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A central deficiency in our knowledge of cancer concerns how 
genomic changes drive the proteome and phosphoproteome to exe-
cute phenotypic characteristics1–4. The initial proteomic characteri-
zation in the The Cancer Genome Atlas (TCGA) breast cancer study 
was performed using reverse phase protein arrays (RPPA); however 
this approach is restricted by antibody availability. To provide greater 
analytical breadth, the NCI Clinical Proteomic Tumor Analysis 
Consortium (CPTAC) is using mass spectrometry to analyse the 
proteomes of genome-annotated TCGA tumour samples5,6. Here we 
describe integrated proteogenomic analyses of TCGA breast cancer 
samples representing the four principal mRNA-defined breast cancer 
intrinsic subtypes7,8.

Proteogenomic analysis of TCGA samples
105 breast tumours previously characterized by the TCGA were 
selected for proteomic analysis after histopathological documentation 
(Supplementary Tables 1 and 2). The cohort included a balanced rep-
resentation of PAM50-defined intrinsic subtypes9 including 25 basal-
like, 29 luminal A, 33 luminal B, and 18 HER2 (ERBB2)-enriched 
tumours, along with 3 normal breast tissue samples. Samples were 
analysed by high-resolution accurate-mass tandem mass spectrom-
etry (MS/MS) that included extensive peptide fractionation and 

phosphopeptide enrichment (Extended Data Fig. 1a). An isobaric pep-
tide labelling approach (iTRAQ) was employed to quantify protein and 
phosphosite levels across samples, with 37 iTRAQ 4-plexes analysed 
in total. A total of 15,369 proteins (12,405 genes) and 62,679 phos-
phosites were confidently identified with 11,632 proteins per tumour 
and 26,310 phosphosites per tumour on average (Supplementary  
Tables 3, 4 and Supplementary Methods). After filtering for observation 
in at least a quarter of the samples (Supplementary Methods, Extended 
Data Fig. 1b), 12,553 proteins (10,062 genes) and 33,239 phosphosites, 
with their relative abundances quantified across tumours, were used in 
subsequent analyses in this study. Stable longitudinal performance and 
low technical noise were demonstrated by repeated interspersed analyses 
of a single batch of patient-derived luminal and basal breast cancer xen-
ograft samples10 (Extended Data Fig. 1d, e). Owing to the heterogene-
ous nature of breast tumours11–13, and because proteomic analyses were 
performed on tumour fragments that were different from those used in 
the genomic analyses, rigorous pre-specified sample and data quality 
control metrics were implemented14,15 (Supplementary Discussion and 
Extended Data Figs 2, 3). Extensive analyses concluded that 28 of the 105 
samples were compromised by protein degradation. These samples were 
excluded from further analysis with subsequent informatics focused on 
the 77 tumour samples and three biological replicates.

Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on 
the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic 
and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. 
Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal 
loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the 
Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression 
of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic 
data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis 
of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA 
level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, 
PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional 
consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified 
regions, and identifies therapeutic targets.
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Genome and transcriptomic variation was observed at the peptide 
level by searching MS/MS spectra not matched to RefSeq against a 
patient-specific sequence database (Fig. 1a). The database was con-
structed using the QUILTS software package16, leveraging RefSeq gene 
models based on whole-exome and RNA-seq data generated from 
portions of the same tumours and matched germline DNA (Fig. 1a, 
Supplementary Table 5). Although these analyses detected a number 
of single amino acid variants, frameshifts, and splice junctions, includ-
ing splice isoforms that had been detected as only single transcript 
reads by RNA-seq (Fig. 1b, Supplementary Table 5), the number of 
genomic and transcriptomic variants that were confirmed as peptides 
by MS/MS was low (Supplementary Discussion). Sparse detection of 

individual genomic variants by peptide sequencing has been noted in 
our previous studies16 and reflects limited coverage at the single amino 
acid level with current technology. However, quantitative MS/MS anal-
ysis of multiple peptides for each protein is used to reliably infer over-
all protein levels. This is an advantage of MS/MS, as antibody-based 
protein expression analysis is typically based on a single epitope. To 
illustrate this capability in the current data set, an initial analysis of 
three frequently mutated genes in breast cancer (TP53, PIK3CA, 
and GATA3) and three clinical biomarkers (oestrogen receptor (ER; 
ESR1), progesterone receptor (PGR), and ERBB2) was conducted 
(Fig. 1c, Supplementary Table 6, 7 and Supplementary Discussion). 
As expected, TP53 missense mutations were associated with elevated 
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Figure 1 | Direct effects of genomic alterations on protein level.  
a, b, Overlap of protein-coding single amino acid variants (a) and RNA 
splice junctions (b) not present in RefSeq v60 detected by DNA exome 
sequencing, RNA-seq, and LC–MS/MS. Proportions of novel variants 
are noted. c, Heat map of mutations/CNA and their effects on RNA and 
protein expression of breast-cancer-relevant genes across tumour and 

