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A resonant chain of four transiting, sub-Neptune 
planets
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Surveys have revealed many multi-planet systems containing super-
Earths and Neptunes in orbits of a few days to a few months1. There 
is debate whether in situ assembly2 or inward migration is the 
dominant mechanism of the formation of such planetary systems. 
Simulations suggest that migration creates tightly packed systems 
with planets whose orbital periods may be expressed as ratios of 
small integers (resonances)3–5, often in a many-planet series (chain)6. 
In the hundreds of multi-planet systems of sub-Neptunes, more 
planet pairs are observed near resonances than would generally be 
expected7, but no individual system has hitherto been identified 
that must have been formed by migration. Proximity to resonance 
enables the detection of planets perturbing each other8. Here we 
report transit timing variations of the four planets in the Kepler-223 
system, model these variations as resonant-angle librations, 
and compute the long-term stability of the resonant chain. The 
architecture of Kepler-223 is too finely tuned to have been formed 
by scattering, and our numerical simulations demonstrate that its 
properties are natural outcomes of the migration hypothesis. Similar 
systems could be destabilized by any of several mechanisms5,9–11, 
contributing to the observed orbital-period distribution, where 
many planets are not in resonances. Planetesimal interactions in 
particular are thought to be responsible for establishing the current 
orbits of the four giant planets in the Solar System by disrupting 
a theoretical initial resonant chain12 similar to that observed  
in Kepler-223.

Kepler-223 is a known four-planet system13 orbiting around a slightly 
evolved (about 6-Gyr-old), Sun-like star (see Methods, Extended Data 
Fig. 1). The low observational signal-to-noise ratio initially caused an 
incorrect identification of the orbital periods of this system13,14, and 
has hitherto precluded its detailed characterization. For the analysis 
of transit timing variation (TTV), we use long cadence (29.4-min 

integrations) data, collected over the full duration of NASA’s Kepler 
Space Mission from March 2009 to May 2013. Over this window, the 
ratios of the orbital periods (P) of planets b, c, d and e (named in alpha-
betic order from the interior, beginning with b) average Pc/Pb =  1.3336, 
Pd/Pc =  1.5015 and Pe/Pd =  1.3339 (ref. 15). We expect a system with 
periods so close to resonance to exhibit TTVs due to planet–planet 
interactions8 (see Methods).

To measure TTVs, we bin the data into 3-month segments based on 
Kepler’s observing quarters, confirm that the orbital periods are near 
resonances, and demonstrate the time-variable nature of the transits 
(Fig. 1, Extended Data Fig. 2, Extended Data Table 1 and Methods). 
Phase folding the data and removing the TTVs allows the noisy transits 
to be identified easily by eye (Fig. 2).

The behaviour of the resonant chain can be characterized by its 
Laplace angles: φ1 ≡  − λb +  2λc −  λd, φ2 ≡  λc −  3λd +  2λe (for mean 
longitudes λi and planets i =  b, c, d, e) and, for the whole system of 
four planets, φ3 ≡  2φ2 −  3φ1 =  3λb −  4λc −  3λd +  4λe. Systems that 
are in resonance possess such librating Laplace angles, which ensures 
that two planets have a close approach when the other planets are far 
away, reducing chaotic interactions. The existence of a single four-body 
Laplace angle demonstrates that all the planets have close dynamical 
contact (with various three- and two-body resonances also present). We 
infer variations in the Laplace angles directly from the measured TTVs 
(see Methods and Extended Data Fig. 3). If we assume nearly circular 
orbits, the four years of TTVs in the data have recorded both angles 
performing nearly a full oscillation; φ1 librates between approximately 
173° and 190° and φ2 librates between approximately 47° and 75°.

To improve the treatment of the TTV signal and directly connect it to 
planetary dynamics, we integrate the N-body equations of motion for 
the four-planet system and explicitly model the photometric transit sig-
nals over the Kepler observing window (photodynamical modelling)16. 
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Table 1 | Kepler-223 system parameters
Parameter name DEMCMC result

Spectroscopic stellar mass, �M  ( �M ) . − .
+ .1 125 0 073

0 094

Stellar radius, �R  ( �R ) . − .
+ .1 72 0 14

0 07

Kepler-223 b Kepler-223 c Kepler-223 d Kepler-223 e

Orbital period, P (d) . − .
+ .7 38449 0 00022

0 00022 . − .
+ .9 84564 0 00051

0 00052 . − .
+ .14 78869 0 00027

0 00030 . − .
+ .19 72567 0 00054

0 00055

Eccentricity, e . − .
+ .0 078 0 017

0 015 . − .
+ .0 150 0 051

0 019 . − .
+ .0 037 0 017

0 018 . − .
+ .0 051 0 019

0 019

Inclination, | i − 90|  (°) . + .0 0 1 8 . + .0 0 1 3 . − .
+ .2 06 0 32

0 26 . − .
+ .2 00 0 27

0 21

Mass, M (M⊕) . − .
+ .7 4 1 1

1 3 . − .
+ .5 1 1 1

1 7 . − .
+ .8 0 1 3

1 5 . − .
+ .4 8 1 2

1 4

Radius, R (R⊕) . − .
+ .2 99 0 27

0 18 . − .
+ .3 44 0 30

0 20 . − .
+ .5 24 0 45

0 26 . − .
+ .4 60 0 41

0 27

Density, ρ (g cm−3) . − .
+ .1 54 0 35

0 63 . − .
+ .0 71 0 20

0 33 . − .
+ .0 31 0 07

0 12 . − .
+ .0 28 0 08

0 12

Medians and 68% credible intervals for planet properties based on 2,008 106-year stable solutions with eccentricity priors as described in Methods: (eb,max, ec,max, ed,max, ee,max) =  (0.212, 0.175,  
0.212, 0.175) and fixed nodal angle Ωj =  0 for j =  b, c, d, e. All values are valid at an epoch time Tepoch =  800.0 (BJD −  2,454,900). The stellar mass ( �M ) was held fixed in the differential-evolution Markov 
chain Monte Carlo (DEMCMC) simulation, but uncertainties in planetary mass were adjusted afterward to account for the quoted spectroscopic uncertainty in �M . �M  and �R  are the mass and radius 
of the Sun, respectively; M⊕ and R⊕ are the mass and radius of Earth. See Methods and Extended Data Table 2 for additional parameters and discussion.
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We determine best estimates and uncertainties for the system parame-
ters by performing five-body integrations of initial conditions from the 
resulting posterior distribution for more than 107 orbits of the planets 

