency was 
calculated by dividing the number of variants in that chromosome over the number 
of bases for that same chromosome. The binomial test P values were adjusted for 
multiple hypothesis testing using FDR and the adjusted P values were converted to 
a binary variable 0/1 to code for its significance. The R package changepoint was 
then used to convert those scores into segments. The base change composition for 
each segment was calculated and segments that are enriched with C/T, C/G, C/A 
changes (>​50% of base change type within a window) were highlighted. Rainfall 
plots for the whole genome, with SNV position on the x-axis and the log trans-
formed inter-mutational distance plotted on the y-axis, were generated for each 
sample to visualize kataegic events.

Potential links between chromothripsis and the mutation landscape were 
explored through various statistical tests on different types of gene mutations. In 
the R statistical environment (v3.1.3), Mann–Whitney U tests were performed 
using the maximum ShatterProof scores against genes affected by copy number 
aberrations, genomic rearrangements, and SNVs separately. In addition, Kendall’s τ 
was used to determine whether an association existed between the clinical variables 
and chromothripsis. For the purpose of discovering novel associations, P values 
were corrected using FDR.

To identify mutations that may be linked to kataegic events, proportion tests 
were calculated in R (v3.1.3) using kataegis scores against genes affected by 
copy number aberrations, genomic rearrangements, and SNVs separately. The 
proportion’s test was also used to explore associations between kataegis and 
genomic rearrangements at the Mbp bin level, while Kendall’s τ was used to 
determine whether clinical variables were correlated with kataegic events. P values 
were corrected using FDR.

For each patient with a chromothriptic or a kataegic event, the transcriptional 
and methylation profiles of genes within that region were evaluated. The 
chromosome region that had the maximal chromothripsis or kataegis score for 
each patient was selected first. A percentile spectrum was then generated by 
comparing the mRNA abundance levels or methylation β​-value of any genes 
or probes within that region to the same gene or probe in all patients without 
that particular chromothriptic or kataegic event (Extended Data Fig. 8). The 
relationship between methylation levels and mRNA abundance was examined 
in patients with stable genomes (patients with no chromothriptic and kataegic 
events, n =​ 46), those with chromothriptic events (n =​ 14) and those with kataegic 
events (n =​ 19).