normal samples. ER, PR, HER2 and PAM50 status are annotated. Median 
iTRAQ protein abundance ratio and the most frequently detected and 
differential phosphosite ratio are shown for each gene. Pearson correlations 
between MS/MS protein and RNA-seq, and MS/MS protein and RPPA are 
indicated.
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MS/MS-based protein levels, as observed by RPPA, especially in basal-
like breast cancer. TP53 nonsense and frameshift mutations were asso-
ciated with a decrease in TP53 protein levels that was particularly 
pronounced in the MS/MS data. In contrast, the mostly C-terminal 
GATA3 frameshift alterations did not result in decreased protein 
expression when measured by the median of all GATA3 peptides, sug-
gesting that these proteins are expressed despite truncation. No con-
sistent effect of somatic PIK3CA mutation was observed at the level of 
protein expression. Good Pearson correlations between RNA-seq and 
MS/MS protein-expression levels were found for ESR1 (r = 0.74), PGR 
(r = 0.74), ERBB2 (r = 0.84) and GATA3 (r = 0.83), with moderate cor-
relations observed for PIK3CA (r = 0.45) and TP53 (r = 0.36). Lower 
TP53 protein abundance levels compared to mRNA levels were espe-
cially prevalent in luminal tumours, suggesting post-transcriptional 
regulatory mechanisms such as proteasomal degradation. To explore 
this hypothesis, a search was made for E3 ligases that showed negative 
correlation to p53 protein (Supplementary Table 8). These analyses 
identified UBE3A (r = −0.42; adjusted P value = 0.05) (Extended Data 
Fig. 4a), an established TP53 E3 ligase17. In comparing copy number 
alterations (CNAs), RNA, and protein levels for GATA3, copy number 
gains in chromosome 10q were anticorrelated with RNA and protein 
levels in basal-like tumours. This observation prompted a search for 
other gains or losses that were anticorrelated with RNA and/or protein 
levels (see Extended Data Fig. 4b for further analyses). Overall, six 
genes were identified that significantly anticorrelated at a false discov-
ery rate (FDR) <0.05 on both RNA and protein levels to their CNA 
signals (Extended Data Fig. 4b). GATA3 amplification on 10q in basal-
like breast cancer showed the strongest anticorrelation, followed by the 
hexosamine and glycolysis pathway enzymes GFPT2 and HK3, which 
are upregulated in basal-like breast cancer despite being subjected to 
frequent chromosomal deletion on 5q. Global analysis of the correla-
tion of mRNA-to-protein yielded a median Pearson value of r = 0.39, 
with 6,135 out of 9,302 mRNA–protein pairs (66.0%) correlating sig-
nificantly at an FDR <0.05 (Extended Data Fig. 4c, Supplementary 
Table 9 and Supplementary Discussion). Similar to a previous colon 
cancer analysis6, metabolic functions such as amino acid, sugar and 
fatty acid metabolism were found to be enriched among positively 
correlated genes18 whereas ribosomal, RNA polymerase and mRNA 
splicing functions were negatively correlated. Overall these analyses 
demonstrate the utility of global proteome correlation analysis for both 
confirmation of suspected regulatory mechanisms and identification 
of candidate regulators meriting further investigation.

Copy number alterations
To determine the consequences of CNAs on mRNA, protein, and 
phosphoprotein abundance, both in ‘cis’ on genes within the aberrant 
locus and in ‘trans’ on genes encoded elsewhere, univariate correlation 
analysis was used as previously described6. A total of 7,776 genes with 
CNA, mRNA and protein measurements were analysed by calculating 
Pearson correlation and associated statistical significance (Benjamini–
Hochberg-corrected P value) for all possible CNA–mRNA and CNA–
protein pairs (Fig. 2a, Supplementary Table 10, Extended Data Fig. 5a, 
see Methods). For the phosphoproteome, 4,472 CNA–phosphoprotein 
pairs were analysed (Extended Data Fig. 5b). Significant positive cor-
relations (cis) were observed for 64% of all CNA–mRNA, 31% of all 
CNA–protein, and 20% of all CNA–phosphoprotein pairs Fig. 2b. 
Proteins and phosphoproteins correlated in cis to CNAs were, for the 
most part, a subset of the cis-effects observed in mRNA–CNA corre-
lation (Fig. 2b, Supplementary Table 10). The fractional difference of 
well-annotated oncogenes and tumour suppressor genes among the 
significantly cis-correlated CNA–mRNA and CNA–protein gene pairs 
was analysed. On the basis of a reference list of 487 oncogenes and 
tumour suppressors (Supplementary Table 10), these cancer-relevant 
genes occur 37.6% more frequently in the subset of genes that corre-
late both on CNA–mRNA and CNA–protein levels than in the subset 
that only correlate on CNA–mRNA but not on CNA–protein levels 
(Fisher exact P value = 0.02). This suggests that CNA events with a 
tumour-promoting outcome more likely lead to cis-regulatory effects 
on both the protein and mRNA level, whereas CNA events with no 
documented role in tumorigenesis are more likely to be neutralized on 
the protein level than on the RNA level. Trans-effects (Fig. 2a) appear 
as vertical bands, with accompanying frequency histograms (in blue) 
highlighting ‘hot spots’ of significant trans-effects. Using a minimum 
threshold of 50 trans-affected genes, 68% of the tested genes were asso-
ciated with trans-effects on the mRNA level, whereas only 13% were 
associated with effects on the protein level and 8% on the phosphop-
rotein level. Importantly, CNA–protein correlations appeared to be a 
reduced representation of CNA–mRNA correlations. Furthermore, 
for many CNA regions, correlations were more directionally uniform 
on the protein level than on the mRNA level. CNA regions exhibiting 
the most trans-associations at the protein level were found on chromo-
somes 5q (loss of heterozygosity (LOH) in basal; gain in luminal B),  
10p (gain in basal), 12 (gain in basal), 16q (luminal A deletion), 
17q (luminal B amplification), and 22q (LOH in luminal and basal) 
(Extended Data Fig. 5a).
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Figure 2 | Effects of CNAs on mRNA, protein, and phosphoprotein 
abundance. a, Correlations of CNA (x axes) to RNA and protein 
expression levels (y axes) highlight new CNA cis- and trans-effects. 
Significant (FDR < 0.05) positive (red) and negative (green) correlations 
between CNA and mRNAs or proteins are indicated. CNA cis-effects 
appear as a red diagonal line, CNA trans-effects as vertical stripes. 
Histograms show the fraction (%) of significant CNA trans-effects for 

