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Chromosome conformation elucidates regulatory 
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Three-dimensional physical interactions within chromosomes 
dynamically regulate gene expression in a tissue-specific manner1–3. 
However, the 3D organization of chromosomes during human brain 
development and its role in regulating gene networks dysregulated in 
neurodevelopmental disorders, such as autism or schizophrenia4–6, 
are unknown. Here we generate high-resolution 3D maps of 
chromatin contacts during human corticogenesis, permitting 
large-scale annotation of previously uncharacterized regulatory 
relationships relevant to the evolution of human cognition and 
disease. Our analyses identify hundreds of genes that physically 
interact with enhancers gained on the human lineage, many of 
which are under purifying selection and associated with human 
cognitive function. We integrate chromatin contacts with non-
coding variants identified in schizophrenia genome-wide association 
studies (GWAS), highlighting multiple candidate schizophrenia 
risk genes and pathways, including transcription factors involved 
in neurogenesis, and cholinergic signalling molecules, several 
of which are supported by independent expression quantitative 
trait loci and gene expression analyses. Genome editing in human 
neural progenitors suggests that one of these distal schizophrenia 
GWAS loci regulates FOXG1 expression, supporting its potential 
role as a schizophrenia risk gene. This work provides a framework 
for understanding the effect of non-coding regulatory elements 
on human brain development and the evolution of cognition, and 
highlights novel mechanisms underlying neuropsychiatric disorders.

Recent advances in genomics have shown that chromatin is organ-
ized into hierarchical 3D structures2,3, which are thought to play a role 
in tissue-specific gene regulation by defining functional units that 
mediate the effects of cis-regulatory elements via both short- and long-
range interactions. Since crucial elements of human brain evolution and 
a wide spectrum of neuropsychiatric disorders originate during early 
cortical development4–8, we reasoned that knowledge of chromatin 
conformation in the developing human brain would inform efforts to 
connect gene regulation to human higher cognition and understand 
the genetic mechanisms of neuropsychiatric disease.

We constructed Hi-C libraries from mid-gestation developing 
human cerebral cortex during the peak of neurogenesis and migration 
(Methods) from two major zones: the cortical and subcortical plate 
(CP), consisting primarily of post-mitotic neurons and the germinal 
zone (GZ), containing primarily mitotically active neural progenitors  
(Extended Data Figs 1, 2a). The global contact profile was highly con-
sistent across technical replicates and between individuals (Extended 
Data Figs 1c, 2b). Moreover, this profile captured known relationships  
with other genomic features9, such as DNaseI hypersensitivity sites 
(DHS) (Extended Data Figs 2c, d). We were also able to observe 
dynamic switching between type A and type B compartments, which 

have previously been associated with regional transcriptional activa-
tion and repression, respectively1. Compartment changes between 
GZ and CP also paralleled changes in DHS and other epigenetic 
marks and reflected expected changes in gene expression relevant to 
neurodevelopmental processes (Extended Data Fig. 3a–d).

We next performed several analyses to explore how physical chroma-
tin interactions are related to biological function. First, we hypothesized  
that highly interacting chromatin regions would be co-regulated at the 
level of gene expression (Methods). Indeed, highly interacting regions 
show significant bias towards positive correlations (Extended Data 
Fig. 4a, b). Further, regions associated with promoters, positive tran-
scriptional regulation, and enhancers were significantly more likely 
to physically interact (Extended Data Fig. 4d, e). This correlation was 
tissue specific, as the top Hi-C interacting regions in non-neural cells 
exhibited substantially less correlation with brain gene expression  
compared with Hi-C interacting regions in developing brain (Extended 
Data Fig. 4c).

Topologically associating domains (TADs) are another level of 3D 
chromosome structure thought to mediate co-transcriptional regula-
tion within their boundaries10. Since TAD boundaries are conserved 
across different cell types10, we reasoned that changes in epigenetic 
marks within TADs, rather than changes in TAD boundaries, would 
be most associated with developmental gene regulation. Accordingly, 
enhancers are increased in TADs that contain upregulated genes, 
whereas repressive marks are increased in TADs that contain down-
regulated genes (Extended Data Fig. 3e, Methods).

Within TADs, it has been postulated that chromatin loops bring distal  
regulatory elements in close proximity to the target promoter2,11,12. We 
conducted analyses with three distinct data sets to affirm the ability of 
chromatin contacts defined by Hi-C to capture predicted functional 
relationships between distal regulatory and transcribed elements. We 
first assessed DHS, which represents areas of accessible chromatin 
associated with regulating transcriptional activity13. Hi-C interact-
ing enhancers and promoters exhibit significantly higher correlations 
in chromatin accessibility than those lacking physical interactions  
(Fig. 1a). Physical chromatin contacts have also been implicated in 
mediating expression quantitative trait loci (eQTL)14,15, therefore we 
determined whether Hi-C data could identify functional relationships 
defined by human brain eQTL16. Indeed, eQTL and associated gene 
pairs exhibit significantly higher chromatin contact frequency than 
background across all distance ranges, and in a tissue-specific manner  
(Fig. 1b, c, Extended Data Fig. 3f, g, Methods). Notably, both the Hi-C 
and eQTL data consistently show that the region containing the regula-
tory SNP does not necessarily interact with the nearest gene (Methods). 
Lastly, since enhancer RNAs (eRNAs) are transcribed from active 
enhancers and are correlated with their target mRNA expression17,  
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we considered whether Hi-C defined chromatin interactions and 
eRNA–mRNA co-expression in developing human brain from the 
FANTOM5 atlas18 were correlated (Methods). Accordingly, we 
observed significantly higher expression correlations for interacting 
eRNA–mRNA pairs than non-interacting pairs (Fig. 1d), demonstrat-
ing that the relationship between eRNA–mRNA is associated with 
physical contact between enhancers and promoters.

To further demonstrate the value of these 3D chromatin contact 
maps, we applied these data to advance our understanding of human 
brain evolution. We first integrated a recent inventory of 2,104 human-
gained enhancers active during cerebral corticogenesis8 with our Hi-C 
data (Extended Data Fig. 5a, Methods). As expected, regions that 
physically interact with human-gained enhancers were enriched with 
enhancers and promoters (Extended Data Fig. 5c); most interactions 
were within the same TAD (Extended Data Fig. 5d), although the 
majority of such contacts were relatively long-range (Extended Data 
Fig. 5b). Most enhancers (~​65%) were not interacting with adjacent 
genes (Fig. 2a) and a substantial number (~​40%) of genes interact with 
human-gained enhancers (Hi-Cevol genes) in a brain-specific manner, 
emphasizing the importance of defining tissue-relevant chromatin 
contacts (Fig. 2b). These brain-specific Hi-Cevol genes were highly 

enriched for neuronal specific functions such as axon guidance and 
synaptic transmission, whereas genes defined by Hi-C interactions in 
non-neuronal cells were not (Extended Data Fig. 5e, 6a, b). A notable 
case is a human-gained enhancer that interacts with a gene ~​500 kb 
away in CP, ARHGAP11B, a recently discovered human-specific gene 
implicated in the expansion of human neocortex19 (Fig. 2e).

To determine whether human-gained enhancers are associated with 
human cognition8, we tested whether Hi-Cevol genes were enriched 
in known intellectual disability (ID) risk genes. Indeed, we find that 
Hi-Cevol genes, but not genes defined solely by proximity to enhancers, 
nor those defined by Hi-C interactions in non-neural cells, were signi
ficantly enriched with ID risk genes (Fig. 2c; Methods). Salient examples  
include ASPM, mutations in which cause autosomal recessive primary 
microcephaly20. Additionally, we find that human-gained enhancers 
as a group are interacting with protein-coding genes harbouring the 
signature of purifying selection (Extended Data Fig. 6c), consistent with 
the model that human-specific traits result primarily from changes in 
regulatory elements, rather than changes in protein coding sequence7,8. 
By contrast, lineage-specific interactions with human-gained enhancers 
are enriched for primate-specific long non-coding RNAs (lncRNAs; 
Fig. 2d, Extended Data Fig. 6d), consistent with their adaptive evo-
lution21. This distinction between signatures of selection on protein 
coding genes versus lncRNA is consistent with putative gene regulatory 
roles for these human-gained enhancer-interacting lncRNAs.