To evaluate trans effects, Spearman’s correlations were calculated on the top 
10,000 probes (for methylation data) and top 10,000 genes (for mRNA), with the 
highest variance (Extended Data Fig. 9). To understand the association of promoter 
region methylation and mRNA levels (that is, cis effects), three different approaches 
were used: 1) the top 10,000 variable mRNA genes were selected and for each gene, 
all the β​-values for that gene were averaged and the Spearman’s correlation was  
calculated; 2) Same strategy as 1, but instead of taking the average, all β​-values for 
the same gene were used to compute the correlation coefficients. 3) Correlation 
matrix of methylation and mRNA abundance levels from TCGA was downloaded 
from https://gdac.broadinstitute.org/. Results from across 28 tumour types (ACC, 
BLCA, BRCA, CESC, CHOL, COADREAD, DLBC, ESCA, GBMLGG, HNSC, 
KIPAN, LAML, LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG, PRAD, SARC, 
SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM) were combined, 
and the correlation coefficients were scaled based on the sample size of each 
data set. The mean correlation coefficients were calculated per probe across 
multiple tumour types. For each gene, the probe showing the highest negative 
correlation with mRNA abundance levels was kept. Spearman’s correlation coef-
ficients between those selected probes and their corresponding genes were cal-
culated within our data set (Extended Data Fig. 9c). The union of genes (n =​ 65) 
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that showed differential correlation coefficients between chromothriptic and  
stable samples (|​δ|​>​0.8) in the above three approaches were used for pathways 
analysis. Pathways were curated using gene ontology: biological process and 
REACTOME from g:Profiler. Significantly enriched pathways (q <​ 0.05; hyper-
geometric test) were then visualized using Cytoscape (v3.3.0) (Extended Data  
Fig. 9; Supplementary Table 16).
Prognostic signature generation. The set of 104 patients with whole-genome 
sequencing, methylation, and survival information was split into four folds. Each 
fold was balanced by event rate, age, T-category, and GS, in that order. The use of 
four folds ensured that the young (under 40 years of age) tumours were balanced. 
In each fold using full, untruncated survival time, each of the 40 features was fit 
univariately in a CoxPH model without adjustment. From this, a set of candidate 
features was generated at P <​ 0.1 from the Wald test. These candidate features were 
further selected by retaining only the best feature from each molecular class (SNV, 
ncSNV, CNA, genomic rearrangement) associated with good outcome and the best 
feature associated with poor outcome. This class-and-direction filtering was not 
used for mutational density or clinical features, which were considered if they met 
the P for significance. Features seen in at least two folds were selected, yielding our 
final six-feature candidate list. A CoxPH model was then fit with these six features 
separately in each fold, and predictions made on the held-out data. Predictions 
across the four test-sets were then pooled and performance assessed using the area 
under the receiver operating characteristics curve (AUROC). For comparison, a 
CoxPH model was fit using PGA as a continuous variable. Kaplan–Meier plots were 
generated by binarizing predictions at the event rate thresholds.
Data visualization. Visualizations were generated in the R statistical environment 
(v3.1.3 or higher) using the lattice (v0.20-31), latticeExtra (v0.6-26), BPG (v5.3.4) 
and VennDiagram (v1.6.4) packages, along with pdfTeX (v3.1415926-1.40.10). 
Schematics were created in Inkscape (v0.48) for Ubuntu. Recurrent translocation 
plots, and overall mutational profiles of each sample, including presence of kataegic 
or chromothriptic events were produced using Circos (v0.67-4)51.
Data availability. mRNA and methylation data are available in the Gene 
Expression Omnibus under accession GSE84043. Raw sequencing data are available 
in the European Genome-phenome Archive under accession EGAS00001000900 
(https://www.ebi.ac.uk/ega/studies/EGAS00001000900). Processed variant 
calls are available through the ICGC Data Portal under the project PRAD-CA 
(https://dcc.icgc.org/projects/PRAD-CA). Baca and Barbieri WGS/WXS data 
are available on dbGaP under accession phs000447.v1.p1 (https://www.ncbi.nlm.
nih.gov/gap/?term=​phs000447.v1.p1). Berger WGS data are available on dbGaP 
under accession phs000330.v1.p1 (https://www.ncbi.nlm.nih.gov/gap/?term=​
phs000330.v1.p1). Weischenfeldt WGS data are available on EGA under accession 
EGAS00001000400 (https://www.ebi.ac.uk/ega/studies/EGAS00001000400). 
TCGA WGS/WXS data are available at Genomic Data Commons Data Portal 
(https://gdc-portal.nci.nih.gov/projects/TCGA-PRAD).
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Extended Data Figure 1 | Study design. The overall study cohort 
consisted of 137 patients who underwent radical prostatectomy (surgery) 
and 147 patients who underwent image-guided radiotherapy for localized 
prostate cancer (biopsy). For surgery patients, a fresh-frozen tissue 
specimen from the index lesion was obtained for macro-dissection.  
For radiotherapy patients, a fresh-frozen needle core ultrasound-guided 
biopsy to the index lesion was obtained for macro-dissection. All 284 

tumour DNA specimens were analysed for CNA by OncoScan SNP arrays. 
Of these tumour DNA specimens, 130 were selected for further analysis by 
WGS (as was a matched normal DNA specimen from whole blood). For a 
subset of analyses, additional data (numbers as indicated) from publicly 
available whole-genome or whole-exome sequencing data sets were  
re-aligned and re-analysed and integrated to maximize statistical power.
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Extended Data Figure 2 | Comparison of molecular aberrations.  
a, Pairwise comparison scatter plot of data type as indicated on the x- and 
y-axes. Spearman correlation and unadjusted P values are provided.  
b, Scatterplots and box plots of each mutation burden (CNA, CTX, INV, 

SNV counts and PGA) versus clinical variables (age, GS, T-category, PSA 
and ETS consensus fusion) is provided along with a model-derived  
P value, as described in Methods. Grey dots represent values for individual 
samples.
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Extended Data Figure 3 |  See next page for caption.
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Extended Data Figure 3 | Non-coding SNV profile. We analysed 70 
non-coding recurrent somatic SNVs: defined as at least 2% (4 of 200) 
of tumours having mutations in the same, non-coding position. a, The 
central heat map shows the 70 recurrent ncSNVs (rows) and the samples 
in which they are present (columns), with colour indicating their variant 
allele frequency (VAF). The top bar plot indicates the total number of 
ncSNVs mutated in each sample, while the right bar plot gives the total 
number of samples in which each ncSNV is mutated. b, Box plot showing 
VAF for recurrent ncSNVs. Each dot indicates the VAF of a recurrent 
ncSNV for a sample. The recurrent ncSNVs (rows) were sorted by median 
VAF. c, To determine whether ncSNVs were biased towards specific TFBSs, 
we tested whether experimentally derived TFBS locations from ENCODE 
were enriched for aberrations of different types using the binomial test. 
Heatmap of 58 TFBS cell lines for each sample coloured by the data type 
or combination of data types (SNV, CNV, and CTX flanked by 10 kbp) if 
it was aberrant in more samples than expected by chance (binomial test 
with FDR-adjusted P value). The samples are ordered by the number of 