each CNA gene. b, Overlap of cis-effects observed at RNA, protein, and 
phosphoprotein levels (FDR < 0.05). c, Trans-effect regulatory candidates 
identified among those with significant protein cis-effects using LINCS 
CMap. Bars indicate total numbers of significant CNA–protein trans-
effects (grey; FDR < 0.05) and overlap with regulated genes in LINCS 
knockdown profiles (red; 4 cell lines; moderated t-test FDR < 0.1).
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Trans-associations are not necessarily direct consequences of 
the chromosomal aberration. For example, as 5q loss occurs in at 
least 50% of basal-like breast cancers19, many of the trans-effects 
involve genes that mark the basal subtype. To identify candidate 
driver genes with copy number alterations that are direct drivers of 
trans-effects, results were compared with functional knockdown data 
on 3,797 genes in the Library of Integrated Network-based Cellular 
Signatures (LINCS) database (http://www.lincsproject.org/)20–22. For 
any given gene with copy number alterations (‘CNA-gene’), sets of 
genes were identified corresponding to proteins that changed where 
there was gain (‘CNA-gain trans-gene set’) or loss (‘CNA-loss trans-
gene set’). These gene sets were then compared to the effects of gene 
knockdown in the LINCS database (see Supplementary Methods). 
Queries for 502 different CNA genes meeting the criteria defined 
above identified 10 CNA genes that could be functionally connected 
to both CNA-gain and CNA-loss trans-protein-level effects (Extended 
Data Fig. 5c, Supplementary Table 11). A permutation-based 
approach implemented to test significance (see Supplementary 
Methods) yielded an FDR <0.05 for 10 genes affected by both CNA 
gains and losses (Fig. 2c). These proteins were defined as potential 
regulatory candidates for the CNA trans-effects observed on the pro-
teome level in this study, as in a gene-dependent manner an average 
of 17% of these trans-effects were consistent with the knockdown 
profiles. Notably, the established oncogenic receptor tyrosine kinase 
ERBB2 was functionally connected only to CNA gain trans-effects 
(Supplementary Table 11). The E3 ligase SKP1 (ref. 23) and the rib-
onucleoprotein export factor CETN3, both located on chromosome 
arm 5q with frequent losses in basal-like breast cancer and less fre-
quent gains in luminal B breast cancer, were detected as potential 
regulators affecting the expression of the tyrosine kinase and ther-
apeutic target EGFR, and SKP1 also was linked to SRC (Extended 
Data Fig. 5d). Another potential regulator, FBXO7 (a substrate 

recognition component of the SCF (SKP1-CUL1-F-box protein)-type 
E3 ubiquitin ligase complex), was affected mostly by LOH events 
on chromosome 22q. Interestingly, in a recent human interaction  
proteome study, SKP1 and FBXO7 were listed as interaction 
partners24.

Clustering and network analyses
Transcriptional profiling has converged on four major breast can-
cer subtypes: luminal A, luminal B, basal and HER2-enriched1,9. To 
investigate the extent to which the PAM50 ‘intrinsic’ breast cancer 
classification scheme is reflected or refined on the proteome level 
in the CPTAC samples, clustering analyses were first restricted to 
the reduced set of PAM50 genes. When RNA data for the 50 PAM50 
genes were clustered directly (without using a classifier), the clus-
tering was similar to the TCGA PAM50 annotation (second anno-
tation bar in Fig. 3a). Restricting both the RNA and proteome data 
to the set of 35 PAM50 genes observed in the proteome produced a 
similar result (bottom two annotation bars in Fig. 3a), and all of the 
major PAM50 groups were recapitulated in the proteome almost as 
well as in the RNA data. This indicates that although different tissue 
sections of the same tumours were used for RNA-seq and protein 
analysis, very similar subtype-defining features can be observed in 
both data types. Global proteome and phosphoproteome data were 
then used to identify proteome subtypes in an unsupervised manner. 
Consensus clustering identified basal-enriched, luminal-enriched, 
and stromal-enriched clusters (Extended Data Figs 6a–d, 7a). Unlike 
the clustering observed with PAM50 genes, mRNA-defined HER2-
enriched tumours were distributed across these three proteomic sub-
groups. The basal-enriched and luminal-enriched groups showed a 
strong overlap with the mRNA-based PAM50 basal-like and luminal 
subgroups, whereas stromal-enriched proteome subtype represented 
a mix of all PAM50 mRNA-based subtypes, and has a significantly 
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enriched stromal signature (Extended Data Fig. 3e). Among the  
stromal-enriched tumours there was strong representation of reac-
tive type I tumours, as classified by RPPA (Supplementary Table 12), 
showing agreement between the RPPA and mass-spectrometry-based 
protein analyses for the detection of a tumour subgroup characterized 
by stromal gene expression1.

As the basal- and luminal-enriched proteome subgroups are 
coherent, pathway analyses were conducted on these two subtypes, 
using the stromal-enriched subgroup as a control to assess spec-
ificity (Fig. 3c, Extended Data Fig. 7b, Supplementary Table 13).  
The luminal-enriched subgroup was exclusively enriched for 
oestradiol- and ESR1-driven gene sets. In contrast, multiple gene sets 
were enriched and upregulated specifically in the basal-like tumours. 
Particularly extensive basal-like enrichment was seen for MYC target 
genes; for cell cycle, checkpoint, and DNA repair pathways including 
regulators AURKA/B, ATM, ATR, CHEK1/2, and BRCA1/2; and for 
immune response/inflammation, including T-cell, B-cell, and neutro-
phil signatures. The complementarity of transcriptional, proteomic, 
and phosphoproteomic data was also highlighted in these analyses 
(Extended Data Fig. 7c, d).

Using phosphorylation status as a proxy for activity, phosphop-
roteome profiling can theoretically be used to develop a signalling- 
pathway-based cancer classification. K-means consensus clustering 
was therefore performed on pathways derived from single sample gene 
set enrichment analysis (GSEA) of phosphopeptide data (Methods, 
Supplementary Tables 14 and 15). Of four robustly segregated groups, 
subgroups 2 and 3 substantially recapitulated the stromal- and  
luminal-enriched proteomic subgroups, respectively (Fig. 3d, 
Extended Data Fig. 8a). Subgroup 4 included a majority of tumours 
from the basal-enriched proteomic subgroup, but was admixed par-
ticularly with luminal-enriched samples. This subgroup was defined 
by high levels of cell cycle and checkpoint activity. All basal and a 
majority of non-basal samples in this subgroup had TP53 mutations. 
Consistent with high levels of cell cycle activity, a multivariate kinase–
phosphosite abundance regression analysis highlighted CDK1 as one 
of the most highly connected kinases in this study (Extended Data 
Fig. 8b, Supplementary Table 16). Subgroup 1 was a novel subgroup 
defined exclusively in the phosphoproteome pathway activity domain, 
with no enrichment for either proteomic or PAM50 subtypes. It was 
defined by G protein, G-protein-coupled receptor, and inositol phos-
phate metabolism signatures, as well as ionotropic glutamate signal-
ling (Fig. 3d). Co-expression patterns among genes/proteins across 
different subgroups were also analysed using a Joint Random Forest 
method25 that identified network modules, such as an MMP9 mod-
ule, with different interaction patterns between basal-enriched and 
luminal-enriched subgroups. These latter patterns appeared specific 
to the proteome-level data (Extended Data Fig. 8c–f, Supplementary 
Table 17 and Supplementary Methods).