Next, we applied the developing brain Hi-C maps to advance our 
understanding of a major neuropsychiatric disorder (Methods; 
Extended Data Fig. 7). A recent landmark study by the Psychiatric 
Genetics Consortium (PGC) identified 108 genome-wide significant 
schizophrenia-associated loci22. Since nearly all of these loci reside in 
relatively uncharacterized non-coding regions of the genome22, under-
standing which genes they affect and assigning function are major  
challenges. Since schizophrenia is postulated to have neurodevelopmental  
origins23, we derived a set of significant schizophrenia SNPs from the 
PGC GWAS (credible SNPs)24, and assigned intergenic or intronic  
SNPs to interacting genes defined by Hi-C (Methods; Extended Data 
Fig. 7a). Consistent with observations that linear chromosomal organi-
zation does not capture many regulatory interactions11, Hi-C identified 
~​500 genes that were neither adjacent to index SNPs, nor in linkage 
disequilibrium (LD) with them (Fig. 3a, b, Extended Data Fig. 8a–d). 
These candidate schizophrenia risk genes were enriched for postsyn-
aptic density, acetylcholine receptors, neuronal differentiation, and 
chromatin remodellers, functions consistent with the convergence of 
schizophrenia-associated risk variants onto specific pathways in brain 
development and function23,25,26 (Fig. 3c, d). Using PGC-defined credi-
ble SNPs22 identified the same major pathways (Extended Data Fig. 7b).  
A substantial number of genes (~​30%) interact with schizophrenia 
credible SNPs only in developing brain, and not in the non-neuronal 
cells, indicative of tissue specificity (Extended Data Fig. 9a–c).

One notable example is illustrated by credible SNPs that reside 20 kb 
upstream of DRD2, a target of antipsychotic drugs. Hi-C analysis indi-
cates a physical interaction between this region and the promoter of 
DRD2, further solidifying its role as a schizophrenia risk gene (Fig. 3d). 
Credible schizophrenia SNPs also interact with several acetylcholine 
receptors, including CHRM2, CHRM4, CHRNA2, CHRNA3, CHRNA5, 
and CHRNB4 (Fig. 3c, d, Extended Data Fig. 8e). Although acetylcho-
line receptors are emerging targets for treatment in schizophrenia27, 
they were not previously identified as an enriched pathway contributing 
to schizophrenia risk22 (Fig. 3c, d).

Another example of a candidate risk gene that is neither the nearest 
gene, nor in LD with the credible SNPs is SOX2, a transcriptional factor 
essential for neurogenesis28 (Fig. 3d). Notably, SOX2 is one of several 
candidate risk genes including FOXG1, EMX1, TBR1, SATB2, CUX2, 
and FOXP1 that are involved in neurogenesis or cortical lamination and 
interact with schizophrenia risk loci (Extended Data Fig. 8e). Loci har-
bouring schizophrenia-associated non-coding SNPs also interact with 
multiple genes involved in excitatory synaptic transmission, including 
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Figure 1 | Chromosome conformation and gene regulatory 
mechanisms. a, DHS peak correlations with the transcription start site 
(TSS) for putative enhancers that physically interact with promoters by 
Hi-C (Hi-C int.) vs not (Hi-C non-int.). P values calculated by t-test from 
correlation values converted to Z scores; whiskers, 1.5 ×​ interquartile 
range; centre lines, median (black) and mean (grey). b, Overlap between 
eQTL transcripts and genes physically interacting with eQTL in CP and 
GZ (Fisher’s test). OR, odds ratio. c, Hi-C interaction frequency between 
adult cortex (CTX) eQTL and associated transcripts. Chromatin contact 
frequency in CP and ES cells; Exp., expected interaction frequency; 
Opp., (opposite) interaction frequency of SNPs and transcripts when 
the position of genes was mirrored relative to the eQTL. *​*​*​P <​ 0.001, 
repeated measures ANOVA. LOESS curves and confidence intervals 
(95%, shaded area) are depicted. d, Hi-C interacting enhancer–gene pairs 
show increased expression correlation (Spearman, middle) as well as co-
expression (TO, topological overlap, right) compared with non-interacting 
pairs (Wilcoxon rank-sum test).
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GRIA1, NLGN4X and GRIN2A, supporting the more established role of 
glutamatergic transmission defects in schizophrenia pathophysiology25.  
Notably, we recapitulated the previously identified interaction between 
CACNA1C and a schizophrenia-associated SNP associated with 
decreased enhancer activity29.

We next integrated gene expression from the Common Mind 
Consortium with Hi-C data (Methods), observing a significant 
overlap of these schizophrenia candidate risk genes with those 

downregulated in dorsolateral prefrontal cortex (DLPFC) from patients 
with schizophrenia (Fig. 4a). This enrichment was not observed in either  
embryonic stem (ES) cell or IMR90 cell Hi-C maps, nor in genes in LD 
with, nor nearest to, the index SNPs. We identified 12 genes that were 
dysregulated in schizophrenia brain in the same direction as predicted 
by eQTL signals, validating the Hi-C predictions, further supporting 
these eQTL as candidate schizophrenia risk loci (Fig. 4b, Extended Data 
Fig. 10, Supplementary Table).
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to human-gained enhancers. d, Number of primate-specific lncRNAs 

interacting with human-gained enhancers in CP (a red vertical line in 
the graph) against permuted background. e, Representative interaction 
map of a 10 kb bin, in which human-gained enhancers reside, with the 
corresponding flanking regions. Chromosome ideogram and genomic axis 
on the top, possible target genes marked in red; genomic coordinates for 
human-gained enhancers are labelled as Evol; −​log10[P value], significance 
of the interaction between human-gained enhancers and each 10 kb bin; 
grey dotted line marks FDR =​ 0.01; TAD borders in CP and GZ below.
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To provide experimental support for a functional prediction 
based on Hi-C, we tested the credible schizophrenia-associated SNP 
rs1191551 that physically interacts with FOXG1, a gene associated with  
telencephalic development and ID30, and that is 760 kb away from the 
schizophrenia-associated region (Fig. 4c). We used a reporter assay to 
demonstrate the effect of the schizophrenia risk variant on gene regu-
lation, and CRISPR/Cas9-mediated genome editing to corroborate that 
the region containing the SNP regulates FOXG1 expression, but not 
the nearby PRKD1 locus (Fig. 4d, e, Extended Data Fig. 9d–f). These 
data support regulation of FOXG1 by the region containing rs1191551 
during human cortical development.

In conclusion, we demonstrate how analysis of genome-wide 
chromatin contacts provides important biological insights into gene 
regulatory mechanisms during human corticogenesis. We annotate 
non-coding regulatory elements based on their long-range chromatin 
contacts to identify hundreds of novel enhancer–promoter interactions 
during human brain development, relationships that are likely to be 
relevant to the evolution of human cognition. We also show how tissue- 
relevant chromatin contacts can be used to inform the biological inter-
pretation of risk variants for a complex genetic disorder, schizophrenia, 
and in the process, identify several novel candidate genes and pathways 
that warrant detailed further study. These comparisons illustrate the 
added power of 3D genome annotation and provide a template for 
understanding the role of non-coding variation across complex genetic 
disorders that may involve tissue-specific gene regulation.