significantly aberrant TFBSs (top barplot), the TFBS cell lines are ordered 
by fraction of samples with significantly mutated TFBSs by cell line (right 
barplot), covariates of pathological GS, pre-treatment PSA, T-category, 
and patient age at treatment are displayed at the bottom. d, Predicted 
chromatin effects of recurrent ncSNVs. The left heat map shows E-values, 
which measure the expected proportion of SNPs (found in the 1,000 
Genomes Project) with a larger predicted effect for a chromatin feature, 
predicted by DeepSEA. The right heat map shows the overlaps between 
chromatin elements detected by LNCaP chromatin immunoprecipitation 
with sequencing (ChIP–seq) experiments and ncSNVs. The FDR adjusted 
P values (Q values) for the DeepSEA or ChiP–seq experiment features are 
shown above each plot. The ncSNV Q values for DeepSEA and ncSNV 
recurrence are shown on the right. Experimental conditions (cell line type, 
chromatin feature, and treatment) of the ChIP–seq data are represented by 
the covariates at the bottom. The heatmaps and barplots were sorted by  
Q values.
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Extended Data Figure 4 | Genome rearrangements overview. a, Global 
overview of somatic structural variants in 180 localized GS 3 +​ 3, 3 +​ 4 
and 4 +​ 3 prostate cancers. The central heat map shows per-sample 
inter-chromosomal translocations (CTXs), inversions and deletions for 
1-Mbp bins across the genome (columns) and for each patient (rows). 
The striking TMPRSS2:ERG peak on chromosome 21 is by far the most 
frequent aberration, but additional recurrent inversion breakpoints 
were identified on chromosomes 3 and 10, and CTX breakpoints on 
chromosome 6. b, Number of CTXs joining each chromosome pair and 
their occurrences relative to random chance. Dot size represents the 
number of translocations enriched (number greater than expected) while 

background colour indicates their significance as calculated using a one-
tailed permutation test (1 million replicates) with FDR correction. c, Mean 
shortest distance between a CTX and the corresponding nearest HiC point 
in each chromosome pair. Dot size represents the difference between the 
mean observed CTX–HiC distances and their expected distances, while 
the background indicates significance as calculated using a one-tailed 
permutation test (1 million replicates) corrected using the FDR method. 
Orange dots indicate distances greater than expected by chance alone  
(top right), while blue dots show distances smaller than expected by 
chance alone (bottom left).
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Extended Data Figure 5 | Effects of inversion on mRNA abundance 
and PTEN. a, For each gene in the inversion window (chr10:89–90 Mbp), 
mRNA abundance levels were re-normalized and centred by the median 
across all patients. Box plot (top) demonstrates the renormalized mRNA 
abundance levels (y-axis) of patients with no inversion (n =​ 70, orange) 
and with inversions (n =​ 3, green) for each gene. A linear model was used 
to calculate the P values between the two patient groups. Bar plot (bottom) 
shows unadjusted P values with genes ordered by chromosome location. 
b, Spearman’s ρ was used to identify the top ten genes most correlated 
with PTEN mRNA abundances. The per sample mean mRNA abundances 
of the ten genes was used to represent the overall effects of various types 
of PTEN inactivation. PTEN inactivation as a result of CNV loss led to a 

significantly lower abundance of PTEN-associated proteins  
when compared to copy number-neutral PTEN (Mann–Whitney  
U test, P =​ 2.0 ×​ 10−4) whereas PTEN inversions yielded further reduced 
abundances (Mann–Whitney U test, P =​ 0.016). c, For each gene in the 
inversion window (chr3:129–130 Mbp), mRNA abundance levels were 
re-normalized and centred by the median across all patients. Box plot 
(top) shows the renormalized mRNA abundance levels (y-axis) of patients 
with no inversion (n =​ 65, orange) or with inversions (n =​ 8, green) for 
each gene. A linear model was used to calculate P values between the two 
patient groups. Bar plot (bottom) shows the P values with genes ordered by 
chromosome location.
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Extended Data Figure 6 | Hypermutation associations. a, Box plot of 
ShatterProof scores grouped by T-category. Each grey dot represents 
a single sample. P value is from a one-way ANOVA. b) To assess the 
association between genome stability (measured as PGA) and the presence 
of one or more chromothriptic events in a tumour, we compared the mean 
PGA between tumours with a chromothriptic event (4.28% ±​ 5.04%) 
and those without one (7.79% ±​ 5.3%). This difference of 3.52% was 
statistically significant (P =​ 1.10 ×​ 10−3; two-sided t-test). c, To assess the 
association between genome stability (measured as PGA) and the presence 