Phosphosite markers in PIK3CA- and TP53-mutated 
tumours
TP53 and PIK3CA are the most recurrently mutated genes in breast 
cancer, with frequencies for PIK3CA at 43% in luminal tumours and 
for TP53 at 84% in basal-like tumours1. Most of the PIK3CA missense 
mutations were gain of function mutations and therefore were expected 
to lead to activation of the PI3K signalling cascade, but the extent to 
which this occurs has been controversial and it is unclear which pathway 
components are effectors26,27. Marker selection analysis was therefore 
performed for upregulated phosphosites in PIK3CA-mutated tumours. 
In total, 62 phosphosites were identified that were positively associated 
with PIK3CA mutation (FDR <0.05), including the kinases RPS6KA5 
and EIF2AK4 (Extended Data Fig. 9a, Supplementary Table 18).  
Calculating the average phosphorylation signal of these marker phos-
phosites provided a read-out for PI3K pathway activity in PIK3CA-
mutated tumours, with 15 of the 26 mutated tumours (58%) exhibiting 
an activated PIK3CA mutation signature. Of note, the identified 

PIK3CA mutant phosphoproteome signature was activated in all 
tumours harbouring helical domain PIK3CA mutations, but only 2 of 
10 tumours harbouring kinase domain mutations. To test if the identi-
fied differences in the phosphoproteome of PI3K mutant versus wild-
type tumours could be explained by mutation of PIK3CA, the tumour 
data were compared to phosphosite signatures derived from isogenic 
PIK3CA mutant cell lines28 (Extended Data Fig. 9b, Supplementary 
Table 18). There was an enrichment of signatures derived from helical- 
domain-mutated isogenic cell lines, but not from kinase-domain- 
mutated cells, supporting the observations in primary tumours.

The same strategy was used to identify phosphorylation signal-
ling events connected to TP53 mutation. A total of 56 phosphosites 
upregulated in TP53-mutated tumours were identified that were 
independent of basal-like subtype association (Extended Data Fig. 9c,  
Supplementary Table 18). Using the average phosphorylation signal 
of these marker phosphosites as a proxy for TP53-mutation-driven 
cell cycle control, 22 of 41 mutated tumours (54%) showed upreg-
ulated signals. This TP53 mutant phosphosignature was somewhat 
enhanced in tumours in which mutations occurred almost exclu-
sively in the DNA-binding region compared to those with nonsense/
frameshift mutations. In addition to the well-described checkpoint 
kinase CHEK2, significantly upregulated phosphosites were identi-
fied for the kinases MASTL and EEF2K in TP53-mutated tumours. 
Single-sample GSEA analysis of isogenic p53-mutant phosphosig-
natures showed an enrichment of a phosphosignature derived from 
R273H-mutated isogenic cells (Extended Data Fig. 9d), confirming the 
pronounced effect of missense mutations in the DNA-binding region 
on phosphorylation pathways.

Kinase gene amplification and subtype-specific 
activation
CNAs span many driver gene candidates and RNA expression has been 
frequently used to narrow candidate nominations. Proteogenomic 
analysis should further promote this nomination process. In can-
didate refinement, a focus on protein kinases is warranted, as many 
are drug targets. An in-depth proteogenomic pipeline was developed 
that flagged kinases, expression levels of which were at least 1.5 inter-
quartile ranges higher than the median (Supplementary Table 19).  
A proteogenomic circos-like29 plot (termed a ‘pircos’ plot) was used to 
map these outlier values onto the genome (Fig. 4a, b, Extended Data 
Fig. 10a). The ERBB2 locus showed the strongest effect of increased 
phosphoprotein levels associated with gene-amplification-driven RNA 
and protein over expression (Fig. 4a). The kinase CDK12 is a positive 
transcriptional regulator of homologous recombination repair genes 
with its partner cyclin K30, and is often encompassed by the ERBB2 
amplicon. This gene was also found to be upregulated at the RNA, 
protein, and phosphosite level indicating that CDK12 is highly active 
in the majority of ERBB2-positive tumours (Fig. 4a). The analysis of 
the ERBB2 amplicon also uncovered co-outlier phosphorylation status 
for MED1, GRB7, MSL1, CASC3 and TOP2A, all previously described 
in association with ERBB2 amplification. To better understand the 
downstream effects of ERBB2 amplification, additional phosphosite 
outliers were identified in 41 known ERBB2 signalling genes for the 
15 samples that had ERBB2 phosphosite outlier expression (Extended  
Data Fig. 10b).

These canonical findings stimulated a proteogenomic analysis to 
identify additional outlier kinases in the breast cancer genome. A pro-
teogenomic dissection of chromosome 11q based on PAK1 ampli-
fication (Fig. 4b, c), a breast cancer driver kinase31, illustrated that 
PAK1 is hyperphosphorylated in PAK1-amplified tumours, along with 
CLNS1A, RFS1 and GAB2 (ref. 32) Additional examples of outlier 
kinases included PTK2 and RIPK2 in association with amplification of 
chromosome 8q (Fig. 4c, Extended Data Fig. 10a, c). PAK1 and TLK2 
(17q23) appear to be luminal-breast-cancer-specific events (Fig. 4c, 
Extended Data Fig. 10c). To further examine whether outlier kinases 
were breast cancer subtype-specific independent of amplification 
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status, the Benjamini–Hochberg-corrected probability was calculated 
of finding the number of phosphosite outliers within a subtype, given 
the total number of outliers across all subtypes, the subtype sample size 
and the total sample size (Fig. 4d). These analyses led to the expected 
identification of ERBB2 in the HER2-enriched subtype at the 5% 
FDR level, as well as the new finding of CDC42BPG (MRGKγ), an 
effector kinase for RHO-family GTPases33. In basal-like breast can-
cer, two kinases, PRKDC and SPEG, were significant at the 5% FDR 
level. PRKDC is a non-homologous end-joining factor that can be 
phosphorylated by ATM kinase, and is therefore a logical finding in 
this disease subset34. However SPEG, a kinase associated with severe 
dilated cardiomyopathy when suppressed35, has not been previously  
reported in association with breast cancer. A larger number of  
subtype-specific kinases were detected at the 10% FDR level, several 
of which have recently described relevance in breast cancer, including 
PRKD3 in basal-like breast cancer36, the LKB-regulated SIK3 in lumi-
nal A breast cancer37 and CDK13 in luminal B breast cancer, which, 
similar to CDK12, can interact with cyclin K30.