Note added in proof: The Common Mind Consortium paper describ-
ing the RNA-sequencing data from dorsolateral prefrontal cortex of 
individuals with schizophrenia and neurotypical controls (http://
commonmind.org) was recently published as ref. 31. Consistent with 
their eQTL results, we  detected the  interactions of FURIN, TSNARE1, 
CNTN4, CLCN3, SNAP91 with  credible schizophrenia SNPs.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4 | Functional validation of schizophrenia risk genes predicted 
by Hi-C. a, Over-representation of schizophrenia risk genes with 
downregulated genes in schizophrenia DLPFC. Hi-C: CP, GZ, ES, IMR90, 
genes that are associated with CAVIAR credible SNPs or originally 
identified credible SNPs (PGC credible) in each tissue/cell type; LD, genes 
that are in LD with index SNPs, that are identified (LD, Hi-C) and not 
(LD only) by Hi-C; closest, closest genes to index SNPs, that are identified 
(closest, Hi-C) and not (closest only) by Hi-C. b, Hi-C interactions and 
eQTL association identify the same gene (left, marked in red), which 
is dysregulated in the same direction in schizophrenia DLPFC (right). 
Coordinates for the 10 kb bin containing credible SNPs (schizophrenia 
GWAS) and eQTL are indicated. Whiskers, 1.5 ×​ interquartile range; 

centre lines, median. c, Interaction map of SNP rs1191551 indicates an 
interaction with FOXG1. d, rs1191551 risk allele (T) decreases luciferase 
activity (mean ±​ standard error, n =​ 32). P values, linear mixed effect 
model. e, Predicted cleavage sites for two guide RNA pairs (CRISPR1 and 
CRISPR2); location of primers used to validate deletion are indicated. 
Rs1191551 is located in a weakly transcribed region (TxWk) in fetal 
brain according to Roadmap Epigenomics (Methods), but is predicted 
to be an active enhancer in developing cortex8. CRISPR/Cas9-mediated 
deletion of rs1191551 flanking region reduces the expression of FOXG1 
(right). Normalized expression levels of FOXG1 relative to control (Ctrl) 
(mean ±​ standard error, n =​ 6 (Ctrl), 4 (CRISPR1 and CRISPR2)).  
P values, one-way ANOVA and post hoc Tukey test.
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Methods
No statistical methods were used to predetermine sample size.
Fetal brain layer dissection. Human developing cortical tissues were obtained from 
the UCLA Gene and Cell Therapy Core according to IRB guidelines, and fronto-
parietal cortex was collected from three individuals at gestation week (GW) 17–18 
(one sample from GW17 and two samples from GW18). In cold DMEM/F-12 
(ThermoFisher, 11320-033), frontoparietal cortex was first dissected to thin  
(~​1 mm) slices to visualize layers. Under the light-field microscope, cortical slice 
was dissected to germinal zone (GZ) and cortical plates (CP). GZ contains ven-
tricular zone and subventricular zone, and hence is comprised of proliferating 
neurons. CP refers to intermediate zone, cortical plate, and marginal zone, which 
are mainly composed of differentiated and migrating neurons. By dissecting layers 
from the same individuals, we can compare progenitors to differentiated neurons 
with the same genotype and minimize inter-sample heterogeneity.
Hi-C. Collected tissue was dissociated with trypsin and cell number was counted. 
Ten million cells were fixed in 1% formaldehyde for 10 min. Cross-linked DNA 
was digested by restriction enzyme HindIII (NEB, R0104). Digested chromatin 
ends were filled and marked with biotin-14-dCTP (ThermoFisher, 19518-018). 
Resulting blunt-end fragments were ligated under dilute concentration to minimize 
random intermolecular ligations. DNA purified after crosslinking was reversed by 
proteinase K (NEB, P8107) treatment. Biotin from unligated ends was removed 
by exonuclease activity of T4 DNA polymerase (ThermoFisher, 18005). DNA was 
sheared by sonication (Covaris, M220) and 300–600-bp fragments were selected. 
Biotin-tagged DNA, which is an intermolecular ligation product, was pulled down 
with streptavidin beads (Invitrogen, 65001), and ligated with Illumina paired-end 
adapters. The resulting Hi-C library was amplified by PCR (KAPA Biosystems HiFi 
HotStart PCR kit, KK2502) with the minimum number of cycles (typically 12–13 
cycles), and sequenced by Illumina 50 bp paired-end sequencing. For comparison 
with non-neuronal cell types, we also used publicly available Hi-C data on human 
ES cells and IMR90 cells10,32.
Hi-C reads mapping and pre-processing. Mapping and filtering of the reads, as 
well as normalization of experimental and intrinsic biases of Hi-C contact matrices, 
were conducted with the following method regardless of cell type to minimize 
potential variance in the data obtained from different platforms. We implemented 
hiclib (https://bitbucket.org/mirnylab/hiclib) to perform initial analysis on Hi-C 
data from mapping to filtering and bias correction. Briefly, quality analysis was 
performed using a phred score, and sequenced reads were mapped to hg19 human 
genome by Bowtie2 (with increased stringency, –score-min -L 0.6,0.2–very- 
sensitive) through iterative mapping. Read pairs were then allocated to HindIII 
restriction enzyme fragments. Self-ligated and unligated fragments, fragments 
from repeated regions of the genome, PCR artefacts, and genome assembly errors 
were removed. Filtered reads were binned at 10 kb, 40 kb, and 100 kb resolution 
to build a genome-wide contact matrix at a given bin size. Biases can be intro-
duced to contact matrices by experimental procedures and intrinsic properties 
of the genome. To decompose biases from the contact matrix and yield a true 
contact probability map, filtered bins were subjected to iterative correction9, the 
basic assumption of which is that each locus has uniform coverage. Bias correction 
and normalization results in a corrected heat map of bin-level resolution. 100-kb 
resolution bins were assessed for inter-chromosomal interactions, 40 kb for TAD 
analysis, and 10 kb for gene loop detection.

When three replicates for each cortical tissue were processed individually, we 
found high correlation in chromosome conformation from different individuals 
from global chromatin contact profiles, providing evidence for the robustness of 
the results (Extended Data Fig. 1c). To obtain maximum sequencing depth and 
resolution of the contact matrix, we used the combined (pooled) data set for the 
following analyses unless otherwise specified.
Inter-chromosomal principal component analysis. Principal component analysis 
(PCA) was conducted in a genome-wide inter-chromosome contact map (100-kb 
binned) as described previously9. Since intra-chromosome conformation may drive 
the PCA results, cis contacts were iteratively replaced by random trans counts using 
hiclib command fakeCis. After removing diagonal and poorly covered regions, we 
performed PCA using hiclib command doEig.

Pearson’s correlations between the first principal components (PC1) from dif-
ferent cell types (CP, GZ, ES, and IMR90) were calculated to compare similarities 
in inter-chromosomal interactions between different cell types.

Spearman’s correlations between PC1/PC2 and biological traits (GC content,  
gene density, DHS, gene expression) were calculated. GC content (%) for each 
100 kb bin was calculated by the gcContentCalc command from R package 
Repitools. Gene density (number of genes in 100 kb bin) was obtained based 
on the longest isoforms from Gencode v.19. DHS identified in fetal brain from 
Roadmap Epigenomics33 and gene expression levels from prenatal cerebral 
cortical layers from Miller et al.34 were used and average values per 100 kb bin 
were calculated.

Gene enrichment analysis. Gene Ontology (GO) enrichment was performed by 
GO-Elite Pathway Analysis (EnsMart65, http://www.genmapp.org/go_elite/). All 
genes in the genome except the ones located in the chromosome Y and mito-
chondrial DNA were used as a background gene list. Because Hi-C interaction is 
measured in bins, sometimes we cannot resolve individual genes when they are 
clustered in the genome (that is, PCDH locus). To prevent several gene clusters  
from overriding entire GO terms, we removed GO results mainly defined by gene 
clusters (for 100 kb or 40 kb binned data, for example, when more than half of the 
genes in a GO category reside in the same bin) or we randomly included one gene 
per cluster (for example, PCDHA1 for PCDHA1-13 cluster) before GO analysis 
(for 10 kb binned data).