of one or more kataegic events in a tumour, we compared the mean PGA 
between tumours with a kataegic event (6.87% ±​ 5.62%) and those without 
one (4.34% ±​ 5.13%). This difference of 2.53% was statistically significant 
(P =​ 7.52 ×​ 10−3; two-sided t-test). d, Scatter plot of ShatterProof scores 
against per cent infiltrating immune cells as measured by a pathologist. 
e, Scatter plot of ShatterProof scores against estimated immune score 
calculated by the ESTIMATE software. For both these plots, Spearman’s 
ρ is given, along with its P value. f, Scatterplot showing the correlation 
between pathologist and ESTIMATE predictions for 22 samples.
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Extended Data Figure 7 | Chromothripsis associations and mutational 
burden. a, Scatter plots of mRNA abundance against ShatterProof scores 
for four genes found to be associated with chromothripsis. Spearman’s 
ρ and P values are shown. Box plots of mRNA abundance against copy 

number status (DEL, deletion; NEU, copy number neutral). P values are 
from a two-sided t-test. b, Scatterplots of mutation burden (SNV, INV, 
CNA, CTX counts) and qpure cellularity values against ShatterProof score. 
Spearman’s ρ and corresponding P values are shown.
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Extended Data Figure 8 | Characteristics of mRNA genes and 
methylation probes in chromothripsis region. a, Histogram of 
percentiles from mRNA genes (2,197 unique genes) located in a 
chromothriptic region. Upper left corner indicates Pearson’s correlation 
between each bin and the frequency of genes that reside in that bin.  
b, Histogram as in a for the 43,985 unique methylation probes located in 

chromothriptic regions. c, Box plot of genes that are in chromothriptic 
regions against genes not in chromothriptic regions and which are deleted 
in at least one patient. Only non-chromothriptic patients are included, 
making this analysis conservative. P values were generated by a two-sided 
Wilcoxon rank-sum test.
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Extended Data Figure 9 | mRNA–methylation associations in tumours 
with focal genomic events. a, Density plot of Spearman correlations 
between the 10,000 most variable methylation probes and the 10,000 most 
variable mRNA transcripts in tumours with chromothriptic events, with 
kataegic events, and with neither focal abnormality. b, Density plot as in a 
for the 14,778 methylation probes in promoter regions and corresponding 
mRNA transcripts. c, Scatter plot of methylation (β​-values for cg07227024 
on chr2q) and mRNA abundance for OR2AK2 (on chr1q), which have the 
highest difference in correlations between chromothriptic (R =​ −​0.90, 
P =​ 9.42 ×​ 10−6) and non-chromothriptic (R =​ 0.52, P =​ 2.0 ×​ 10−4) 
tumours. Dotted lines represent the regression line for each group.  

d, Enrichment pathway network plot of genes differentially correlated 
between chromothriptic and stable samples in promoter regions  
(|​δ|​ >​ 0.8). Each node represents a gene set, which is defined as a set 
of genes that underlies a functional profile by g:Profiler. Node size 
corresponds to the number of genes within the gene set. The colour of the 
node represents the significance of the enriched gene set (hypergeometric 
test) ranging from FDR-adjusted P =​ 1.99 ×​ 10−3 to P =​ 0.05 (red to pink). 
Gene sets are connected by a grey line if they share common genes and the 
thickness of the line corresponds to the size of the overlap. Gene sets with 
similar functions are grouped together by a purple dotted circle.
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Extended Data Figure 10 | Methylation survival validation and multi-
modal signature survival. Top, Kaplan–Meier plots of the six prognostic 
methylation probes in the validation data set (100 prostate tumours). 
Statistical analysis done using Cox proportional hazards modelling and  
P values generated by the Wald test, except for a where the log-rank test 
was performed owing to failure of the proportional-hazards assumption.  
a, TCERG1L-3′​. b, SOX14. c, TUBA3C. d, TCERG1L-5′​. e, MIR129-2.  

f, ACTL6B. g, A Kaplan–Meier plot for a multi-modal biomarker 
predicting biochemical recurrence, tested via cross-validation. This 
curve shows prediction of 18-month biochemical relapse-free survival. 
h, A Kaplan–Meier plot of the same biomarker, showing full biochemical 
relapse-free survival to the maximum follow-up time. In both plots,  
P values were generated using the Wald test.
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