Discussion
The breadth and depth of proteomic and phosphoproteomic anal-
yses displayed in this study demonstrates the strength of mass-
spectrometry-based proteomics, but also some of the limitations 
inherent in proteolytic peptide sequencing (see Supplementary 
Discussion). An example of how high-dimensional proteomic analysis 
provides insight into unresolved genomic issues concerns the study 
of loss of the long arm of chromosome 5 (5q). Analysis of RNA and 

protein correlations narrowed the list of potential trans-deregulated 
proteins. Orthogonal candidate screening using functional genomics  
methodologies identified loss of CETN3 and SKP1 as potential trans- 
regulators, with upregulation of EGFR as a downstream consequence 
in basal-like breast cancers. Although further experimental evi-
dence must be sought for these proposed regulatory relationships,  
the SKP1–Cullin complex has already been linked to EGFR activation in  
glioma38. Unfortunately, EGFR targeting has not proven to be effective 
therapy in basal-like breast cancer to date39. This might be due to the 
fact the SKP1 loss deregulates multiple targets, therefore mandating a 
much broader inhibitory strategy.

It is recognized that PIK3CA mutations do not strongly activate 
canonical downstream effectors28. Mass-spectrometry-based phos-
phoproteomics provides an opportunity for unbiased examination of 
downstream signalling events dependent on PIK3CA mutational acti-
vation. These studies revealed that common PIK3CA mutations affect 
a large number of targets with diverse functionalities including the 
kinases RPS6KA5 and EIF2AK4. Thus, the data and analyses reported 
here extend our knowledge of the effectors that promote tumorigenesis 
in response to constitutive activation of PI3 kinase. Similarly, TP53-
mutation-associated phosphopeptides point towards novel function-
alities, including regulation of the kinases MASTL and EEF2K.

A central goal in breast cancer research has been the identification 
of druggable kinases beyond HER2. Candidate genes that exhibited 
similar gene-amplification-driven proteogenomic patterns to ERBB2 
included CDK12, TLK2, PAK1 and RIPK2. The proteogenomic link 
with gene amplification was particularly strong for CDK12, in keeping 
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Figure 4 | Example analyses of aberrantly regulated kinases in human 
breast cancer. a, b, pircos (proteogenomics circos) plots showing CNA,  
RNA, protein, and phosphosite expression for 17 tumours with 
amplification in 17q (ERBB2 CNA >1) and 8 tumours with amplification in  
11q (PAK1 CNA > 1). Labelled genes have CNA >1 and phosphosite >1.  
c, Proteogenomic outlier expression analysis for ERBB2, CDK12, and 

PAK1. Samples with outlier phosphosite (red), protein (yellow), RNA 
(green) and copy number (purple) expression are shown. Phosphosite 
squares indicate per-sample outlier phosphosites. d, Outlier kinase events 
by PAM50 subtype (>35% of subtype samples contain a phosphosite 
outlier; <10% FDR using Benjamini–Hochberg-adjusted P values).

© 2016 Macmillan Publishers Limited. All rights reserved



2  J u n e  2 0 1 6  |  V O L  5 3 4  |  N A T U R E  |  6 1

Article RESEARCH

with its location in the ERBB2 amplicon, whereas the strengths of 
correlation between DNA amplification, RNA, protein, and phosphop-
rotein for the other examples were more variable. The presence of 
activated CDK12 in the ERBB2 amplicon might explain why tumours 
arising in BRCA1 carriers are usually ERBB2-negative. As a positive 
transcriptional regulator of BRCA1 and multiple FANC family mem-
bers, CDK12 promotes DNA repair by homologous recombination. 
CDK12 amplification would, therefore, oppose the functional effects 
of BRCA1 haploinsufficiency during tumour evolution30. Overall, 
multiple outlier kinases generate testable therapeutic hypotheses for 
which enabling inhibitors are in development. For example, PAK1 has 
recently been confirmed to be a therapeutic target and poor prognosis 
factor in luminal breast cancer40.

Although incomplete outcome data and the remarkable heteroge-
neity of breast cancer are further relevant constraints, the number of 
TCGA specimens analysed here is insufficient to support conclusive 
clinical correlations. Only 8 deaths occurred among the 77 patients, 
which are too few to provide sufficient statistical power for associa-
tion analysis. Adequately powered MS/MS-based clinical investigation 
will require microscaled discovery or targeted approaches41, especially 
given the highly limited amount of patient material available from 
clinical trials and the mostly formalin-fixed nature of the specimens. 
The current analysis is therefore centred on biological findings and 
correlations, with orthogonal validation and false discovery concerns 
addressed through an examination of cell-line databases of the effects 
of individual gene perturbations. Typical of a multi-tiered analysis of 
this complexity, there are many hypotheses to test, and many findings 
that require further investigation.

In conclusion, this study provides a high-quality proteomic resource 
for human breast cancer investigation, and illustrates technologies and 
analytical approaches that provide an important new opportunity to 
connect the genome to the proteome. Larger-scale exploration of dis-
covery proteomics in the clinical setting will require improvements 
in clinical investigation, including acquisition of adequate amounts 
of optimally collected tumour tissue both before and during therapy 
as well as advances in MS/MS proteomics to reduce sample input and 
increase sensitivity for low abundance proteins and modified peptides.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Extended Data Figure 1 | Experimental and data analysis workflows 
and longitudinal data generation quality control. a, iTRAQ 4-plex 
global proteome and phosphoproteome analysis workflow. 105 TCGA 
breast tumours were analysed in 35 iTRAQ 4-plex experiments (plus 
one replicate and one normal sample experiment), with three tumours 
of different subtypes compared to a fourth common internal reference 
sample in each experiment. The reference sample comprised 10 individual 
tumours of each of the four major breast cancer intrinsic subtypes and 
served as an internal standard for all proteins and phosphoproteins 
quantified in this study. Each iTRAQ MS/MS spectrum measures a peptide 
from four samples (3 individual patients and the reference sample mix 
of 40 patients). More than 400,000 distinct peptides were identified and 
quantified in ~14 million MS/MS spectra. Personalized tumour-specific 
protein databases were generated in the QUILTS software package using 