Gene enrichment for the curated gene lists was performed using a binomial 
generalized linear model. The ID curated gene list from Pariskshak et al.4 and 
downregulated genes in schizophrenia DLPFC (see below) were used for the 
enrichment test. Protein-coding genes based on biomaRt (Gencode v.19) were 
used as the background gene list.
Identification of the regions with largest inter-chromosomal conformation 
changes. The chromosome contact matrix was normalized with the total interaction  
counts between two cell types for comparison. Intra-chromosomal interactions 
were masked from the genome-wide contact matrix, and the top 1,000 bins with 
the largest interaction changes between different cell/tissue types (GZ vs CP or ES 
vs CP) were selected. As one bin is comprised of two loci that are interacting with 
each other, this would yield ~​2,000 sites in the genome. Genes located in those  
~​2,000 sites were combined to perform GO analysis.
Co-expression of inter-chromosomal interacting regions. Using transcriptome 
data from fetal cortical layers35, average expression values per 100 kb bin were 
calculated. The Pearson correlation matrix was calculated from 100 kb binned 
expression data from all layers to generate the gene co-expression matrix. At this 
step, the gene co-expression matrix has the same dimension as the inter-chromo-
somal contact matrix.

We hypothesized that genes would be co-expressed across layers when they are 
interacting in all stages (both in CP and GZ), so we selected the top 2% highest 
interacting regions from fetal brains considering both GZ and CP (high interacting 
regions). We also selected (1) low interacting regions: the top lowest interacting 
regions (0 interaction from normalized Hi-C contact matrix) from fetal brain (both 
GZ and CP), (2) variant interacting regions: the top 2% highest interacting regions 
from one stage (for example, GZ) that are top 2% lowest interacting regions from 
the other stage (for example, CP) for comparison, and (3) the top 2% highest 
interacting regions of ES and IMR90 cells. Expression correlation values of the 
same regions were selected from the gene co-expression matrix, and expression 
correlations between different states (high interacting regions vs low interacting 
regions and high interacting regions vs variant interacting regions) as well as dif-
ferent cell/tissue types (fetal brain vs ES/IMR90 cells) were compared by Wilcoxon 
rank-sum test.
Epigenetic state enrichment for inter-chromosomal interacting regions. The 
fetal brain (E081) imputation-based 25 epigenetic state model from Roadmap 
Epigenomics33,36 was used to generate the epigenetic state combination matrix, 
which was generated by marking loci where two interacting chromosomal bins  
(defined as bins with (1) interaction counts >​75% quantile interaction count for 
inter-chromosomal interactions and (2) interaction counts >​0 for intra-chromosomal  
interactions) share an epigenetic signature. For example, the epigenetic combina-
tion matrix between the active transcription start site (TssA) and active enhancers 
(EnhA1) was generated by marking where interacting loci have TssA at one locus 
and EnhA1 at the other locus. Intra- and inter-chromosomal contact frequency 
maps were then compared to the epigenetic state matrix by Fisher’s exact test to 
calculate enrichment of shared epigenetic combinations in interacting regions.
Compartment analysis. Expected interaction frequency was calculated from the 
normalized intra-chromosomal 40 kb binned contact matrix based on the dis-
tance between two bins. We summed the series of sub-matrices consisting of a 
400 kb window size with 40 kb step size from the normalized Hi-C maps to generate 
observed and expected matrices. The Pearson’s correlation matrix was computed 
from the observed/expected matrix, and PCA was conducted on the correla-
tion matrix. PC1 from each chromosome was used to identify compartments. 
Eigenvalues positively correlated with gene density were set as compartment A, 
while those negatively correlated were set as compartment B.
Gene expression and epigenetic state change across different compartments. 
Genomic regions were classified into three categories according to compartments: 
compartment A in cell type 1 that changes to compartment B in cell type 2 (A to B),  
compartment B in cell type 1 that changes to compartment A in cell type 2 (B to A), 
regions that do not change compartment between two cell types (stable).

Genes residing in each compartment category were selected and GO enrichment 
was performed. Gene expression fold-change (FC) between different cell types 
was calculated from Miller et al.34 (comparison for CP vs GZ) and CORTECON37 
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(comparison for ES vs CP and ES vs GZ). The distribution of gene expression FC 
for genes in different compartment categories was compared by one-way ANOVA 
and Tukey’s post hoc test.

The DHS FC33 between different cell/tissue types (ES vs CP and ES vs GZ) was 
calculated and statistically evaluated as in the gene expression comparison. We classi-
fied the 15 state chromatin model from Roadmap Epigenomics33 (ES, E003 and fetal 
brains, E081) based on compartment categories and averaged epigenetic states across 
40-kb bins. Each epigenetic state counts33 for one compartment category was normal-
ized by the total epigenetic state number of that compartment category and compared 
for significant differences between ES cells and fetal brains using Fisher’s exact test.
TAD analysis. We conducted TAD-level analysis as described previously10. In 
brief, we quantified the directionality index by calculating the degree of upstream 
or downstream (2 Mb) interaction bias of a given bin, which was processed by a 
hidden Markov model (HMM) to remove hidden directionality bias. Regions in 
between TADs are titled as TAD boundaries for regions smaller than 400 kb and 
unorganized chromatin for regions larger than 400 kb.
TAD-based epigenetic changes upon differentially expressed genes. Genes were 
subdivided into 20 groups based on expression FC between ES cells and most  
differentiated neural states in CORTECON37: genes that are upregulated and 
downregulated upon differentiation were grouped into ten quantiles, based on the 
FC. TADs in which genes from one subdivision reside were selected, and epigenetic 
state changes (from Roadmap Epigenomics, core 15 state epigenetic model in ES 
cells, E003 and fetal brains, E081; ref. 33) in those TADs were normalized with 
TAD length and compared between ES and fetal brains. As different types of epi-
genetic states have different absolute genome coverage (for example, there are more 
quiescent states than enhancer states in the genome), each epigenetic state change 
was scaled across different quantiles to allow comparison between different states.
DHS peak correlation for Hi-C interacting regions. Fetal brain DNase-seq 
data sets from 14 individuals33 (GW12-21) were uniformly processed to identify  
chromatin accessibility peaks. Sequenced reads were mapped to hg19 human 
genome by Burrows-Wheeler aligner (bwa), and MACS2 was used to call peaks. 
Correlation between chromatin accessibility peaks was assessed by first identifying 
seed peak(s) within a 2 kb region upstream of all transcription start sites (TSS) 
defined in Gencode v.19 and then all potentially interacting target peaks within 
a ±​1 Mb region. Pearson’s correlation was assessed between all seed and target 
peaks across samples using log2 and conditional quantile normalized read counts. 
Correction for multiple comparisons was conducted using the false discovery rate  
implemented across all seed–target peak pairs. Significant chromatin interaction 
between each promoter region (2 kb upstream of all transcription start sites defined 
in Gencode v.19) and 10-kb bins of the genome within ±​1 Mb was assessed by com-
paring to a null background generated from random regions of the genome with 
matched GC content and on the same chromosome as the promoter regions. The 
correlation between DHS peaks was separately classified and graphed in bins with 
significant chromatin interaction versus non-significant chromatin interaction. We 
describe a calculated P value of exactly zero as P <​ 2.2 ×​ 10−16.
eRNA–mRNA coexpression. FANTOM5 enhancers18 were filtered to include 
those that overlapped a robust FANTOM5 CAGE peak (that is, expressed eRNAs), 
but did not overlap a Gencode v.19 TSS within a window of 2 kb upstream and 1 kb 
downstream of the TSS. The latter filtering criterion ensured that eRNA expression 
values were not confounded by mRNA or promoter-antisense RNA expression. 
The filtered enhancers were classified as ‘interacting’ if they overlapped a genomic 
region that interacted with TSSs based on Hi-C data, and ‘non-interacting’ other-
wise. eRNA and mRNA expression were then calculated as previously38.