whole-exome-sequencing-derived variant calls and RNA-seq-derived 
transcript information. All mass spectrometry data was analysed using 
the Spectrum Mill software package. b, Overview of proteome and 
phosphoproteome data sets. The table provides a summary of the data 
sets used in specific analyses, including the filters applied to derive the 
proteins and phosphosites/phosphoproteins that constitute each data 
set; the protein, phosphosite or phosphoprotein count; and the methods 
that employ the respective data sets. c, Distribution of sequence coverage 
of the identified proteins with tryptic peptides detected by MS/MS, 
whiskers show the 5–95 percentiles. d, e, Robust and accurate proteome/
phosphoproteome platform. Longitudinal performance was tested by 
repeated proteome and phosphoproteome analysis of patient-derived 
xenograft tumours. Scatter plots, histograms and Pearson correlations 
comparing individual replicate measurements are shown.
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Extended Data Figure 2 | Tumour sample quality control. a, Remark 
diagram showing sample processing and partitioning. Initial quality 
review encompassed histopathological examination of tissue slices stained 
with haematoxylin and eosin. *For 3 samples, no tumour cells were seen 
on histopathology (BH-A0E9, BH-A0C1, A2-A0SW). These samples were 
nevertheless included in the proteome analysis as other quality control 
standards were met (see below) and samples with 0% tumour cellularity 
on top or bottom sections were included in TCGA analyses. b, Correlation 
of TCGA (top or bottom sections) and CPTAC histological assessment 
of neoplastic cellularity for samples (n = 105). The average and range of 
neoplastic cellularities were identical for CPTAC and TCGA histological 
assessments. Averages (s.d.) for neoplastic cellularity were 76% (±17) for 
CPTAC, 76% (±15) for TCGA_Top, and 75% (±18) for TCGA_Bottom 
histopathology slides (Supplementary Table 2). Note that in three 
CPTAC cases where no tumour cells were identified by histopathological 

assessment, numbers of protein-level somatic variants were similar to 
all other tumours. The identified mutated proteins were TP53_R273C, 
NOP58_Q23E, TAGLN2_G154R, TUBA1B_D116H, and MRPL48_I173K 
(Supplementary Table 5), indicating presence of tumour cells in these 
samples. c, Proteome iTRAQ tumour to internal reference ratio heat map 
for all CPTAC samples (8,028 proteins without missing values) including 
passed and failed proteomic quality control (QC) samples. d, Global 
tumour to reference proteome ratio distributions for samples that passed 
and failed proteomic quality control analysis. e, Degradation-related 
gene sets were enriched in tumours that failed proteomic quality control 
analysis. f, Variant allele frequency (VAF) analysis of re-sequenced CPTAC 
tumours and comparison to original TCGA data. Overall VAFs for failed 
quality control samples were lower compared to passed samples suggesting 
lower purity.
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Extended Data Figure 3 | Tumour sample quality control. a, There was 
high concordance (94.6%) between DNA variants reported by TCGA and 
CPTAC re-sequenced tumours. Most point mutations reported by TCGA 
could be identified across the eight re-sequenced samples used in the study. 
b, A high overall correlation (mean = 0.77) was observed for the CPTAC 
VAF (x axis) and TCGA VAF (y axis) across the eight samples used in the 
study. c, Agglomerative hierarchical clustering (Supplementary Methods 
section 3.8) used to co-cluster protein and RNA tumour expression data 
after filtering to retain 4,291 proteins and genes with moderate to high 
protein–RNA correlation (Pearson correlation > 0.4) with results displayed 
as a circular dendrogram (fanplot). The proteome (.P) and RNA (.R) 
components of each sample are labelled using the same colour. The outer 
ring shows proteome samples in light grey and RNA samples in dark grey. 
High concordance between RNA and protein expression is evident from 
the colour adjacency in the inner ring and alternating colour in the outer 
ring showing that RNA and protein components co-cluster for a large 
proportion of samples (62 out of 80). d, Co-clustering of MS/MS and RPPA 
tumour data. 126 RPPA readouts were mapped to gene names. These 

genes were intersected with the genes observed in the MS/MS proteome, 
filtered to 48 proteins with moderate or higher RPPA–MS/MS protein 
correlation, and analysed for co-clustering as in c. 47 of 80 RPPA–MS/MS 
protein pairs co-cluster. Although this is a smaller proportion than for RNA-
protein analysis, the number of genes used in the clustering is significantly 
smaller for RPPA (48 versus 4,291 for RNA). e, ESTIMATE tumour purity 
comparison between mRNA, RNA-seq, and proteome data. ANOVA is used 
to assess the difference in distribution (−log10(P value)) of ESTIMATE, 
stromal, immune, and tumour purity scores across mRNA (microarray), 
RNA-seq and proteome data. The only significant P value (0.02) is for the 
cluster 3 stromal score, and higher stromal scores for the proteome drive 
that difference. f, Ischaemia score analysis. Comparison of ischaemia scores 
of 77 CPTAC tumours, 3 normal samples, and patient-derived xenografts. 
CPTAC tumours had generally lower ischaemia scores than PDX samples 
subjected to 30 min of cold ischaemia. Median ischaemia scores are less than 
30 min for each subtype and no significant differences were observed across 
subtypes. Effects due to cold ischaemia therefore appear to be negligible in 
this CPTAC sample collection.
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Extended Data Figure 4 | Protein–protein, protein–CNA, and 
protein–mRNA correlation analyses. a, Identification of UBE3A as an 
E3 ubiquitin ligase that negatively correlates to p53 on the protein level. 
Pearson correlation and Benjamini–Hochberg-corrected P value are 
shown. b, Analysis of counter-regulated genes with negative correlation of 

CNA–RNA as well as CNA–protein levels. Negative Pearson correlations 
are shown with Benjamini–Hochberg-corrected P values for CNA–protein 
correlations. Depicted genes have significant negative correlations at 
FDR <0.05 in the CNA–RNA and CNA–protein analyses. c, Global 
mRNA–protein correlation and gene set enrichment analysis.
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Extended Data Figure 5 | Global CNA effects and comparison of CNA 
trans-effects to knockdown signatures in the LINCS database. a, CNA 
landscape in the CPTAC tumour collection. The segment-based CNAs  
of 77 samples were downloaded from TCGA Firehose, including  
18 Basal, 12 Her2, 23 Luminal A and 24 Luminal B subtypes. Copy number 
amplifications were marked in red and deletions in blue. The bottom 
colour key represents the log2-transformed copy number value, with 
CNA = 2 centred at 0. Specific CNA events are seen for chromosome 5q 
and 10p regions in basal-like tumours. b, Correlations of copy number 
alterations (x axis) to phosphoprotein levels (y axis) highlight new CNA 
cis- and trans-effects. Significant (FDR < 0.05) positive (red) and negative 
(green) correlations between CNA and phosphoproteins are indicated. 
Histograms show the fraction (%) of significant CNA trans-effects for 

each CNA gene. c, LINCS CMap analysis facilitates identification of novel 
functional candidates for CNA trans-effects. Knockdown profiles were 
compared with CNA–protein trans-effects for 502 genes. Genes with a 
connectivity score >|90| were considered connected and significant  
cis-effects were annotated at an FDR <0.05. d, Basal-like tumour-specific 
CNAs are candidate regulatory events for EGFR and SRC expression levels. 
Oncogenic kinases with significant CNA–protein trans-effects (left panel), 
that were regulated in LINCS short hairpin RNA experiments (right panel; 
4 cell lines) and directly measured as LINCS landmark genes, are shown 
alongside candidate regulatory genes CETN3 and SKP1. Clinical ER, PR, 
and HER2 annotation and PAM50 classification are shown in the header 
rows of each column.
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Extended Data Figure 6 | Proteome cluster heat map and stability 
analysis. a, K-means consensus clustering of proteome and 
phosphoproteome data identifies three subgroups: basal-enriched, 
luminal-enriched, and stromal-enriched. The heat map represents all 
1,521 proteins used for clustering (data set G8). b, Identification of 
optimal proteome clusters for quality-control-passed CPTAC breast cancer 
tumours. Proteome clusters were derived using consensus clustering 
based on 1,000 resampled data sets, exploring the range of 2 to 6 K-means 
clusters. Visualization of consensus matrices from K-means consensus 

clustering for K = 3, 4, 5 and 6 target clusters. Consensus clustering 
was performed on 1,521 proteins with no missing values and s.d. > 1.5. 
c, Silhouette plots were generated to evaluate the coherence of the 
clustering. Silhouette plots for K = 3 and K = 4 clusters showing a cleaner 
separation of clusters for K = 3. d, On the basis of both visual inspection 
of the consensus matrix and the delta plot assessing change in consensus 
cumulative distribution function (CDF) area, three robustly segregated 
groups were observed. Consensus CDF and delta area (change in CDF 
area) plots for 2–6 clusters.
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Extended Data Figure 7 | Proteome cluster markers and enriched 
pathways. a, Markers (based on SAM analysis; FDR <0.01) discriminate 
between proteome clusters 1, 2 and 3 (compare to heat map of proteins 
used to derive clusters depicted in Extended Data Fig. 6a). b, Applying 
a Fisher-exact-test-based enrichment analysis to the proteome, 
phosphoproteome and mRNA data, gene sets from MSigDB were 
identified that were unique for each proteome cluster. Heat map showing 
specific pathways comprising dominant biological themes that are 
significantly differential by enrichment analysis between basal-enriched 
and luminal-enriched tumours (Fisher exact test Benjamini–Hochberg-
corrected P values are shown; enrichment test performed on marker  
sets identified using SAM analysis; see Methods; compare to Fig. 3c).  
c, Heat map showing a selection of gene sets significant in basal-enriched  

or luminal-enriched tumours exclusively by mRNA, protein or 
phosphoprotein expression. Cytokine signatures, for example, were 
strongly captured at the mRNA level, but were seen to only a limited 
degree at the global protein level, probably because of their typically low 
protein abundance. By contrast, the vast majority of significant gene sets 
annotated as ‘signaling’ were enriched only at the phosphoprotein level.  
d, Global heat map representing all gene sets significantly enriched 
in at least one of the proteomic breast cancer subtypes. The stromal-
enriched group was characterized by breast cancer normal-like, adipocyte 
differentiation, smooth muscle, toll-like receptor signalling and endothelin 
gene sets, supporting the clustering-based annotation of high stromal  
and/or adipose content in these tumours (see Supplementary Table 13).
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Extended Data Figure 8 | See next page for caption.
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Extended Data Figure 8 | Phosphoproteome pathway clustering,  
kinase-phosphosite multivariate regression, and protein  
co-expression networks. a, Phosphoproteome pathway clustering.  
Using phosphorylation state as a proxy for activity, deep phosphoproteome 
profiling allows development of a breast cancer molecular taxonomy 
on the basis of signalling pathways. K-means consensus clustering was 
performed on pathways derived from single sample GSEA analysis of 
phosphopeptide data (908 pathways shown). Of four robustly segregated 
groups, subgroups 2 and 3 substantially recapitulated the stromal- and 
luminal-enriched proteomic subgroups, respectively. Subgroup 4 included 
a significant majority of tumours from the basal-enriched proteomic 
subgroup, but was admixed particularly with luminal-enriched samples. 
This subgroup was defined by high levels of cell cycle and checkpoint 
activity. All basal and a majority of non-basal samples in this subgroup 
had TP53 mutations. Subgroup 1 was a novel subgroup defined exclusively 
in the phosphoproteome pathway activity domain, with no enrichment 
for either proteomic or PAM50 subtypes. It was defined by G protein, 
G-protein-coupled receptor, and inositol phosphate metabolism 
signatures, as well as ionotropic glutamate signalling. b, Analysis of the 
regulatory relationship between outlier kinases (see Supplementary  
Table 19) and phosphopeptides by regulatory multivariate regression 
analysis (see Methods) identified CDK1 as the most highly connected  
of the outlier cyclin-dependent kinases, with highest centrality (based  
on node-degree; see Methods) among the outlier CDKs and seventh  
highest centrality among all the outlier kinases considered in the  
remMap analysis. Each line represents a phosphosite–kinase relationship. 
c–f, Analysis of differences in the co-expression patterns among genes/
proteins across different subgroups. A Joint Random Forest method  
was applied to simultaneously build gene co-expression and protein  