The proportions of interacting and non-interacting enhancers that expressed 
eRNAs in at least one of the five FANTOM5 fetal brain samples39 were compared 
by a χ2 test implemented in the prop.test function in R. We found that a higher 
proportion of interacting enhancers expressed eRNAs in at least one of the five 
fetal brain samples analysed (χ2 test, P =​ 5.07 ×​ 10−6).

eRNA–mRNA co-expression was assessed across all 49 FANTOM5 human brain 
samples, including 5 fetal and 44 adult samples, in order to capture expression 
variation across brain regions and developmental stages. A topological overlap 
matrix (TOM)40 was constructed based on FANTOM5 CAGE data39 for all eRNAs 
and mRNAs expressed in at least two brain samples, above a threshold of 0.5 tags 
per million. TO was calculated using the TOMsimilarity function implemented in 
the WGCNA package in R, with the following parameters: TOMType =​ “signed”, 
TOMDenom =​ “min”, soft threshold power for adjacency =​ 7. TO values and 
Spearman correlation coefficients for interacting and non-interacting eRNA–
mRNA pairs were compared using a Kolmogorov–Smirnov test, as well as a 
Wilcoxon non-parametric test.
Identification of Hi-C interacting regions. We identified Hi-C interacting regions 
and target genes for (1) expression quantitative trait loci (eQTL)16, (2) human-
gained enhancers8, and (3) schizophrenia credible SNPs22. As the highest resolution 
available for the current Hi-C data was 10 kb, we assigned these enhancers/SNPs to 

10-kb bins, and obtained the Hi-C interaction profile for the 1 Mb flanking regions 
(1 Mb upstream to 1 Mb downstream) of each bin. We also made a background 
Hi-C interaction profile by pooling (1) 255,698 H3K27ac sites from frontal and 
occipital cortex at post-conception week (PCW) 12 for human-gained enhancers8 
and (2) 9,444,230 imputed SNPs for eQTL and schizophrenia SNPs22. To avoid 
significant Hi-C interactions affecting the distribution fitting, we used the lowest  
95 percentiles of Hi-C contacts and removed zero contact values. Using these 
background Hi-C interaction profiles, we fit the distribution of Hi-C contacts at 
each distance for each chromosome using the fitdistrplus package (Extended Data 
Fig. 5a). Significance for a given Hi-C contact was calculated as the probability  
of observing a stronger contact under the fitted Weibull distribution matched 
by chromosome and distance. Hi-C contacts with FDR <​0.01 were selected as  
significant interactions. Significant Hi-C interacting regions were overlapped with 
Gencode v.19 gene coordinates (including 2 kb upstream to TSS to allow detec-
tion of enhancer–promoter interactions) to identify interacting genes. The same 
analysis was performed on Hi-C contact maps from CP, GZ, ES32 and IMR9010. To 
address the functional significance of target genes, GO enrichment was performed 
for the interacting genes. Interaction profiles for human-gained enhancers and 
schizophrenia credible SNPs are summarized in Supplementary Table 1.
Calculation of false-discovery rate for Hi-C interactions. Estimated false- 
discovery rates for interactions were calculated according to Sanyal et al.11. Briefly, 
we calculated the fraction of false-positive interactions based on significant inter-
actions from three gene desert ENCODE regions (ENr112, ENr113, and ENr313). 
For example, 45 significant interactions were detected from gene desert ENCODE 
regions in CP when tested for 28,783 interactions, giving 45/28,783 =​ 0.156% as the 
fraction of false-positive interactions. Assuming this fraction applies to genome-
wide interactions and based on the fact that we are testing 381,121 interactions for 
evolutionary loci, 594.5 interactions (0.00156 ×​ 381,121) are expected false-positive 
interactions. There are 5,339 significant interactions detected in CP, which gives 
594.5/5,339 =​ 11.16% for the false-discovery rate.

For evolutionary human-gained enhancer interacting regions, the false-discovery  
rate was 11.16% and 10.34% for CP and GZ pooled lists, respectively. When we 
focus on high-confidence interactions replicated in more than two individuals and 
in the pooled list, the false-discovery rate drops to 4.82% and 2.45% for CP and 
GZ, respectively. For schizophrenia GWAS interacting regions (using genome-wide 
credible SNPs), we obtained a false-discovery rate of 16.04% and 19.17% for CP 
and GZ pooled lists, and 6.90% and 6.81% for CP and GZ that are replicated in 
more than two individuals and in the pooled list.
Protein-coding genes interacting with human-specific evolutionary enhancers.  
Protein-coding genes based on biomaRt (Gencode v.19) were selected and the 
non-synonymous substitution (dN)/synonymous substitution (dS) ratio was 
calculated for homologues in mouse, rhesus macaque, and chimpanzee for  
representation of mammals, primates, and great apes, respectively. log2[dN/dS]  
distributions for protein-coding genes interacting vs non-interacting to 
human-specific evolutionary enhancers in each lineage were then compared by 
Wilcoxon rank-sum test.
LncRNAs interacting with human-specific evolutionary enhancers. Long 
non-coding RNAs (lncRNAs) classified according to evolutionary lineages21 were 
used to assess whether lineage-specific lncRNAs interact with human-specific  
evolutionary enhancers. We randomly selected the same number of enhancers 
(2,104) as the human-specific ones from the total enhancer pool (255,698), identified  
interacting regions based on the null distribution generated from a background 
enhancer interaction profile. Significant interacting regions (FDR <​ 0.01) identified 
by Hi-C were intersected with lncRNA coordinates21 and interacting lncRNAs for 
each lineage were counted. This step was repeated 3,000 times to obtain the null 
lncRNA lineage distribution. LncRNAs interacting with human-specific evolu-
tionary enhancers were also identified and enrichment was tested by calculating  
P values as the probability of observing more interacting lncRNAs for a given 
lineage under the null lncRNA lineage distribution.
Epigenetic mark enrichment for Hi-C interacting regions. The functional frame-
work for (1) eQTL, (2) schizophrenia SNPs, and (3) human-gained enhancer- 
interacting regions was assessed for epigenetic state enrichment. We implemented 
the same approach as in GREAT41 using the binomial test to analyse the epige-
netic state enrichment for cis-regulatory regions. For example, to evaluate whether 
schizophrenia SNPs are enriched with DHS, the fraction of genome annotated with 
DHS (p), the number of schizophrenia SNPs (n), and number of schizophrenia 
SNPs overlapping with DHS (s) were calculated. Significance of the overlaps was 
tested by binomial probability of P =​ Prbinom (k ≥ s | n =​ n, P =​ p)41. Histone marks 
and DHS from fetal brains (E081) and adult frontal cortex (E073)33 were used for 
epigenetic state enrichment.
eQTL analysis. As a first line verification that Hi-C data could identify known 
functional relationships between SNPs and gene expression we used cis-eQTL data 
from adult cerebral cortex16, since such data are not yet available from developing 
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brain. The cis-eQTL signal was selected as previously defined16, resulting in 5,565 
sentinel marker–transcript pairs (2,373 transcripts and 5,251 SNPs).