co-expression networks (Supplementary Table 17, and Methods). Modules 
in these networks revealed different interaction patterns between basal-
enriched and luminal-enriched subgroups. c, Network module P1 of the 
protein co-expression network, defined chiefly in the proteome space. 
This module contained 12 genes connected by 39 edges, among which 
34 were protein-specific and 5 were shared by both the protein and 
mRNA co-expression networks. Many edges were supported by published 
information and were contained in the STRING database. Edges in red are 
specific to the protein co-expression network; edges in green are shared by 
both protein and gene co-expression networks; edges indicated by double 
lines are contained in the STRING database with confidence score greater 
than 0.15. MMP9, one of the central proteins in this module, contributes 
to metastatic progression and is a potential target for anti-metastatic 
therapies for basal-like/triple-negative breast cancer. d, Heat maps  
of the absolute correlation across each pair of genes in module P1  
(shown in c), based on either protein or gene expression data for samples 
in the basal-enriched and luminal-enriched subgroups, respectively. The 
MMP9 protein was strongly co-expressed with the other members of the 
module only in the basal-enriched subgroup. Notably, this observation 
is dependent on protein data; the correlation at the mRNA level for this 
module was consistently low in both the basal-enriched and luminal-
enriched subgroups indicating that these events coherently occur at the 
proteomic level. e, Co-expression network based on proteomics data. 
The network contains 693 proteomic network-specific edges (grey) and 
792 edges shared with the RNA-seq network (green). For each module, 
the most enriched category and corresponding Benjamini–Hochberg-
adjusted P value is reported. Pie charts adjacent to each module show 
the proportion of proteomics-specific edges (grey area) and edges shared 
between proteomics and RNA-seq data (green area). f, RNA-seq network.
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Extended Data Figure 9 | Phosphoproteome signatures of PIK3CA- and 
TP53-mutated tumours highlight activated key regulators and indicate 
frequency of activation. a, c, Phosphosites upregulated in mutated tumours 
(SAM FDR < 0.05 across all tumours and independently also across luminal 
tumours; average phosphosite signal for all markers shown as bar graph). To 
avoid confounding by intrinsic subtype-specific distinctions, only markers 
that were significantly identified both in analyses covering all tumours and 
analyses restricted to luminal tumours were selected (FDR < 0.05). Colour 
bars in the margins indicate FDRs for grouped analysis of different mutation 
classes and indicate kinase substrates of known kinases in the respective 
pathways. Significantly regulated kinase phosphosites are annotated. The 
average phosphorylation signal of the marker phosphosites provides a read-
out for PI3K and TP53 pathway activity in mutated tumours (histogram 
below heat map). A 95% prediction confidence interval (indicated by dashed 
lines) across the average signal in non-mutated tumours was chosen in order 

to discriminate active from non-active tumours. The most strongly activated 
PIK3CA kinase domain mutant tumour differed from the other nine kinase 
domain mutant tumours, as it contained an amino acid side chain charge 
neutral H1047L instead of the more common positively charged H1047R 
mutation. Among the 62 phosphosites identified that were significantly 
upregulated in PIK3CA-mutated tumours, 13 phosphosites were found 
on phosphoproteins that are known substrates of well-annotated kinases 
in the PIK3CA pathway (a, right column). In the mutant TP53 analysis, 
a total 20 phosphosites were found on phosphoproteins that are known 
substrates of well annotated kinases in the p53 pathway (c, right column). 
b, d, Upregulated phosphosite sets were derived from isogenic PIK3CA 
and TP53 mutant versus wild-type cell-line pairs and tested for enrichment 
within mutant versus wild-type CPTAC tumours using single sample GSEA. 
Significantly enriched phosphosite sets are shown (P < 0.05).
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Extended Data Figure 10 | Pircos plots, kinase outliers and outliers in 
the ERBB2 pathway. a, Pircos (proteogenomics circos) plots for 8q and 
17q showing median CNA, RNA, protein, and phosphosite expression  
for 20 tumours with amplification in 8q based on RIPK2 CNA >1;  
23 tumours with amplification in 8q based on PTK2 CNA >1; 15 tumours 
with amplification in 17q based on CDK12 CNA >1; and 10 tumours with 
amplification in 17q based on TLK2 CNA >1. Red indicates expression 
>1, blue <−1, and grey between −1 and 1. Genes with both copy number 
amplification (CNA >1) and increased phosphosite expression (p-site >1) 
are labelled. b, Phosphosite outliers in known ERBB2 signalling genes. 
To better understand the downstream effects of ERBB2 amplification, 

phosphosite outliers in known ERBB2 signalling genes (MSigDB’ pathway 
set, ‘KEGG_ERBB_SIGNALING PATHWAY’) were identified for the  
15 samples that had ERBB2 phosphosite outlier status. Forty-one genes 
were identified as having a phosphosite outlier in at least one of the ERBB2-
amplified samples. PAK4 and ARAF phosphosite outlier status were found 
in seven of the 15 ERBB2 kinase outlier samples; GSK3B outliers were 
found in 6 samples; and EIF4EBP1, MAP2K2, ABL1 and AKT1 outlier 
status was found in 5 of the 15 samples. c, Proteogenomic outlier expression 
analysis for TLK2 and RIPK2. Samples with outlier phosphosite (red), 
protein (yellow), RNA (green) and copy number (purple) expression are 
shown. Phosphosite squares indicate per-sample outlier phosphosites.

© 2016 Macmillan Publishers Limited. All rights reserved


	Proteogenomics connects somatic mutations to signalling in breast cancer
	Main
	Proteogenomic analysis of TCGA samples
	Copy number alterations
	Clustering and network analyses
	Phosphosite markers in PIK3CA- and TP53-mutated tumours
	Kinase gene amplification and subtype-specific activation
	Discussion
	Acknowledgements
	References