We divided eQTL into those without known function (unannotated) and puta-
tive functionally annotated SNPs (SNPs that cause missense, frameshift, and splice 
variants, and SNPs that fall onto gene promoters). Putative functionally annotated 
SNPs were directly assigned to the genes in which they are located. For the remain-
ing non-annotated intergenic and intronic SNPs for which standard assignments 
of functional annotation were not available, we identified the genes interacting 
with the eQTL harbouring region. Combining genes annotated by functional SNPs 
and those annotated by their Hi-C interactions, we obtained a total of ~​3,000 
Hi-C defined eQTL candidate genes. Fisher’s exact test was performed to evaluate 
the significance of the overlap between Hi-C defined eQTL candidate genes and 
eQTL-associated transcripts. The background gene list includes genes located in 
the 1 Mb flanking regions around sentinel SNPs. We also observed that while eQTL 
are usually in close spatial proximity to their associated genes, this is a relative 
phenomenon, and in ~​70% of cases, the eQTL is not associated with the closest 
gene, consistent with the Hi-C data.

For 5,565 sentinel marker-transcript pairs, we assigned sentinel markers and 
genes into 10-kb bins, and obtained Hi-C contacts between sentinel markers and 
genes from the 10 kb binned Hi-C contact maps. As a gene can span multiple 
10-kb bins, the highest interaction in the gene to a sentinel marker was selected as 
Hi-C contact as previously described15. We also calculated expected interaction 
frequency from the normalized 10 kb binned contact matrix based on the distance 
between two bins. Opposite interaction frequency was calculated by obtaining 
Hi-C contacts for the opposite site to the sentinel marker with the same distance. 
Because interaction counts differ between chromosomes as well as in different cell 
types, we normalized interaction by chromosome and cell types. We performed 
one-way ANOVA and Tukey’s post hoc test for the comparison between different 
interaction paradigms.
Identification of credible SNPs for schizophrenia GWAS loci. 128 linkage  
disequilibrium (LD)-independent SNPs with genome-wide significance 
(P < 5 × 10−8)22 were used as index SNPs to obtain schizophrenia credi-
ble SNPs. All SNPs that are associated with P < 1 × 10−5 and located in the 
region containing one or more SNPs in LD (r2 > 0.6) with the index SNP 
were selected, and correlations (LD structure) among this set of SNPs were 
calculated. CAVIAR24 was applied to summary association statistics and 
LD structure for each index SNP, and potentially causal (credible) SNPs for 
each index SNP were identified. Among 55,000 SNPs that are in LD with 128 
index SNPs, 7,613 SNPs were selected as causal by CAVIAR (-r 0.95, posterior 
probability; -c 2, maximum number of causal SNPs). Here we refer to these 
CAVIAR-identified SNPs as credible SNPs. Genes interacting with credible 
SNPs were identified for CP, GZ, ES, and IMR90 cells. A separate set of cred-
ible SNPs initially reported from the original study was also processed with 
the same method22.
Identification of schizophrenia GWAS SNP-associated genes. We classified cred-
ible SNPs based on potential functionality (flow chart in Extended Data Fig. 7). 
For credible SNPs classified as functional (stop gained variant, frameshift variant, 
splice donor variant, NMD transcript variant, and missense variant) according 
to biomaRt, we selected genes in which those SNPs locate. For those that are not 
directly affecting the gene function, we selected SNPs that fall onto the promoter 
of genes (2 kb upstream to TSS). Remaining un-annotated SNPs were assigned to 
physically interacting genes defined by Hi-C in developing brain, since schizo-
phrenia is postulated to have neurodevelopmental origins23,42. This pipeline gives 
a total of ~​900 genes potentially associated with GWAS SNPs.
Identification of closest genes and LD genes. The closest genes to human-gained 
enhancers and schizophrenia index SNPs were obtained by the closestBed com-
mand from bedtools. Gene coordinates from Gencode v.19 including 2 kb upstream 
to TSS were used to identify the closest genes. LD genes refer to all genes in the LD 
region, defined as 108 schizophrenia-associated genome-wide significant regions 
in the original study22. We overlapped gene coordinates from Gencode v.19 with 
LD regions as defined in the original study22 to find genes that reside in LD regions. 
The closest genes and LD genes were compared with Hi-C interacting genes. Venn 
diagrams were generated by Vennerable package in R. Only protein-coding genes 
were included in plotting Venn diagrams.
Calculation of distance between SNPs and genes. For LD genes and closest genes, 
the shortest distance between an index SNP and a target gene was selected. For 
credible SNPs, (1) the distance between functional credible SNPs and target genes 
was set as 0, because functional SNPs reside in the gene, (2) the distance between 
promoter credible SNPs and target genes was calculated as the distance between 
SNPs and TSS of a gene, (3) the distance between credible SNPs and Hi-C interact-
ing genes was calculated based on the distance between SNPs and Hi-C interacting 
bins (note that this distance has a unit of 10 kb). We then combined the distance 
distributions from the three categories.

Luciferase assay. A regulatory sequence containing rs1191551 (chr14:30,000,155-
30,000,655, 250 bp flanking the SNP) was cloned to the pGL4.24 vector (Promega) 
upstream of minimal promoter. HEK293 cells in 96-well plates were transfected with 
the luciferase plasmid (100 ng) along with the internal control plasmid (pRL-TK, 
10 ng, Promega) by lipofectamine (0.5 μ​l per well, Invitrogen). Luciferase activity  
was measured 48 h after the transfection by Dual Luciferase Reporter System 
(Promega). Firefly luciferase activity was normalized to Renilla luciferase activity. 
Each experiment was repeated in quadruplicate with eight technical replicates for 
each experiment. Significance was calculated using a linear mixed effects model 
with transfection condition as a fixed effect and technical replicate as a random  
effect.
CRISPR/Cas9-mediated deletion of rs1191551. rs1191551 is located in a weakly 
transcribed region (TxWk) in fetal brain according to Roadmap Epigenomics32, 
but is predicted to be an active enhancer (H3K27ac) in developing cortex8. Guide 
RNAs (gRNAs) flanking rs1191551 were designed by Benchling (https://benchling.
com/). Two sets of gRNA pairs were cloned into pL-CRISPR.EFS.GFP (Addgene, 
57818) and pL-CRISPR.EFS.tRFP (Addgene, 57819); the first set (CRISPR1) and 
the second set (CRISPR2) induce double stranded breaks (DSB) that generate  
~​760 bp and ~​530 bp deletion, respectively. gRNA targeting 5′​ of rs1191551 was 
cloned into pL-CRISPR.EFS.tRFP and gRNA targeting 3′​ of rs1191551 was cloned 
into pL-CRISPR.EFS.GFP. Empty vectors (pL-CRISPR.EFS.GFP and pL-CRISPR.
EFS.tRFP) without any gRNA insertion were used as control. Virus was generated 
by co-transfection of CRISPR vectors with pVSVg (Addgene, 8454) and psPAX2 
(Addgene, 12260) in HEK293 cells. Primary human neural progenitor cells 
(phNPC) were infected with a pair of viruses (empty vectors, CRISPR1, CRISPR2) 
on the day of split and differentiated as previously described43. These cells have 
not been tested for mycoplasma contamination. After 2.5 weeks of differentiation, 
cells that are infected by both gRNAs (RFP+/GFP+) were sorted by FACS. Genomic 
DNA was extracted by DNeasy Blood and Tissue Kit (Qiagen) and amplified by 
PCR using Herculase II Fusion DNA Polymerases (Agilent Technologies). RNA 
was extracted by miRNeasy Mini Kit (Qiagen) and FOXG1 and PRKD1 expression 
level was measured by qPCR (LightCycler 480 SYBR Green I Master, Roche) and 
normalized to GAPDH. Each experiment was repeated twice with two (CRISPR1, 
CRISPR2) or three (empty vector) biological replicates for each experiment. gRNA 
and primer sequences for both genomic DNA and qPCR are described in the 
Supplementary Table.
Schizophrenia differential gene expression analysis. RNA-sequencing data from 
557 total human post-mortem dorsolateral prefrontal cortex (DLPFC) brain sam-
ples were obtained from subjects with schizophrenia (n =​ 262) and neurotypical 
controls (n =​ 295), as part of the CommonMind Consortium (http://common 
mind.org)31. Brain tissue for the study was obtained from the following brain bank 
collections: the Mount Sinai NIH Brain and Tissue Repository, the University 
of Pennsylvania Alzheimer’s Disease Core Center, the University of Pittsburgh 
NeuroBioBank and Brain and Tissue Repositories and the NIMH Human Brain 
Collection Core. Details of sample collection and processing are described here: 
(https://www.synapse.org/#!Synapse:syn2759792/wiki/194729).

Reads were mapped to human genome build hg19 with Ensembl v.70 annota-
tions using TopHat version 2.0.9. Quantification was performed using HTSeq-
Counts v.0.6.0 in intersection-strict mode. The resulting count level data was made 
available for downstream analysis through Sage Synapse.

Expression data was filtered to only include genes with 10+​ counts in at least half 
of the samples. Filtered read counts were then log2-transformed and normalized  
for GC content, gene length, and sequencing depth using the CQN package in R44. 
Batch correction was performed using ComBat45, for each of four sets of exper-
imental batches: RNA isolation batch, sequencing library batch, flowcell batch, 
and ribozero batch. Following batch correction, outlier samples were detected by 
calculating standardized sample network connectivity Z scores, and samples with 
Z <​ −​2 were removed from downstream analysis as described46.

Given the confounding between diagnostic group and technical/biological 
covariates, we first separated the data set into a schizophrenia-control subset 
and then balanced groups by all covariates, such that the case/control status was 
not significantly associated with any measured covariate (P >​ 0.05). To control 
for differences in RNA quality, read depth and other sequencing-related techni-
cal artefacts across subjects, we created six ‘sequencing statistics’ referred to as 
seqPC1–seqPC6 that consisted of the 1st to 6th principle components of RNA-
SeQC output metrics. These statistics collectively accounted for 99% of the var-
iance of the RNA-SeQC metrics and were included as covariates in our linear 
regression framework to control for technical variation.

Differential gene expression of log2[normalized FPKM] expression values was 
calculated using a multiple linear regression model. To remove the contribution 
of potential confounding variables from our gene expression analyses, we first 
regressed biological and technical covariates (except diagnosis) from the expression 
data, using the model: lm(datExpr ~​ Age +​ Sex +​ pH +​ PMI +​ RIN +​ 28S/18SRatio 
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+​ Ethnicity +​ Institution +​ SeqPC1 +​ SeqPC2 +​ SeqPC3 +​ SeqPC4 +​  
SeqPC5 +​ SeqPC6). Group differences in gene expression were then assessed on 
the regressed expression matrix: lm(datExpr.reg ~​ Dx). Regression coefficients 
(log2 fold-change β values) for each gene were calculated for each group. P values 
were FDR-corrected for multiple comparisons.
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Extended Data Figure 1 | Basic characterization of Hi-C libraries.  
a, Hi-C library sequencing information. Percentage of double-stranded 
(DS) reads indicates percentage of DS reads to all reads, and percentage of 
valid pairs and filtered reads indicates percentage of valid pairs and filtered 
reads to DS reads. Cis ratio, ratio of cis (intra-chromosomal) reads to the 
total number of reads. b, Frequency distribution of Hi-C contacts in GZ 

(left) and CP (right). c, Pearson correlation between replicates at 100 kb 
resolution is >​0.8, demonstrating a high degree of correlation between 
biological replicates from different individuals. d, Size distribution of 
TADs in GZ (left) and CP (right). e, f, Size distribution of genomic regions 
in between TADs that are less than (TAD boundaries, e) and bigger than 
(unorganized chromosome, f) 400 kb in GZ (left) and CP (right).
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Extended Data Figure 2 | Inter-chromosome conformation is associated 
with various genomic features. a, Representative heat map of the 
chromosome contact matrix of CP. Normalized contact frequency  
(contact enrichment) is colour-coded according to the legend on the right.  
b, Pearson correlation of the leading principle component (PC1) of inter-
chromosomal contacts at 100 kb resolution between in vivo cortical layers 
and non-neuronal cell types (ES and IMR90 cells). PC1s from neuronal 
tissues (CP and GZ) have significantly higher correlation than the PC1s 
between non-neuronal cell types, consistent with the higher similarity 

between tissues from brain vs the two other cell lines, although batch 
effects are also likely to contribute. c, Spearman correlation of PC1 of 
chromatin interaction profile of fetal brain (GZ) with GC content, gene 
number, DHS of fetal brain, and gene expression level in fetal laminae. 
d, GO enrichment of genes located in the top 1,000 highly interacting 
inter-chromosomal regions specific to CP vs GZ (left), and CP vs ES 
(right), indicating that genes located on dynamic chromosomal regions are 
enriched for neuronal development.
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Extended Data Figure 3 | Intra-chromosomal conformation is 
associated with various genomic features. a, GO enrichment of genes 
that change compartment status from A to B (left) and B to A (right)  
in GZ to CP. b, Heat map of PC1 values of the genome that change 
compartment status in different cell types. The faction of the genome  
with a compartment switch in different lineages is described below.  
c, Distribution of gene expression fold change (FC, left) and DHS FC 
(right) for genes/regions that change compartment status (‘A to B’ or ‘B 
to A’) or that remain the same (stable) in different cell/tissue types. B to A 
compartment shift is associated with increased DHS and gene expression, 
whereas the A to B shift is associated with decreased DHS and gene 
expression. P values from one-way ANOVA; whiskers, 1.5 ×​ interquartile 
range (IQR); centre lines, median (black) and mean (grey). d, Percentage 
of epigenetic states for genomic regions that change compartment status 
between ES cells and GZ (left) and ES cells and CP (right). Note that  
B to A shift in ES cells to GZ/CP is associated with increased proportion 
of active promoter and transcribed regions (TssA and Tx) and enhancers 
(Enh, top), while A to B shift in ES cells to GZ/CP is associated with 
increased proportions of repressive marks (Het and ReprPCWk, bottom).  
*​P <​ 0.05, *​*​P <​ 0.01, *​*​*​P <​ 0.001. P values from Fisher’s test. 
Annotation for epigenetic marks described in a core 15-state model 

from ref. 33. e, Epigenetic changes in TADs mediate gene expression 
changes during neuronal differentiation. Genes were divided by 
expression FC between ES and differentiated neural cells, and epigenetic 
states in the TADs containing genes in each group were counted and 
compared between ES cells and CP. Upregulated genes in neurons 
reside in TADs with more active epigenetic marks in CP than in ES 
cells, while downregulated genes in neurons reside in TADs with more 
repressive marks in CP than in ES cells. Epigenetic states associated with 
activation and transcription of the genes were marked as red bars, while 
those associated with repression were marked as blue bars on the right. 
Annotation for epigenetic states described in ref. 33. f, Histone mark 
enrichment for adult cortical eQTL in fetal brain (FB, left) and adult 
frontal cortex (FCTX, right). g, Hi-C interaction frequency between 
eQTL and associated transcripts. LOESS smooth curve plotted with actual 
data points. Shaded area corresponds to 95% confidence intervals. GZ, 
chromatin contact frequency in GZ; ES, chromatin contact frequency in 
ES cells; Exp, expected interaction frequency given the distance between 
two regions; Opp, opposite interaction frequency: interaction frequency of 
SNPs and transcripts when the position of genes was mirrored relative to 
the eQTL. *​*​*​P <​ 0.001, P values from repeated measure of ANOVA.
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Extended Data Figure 4 | See next page for caption.
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Extended Data Figure 4 | Interacting regions share co-expression and 
epigenetic states. a, Top 2% (left), 5% (middle) and 10% (right) highest 
interacting regions both in GZ and CP (High) show positive correlation 
with gene expression, while the lowest interacting regions (Low) and 
variably interacting regions (Variant) have no skew in distribution. 
P values from Wilcoxon rank-sum test. b, Mean (top) and median 
(bottom) values for gene expression correlation for high, low and  
variant interacting regions with different cut-offs, indicating that higher 
the interaction, higher the correlation of gene expression. c, Top 2%  
highest interacting regions in fetal brain (FB) show more positive 
correlation in fetal brain gene expression compared with top 2% highest 
interacting regions in non-neuronal cells such as ES and IMR90 cells.  
d, Epigenetic state combination in inter-chromosomal interacting regions 
in GZ (left) and CP (right). Enhancers (TxEnh5′​, TxEnh3′​, TxEnhW, 

EnhA1), transcriptional regulatory regions (TxReg), and transcribed 
regions (Tx) interact highly with each other as marked in red. e, Epigenetic 
state combination in intra-chromosomal interacting regions in GZ (left) 
and CP (right). Enhancers (TxEnh5′​, TxEnh3′​, TxEnhW, EnhA1) and 
transcriptional regulatory regions (TxReg) interact highly to promoters 
(PromD1, PromD2) and transcribed regions (Tx5′​, Tx) as marked in 
red. Inter- and intra-chromosomal contact frequency map is compared 
to epigenetic state combination matrix by Fisher’s test to calculate the 
enrichment of shared epigenetic combinations in interacting regions. 
Coloured bars on the left represent epigenetic marks associated with 
promoters and transcribed regions (orange), enhancers (red), and 
repressive marks (blue). Annotation for epigenetic marks is described in a 
25-state model from ref. 36.
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Extended Data Figure 5 | Characterization of chromatin interactome 
of human-gained enhancers. a, Distribution fitting of normalized 
chromatin interaction frequency between human-gained enhancers and 
1 Mb (top) or 100 kb upstream (bottom) regions. The Weibull distribution 
(red line) fits Hi-C interaction frequency the best for every distance 
range. b, Distribution of the number of significant interacting loci with 

human-gained enhancers in GZ (top) and CP (bottom). c, The fraction of 
epigenetic states for loci interacting with human-gained enhancers in CP 
and GZ. d, The proportions of human-gained enhancers and interacting 
regions within the same TAD. e, GO enrichment for human-gained 
interacting genes in CP (left) and GZ (right).
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Extended Data Figure 6 | Human-gained enhancers interact with 
evolutionary lineage-specific lncRNAs. a, GO enrichment for cell  
type-specific human-gained enhancer interacting genes. b, GO 
enrichment for human-gained enhancer interacting genes replicated 
in more than two individuals from CP (top) and GZ (bottom). Reg., 
regulation of. c, Protein-coding genes interacting with human-gained 
enhancers in CP and GZ have lower non-synonymous substitutions (dN) 
to synonymous substitutions (dS) ratio compared to protein-coding genes 

that do not interact with human-gained enhancers (All) in mammals 
(mouse), primates (rhesus macaque), and great apes (chimpanzee), 
indicative of purifying selection. P values from Wilcoxon rank-sum test. 
d, Number of lineage-specific lncRNAs interacting with human-gained 
enhancers (red vertical lines in the graph) in GZ (top) and CP (bottom). 
Null distribution was generated from 3,000 permutations, where the 
number of lncRNAs interacting with the same number of enhancers 
pooled from all fetal brain enhancers was counted.
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Extended Data Figure 7 | Defining schizophrenia risk genes based on 
functional annotation of credible SNPs. a, b, Credible SNPs identified 
by CAVIAR (a) and defined in the original study (b) are categorized into 
functional SNPs, SNPs that fall onto gene promoters, and un-annotated 
SNPs. DHS and histone marks enrichment of credible SNPs was assessed 
in fetal brain (FB) and adult frontal cortex (FCTX). Functional SNPs  
and promoter SNPs were directly assigned to the target genes, while  

un-annotated SNPs were assigned to the target genes via Hi-C interactions 
in CP and GZ. GO enrichment for genes identified by each category is 
shown in the bottom. Note that two credible SNP lists overlap with each 
other; credible SNPs defined in the original study are not restricted to 
genome-wide significant loci, so they include a broader range (20,362 
credible SNPs vs 7,547 CAVIAR SNPs) of SNPs than CAVIAR credible 
SNPs. NMD, nonsense-mediated decay.
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Extended Data Figure 8 | Chromatin interactions identify genes that are 
neither the closest nor in the LD with index SNPs. a, Number of closest 
genes and LD genes that interact with credible SNPs (Hi-C identified) vs 
not (Hi-C non-identified). b, Number of credible SNP interacting genes 
that are closest to or in LD with index SNPs (Hi-C genes that are also) 
vs not (Hi-C alone). Hi-C genes here contain only physically interacting 
genes, but not genes identified by functional SNPs. c, GO enrichment for 
the closest genes (top) and genes in LD with index SNPs (bottom) that are 
identified by the schizophrenia risk gene assessment pipeline in Extended 

Data Fig. 7 (right) vs not (left). d, GO enrichment for schizophrenia 
risk genes that are neither the closest genes nor in LD to index SNPs. 
Intersection (left) and union (right) of genes identified by chromatin 
contacts in CP and GZ are indicated. Venn diagrams are marked in orange 
to depict the gene list assessed for GO enrichment. e, Representative 
interaction map of a 10 kb bin, in which credible SNPs reside, to the 
corresponding 1 Mb flanking regions. Credible SNPs, genomic coordinates 
for credible SNPs that interact with the target gene; GWAS locus, LD 
region for the index SNP.
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Extended Data Figure 9 | Cell-type specificity and reproducibility of 
Hi-C interactions with schizophrenia GWAS hits. a, GO enrichment 
for schizophrenia risk genes replicated in more than two individuals in 
CP (left) and GZ (right). b, Overlap between genes that interact with 
schizophrenia credible SNPs in CP and GZ vs ES (left) and IMR90 (right) 
cells. c, GO enrichment for genes that interact with schizophrenia credible 
SNPs in cell-type specific manner. d, Schematic showing the incorporation 
of sequence flanking rs1191551 into a reporter (Luc) vector with a minimal 

promoter (mP). e, PCR amplification of targeted genomic region 
demonstrates deletion of the SNP-containing region. Expected band size, 
587 bp (CRISPR1) and 813 bp (CRISPR2). f, CRISPR/Cas9-mediated 
deletion of rs1191551 flanking region does not affect the closest protein-
coding gene PRKD1 expression. Normalized expression levels of PRKD1 
relative to control (Ctrl) (mean ±​ standard error, n =​ 6 (Ctrl), 4 (CRISPR1 
and CRISPR2)). P values, one-way ANOVA and post hoc Tukey test.
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Extended Data Figure 10 | High probability schizophrenia risk loci 
predicted by Hi-C interactions and cortical eQTL. Hi-C interactions 
and eQTL association target the same gene (marked in red). Risk alleles 
lead to target gene dysregulation in the same direction as in schizophrenia 
brains. Chromosome ideogram and genomic axis (top); gene model based 
on Gencode v.19 and target genes identified by both Hi-C and eQTL are 
marked in red; Genomic coordinates for the 10 kb bin containing credible 

SNPs (schizophrenia GWAS) and eQTL; −​log10[P value], P value for the  
significance of the interaction between schizophrenia credible SNPs and  
each 10 kb bin, grey dashed line denotes FDR =​ 0.01; TAD borders in CP 
and GZ are indicated. Protocadherins (PCDH) gene family is marked 
as A (PCDHA) and B (PCDHB) except target genes, PCDHA2 and 
PCDHA7. Whiskers and centre lines correspond to 1.5 ×​ IQR and median, 
respectively.
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