and retaining only parameter sets that remain stable (see Methods for 
details). We find that the planets all have masses of 3M⊕–9M⊕ and 
radii of 2.5R⊕–5.5R⊕ (M⊕ and R⊕ are the mass and radius of Earth, 
respectively; see Table 1). On the basis of these values and internal 
structure models17, we determine that the composition of the planets 
varies from about 1% to 5% H/He by mass for the innermost planet to 
more than about 10% by mass for the outermost planet; that is, they 
are all sub-Neptunes. The density of the planets decreases with orbital 
semi-major axis, consistent with scenarios involving atmospheric 
loss due to stellar irradiation or formation in regions of increasingly 
cooler temperatures18. The eccentricities of the planets are relatively 
low (about 0.01− 0.1) in configurations that are stable for more than 
107 orbits of the system. To fit the data acceptably, the eccentricities 
need to be slightly larger than in other systems of sub-Neptunes such 
as Kepler-11, whose eccentricities are less than about 0.02 (ref. 19). 
Because the eccentricities may be excited and stabilized by the reso-
nances, the system can remain stable even though it is compact. The 
eccentricity of a planet is only loosely negatively correlated with its mass 
(from the TTVs in the data), so small changes in the allowed eccentric-
ity will have a small effect on the posterior mass estimate, and removing 
eccentricity constraints would make the planets only slightly less dense.

Periods in a ratio close to 3:4:6:8 are maintained in all the stable, 
data-fitting solutions. The range of the ratios of the osculating periods  
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Figure 1 | Transit timing variations (TTVs) for all four planets with 
respect to a linear ephemeris. a–d, Calculated transit times for planets b–e,  
respectively, come from a linear regression of the best-fit model transits. 
Open grey circles show the transit times from 20 different models that were 
stable over a 107-year simulation. Black ‘+ ’ symbols with 1σ error bars 
indicate the TTVs found by fitting quarterly binned data (see Extended Data 
Fig. 2), and black diamonds are the corresponding points for the mean of the 
grey-circle models binned in the same manner. Where the noise causes large 
uncertainties, the photodynamic model may deviate from the binned data, 
but more accurately reflects the true TTVs. BJD, barycentric Julian date.
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Figure 2 | Binned planet transits. a–d, Photometry data near transits of 
planets b–e, respectively (small black triangles), binned together (large black 
circles) by phase-folding after removing the measured TTV for each quarter. 
Systematic trends have been removed and the flux normalized to 1.0 out of 
transit. The coloured lines are the best-fit transit models to the data.
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of the planets implied by the observed TTVs over the Kepler window  
is typical for a resonant system. This range is narrower than that 
for a long-lived (more than about 107 orbits), but circulating 

(non-resonant), solution (Extended Data Figs 4, 5), suggesting that the  
system is currently in a state of libration. This libration might be tem-
porary, and periods of Laplace-angle circulation might have occurred 
previously or might occur in the future for this system. However, 
requiring short-term Laplace-angle libration substantially increases the 
likelihood that a parameter set that acceptably fits the data represents a 
long-lived system (see Methods). Because (i) the orbital parameters of 
Kepler-223 are consistent with it being in a resonant state, (ii) solutions 
that are stable for 100 Myr exist within the parameter posteriors, and 
(iii) resonance greatly helps a system this compact to remain stable, we 
conclude that the system is probably a true resonant chain.

Planetary migration in a disk has been extensively studied and often 
leads to resonant chains of planets3–6. To examine the plausibility of 
the specific resonant chain observed in Kepler-223, we use a previously 
developed model20 to simulate the migration of four planets within 
a gas disk. We find that four planets starting well wide of resonance 
migrate inwards and converge to the 3:4:6:8 chain of periods that we 
observe with certain choices of simulation parameters (Fig. 3). Thus 
the Kepler-223 system is a plausible outcome of disk migration, but the 
full set of disk migration parameters and initial conditions that would 
lead to this system remains an open question.

In a migration scenario, systems trapped in resonances for which the 
orbital semi-major axes are small (less than about 0.5 au) can poten-
tially be used to constrain the rate of disk photoevaporation and the 
lifetimes of disks, because a gaseous disk must exist in the 0.02–0.2 au 
range long enough for planets of moderate mass to migrate. It also 
provides constraints on turbulence and magnetic fields in the disk21, 
and the structure of the disk that causes the planets to stop migrat-
ing22. An alternative to gas-disk migration for trapping planets into 
resonances is migration via planetesimal scattering23. It is possible for 
planetesimal scattering to migrate two planets in a convergent manner, 
establishing a resonance. However, this convergent migration would 
excite the eccentricities of the planetesimal population, which would 
probably prevent additional planets from joining the resonance24. The 
presence of a large volatile (greater than about 10% H/He by mass)17 
layer on the outer planets also suggests that the planets formed in the 
presence of a gas-containing disk at cool temperatures, further suggest-
ing large-scale migration18.

Several other exoplanet systems have (GJ 876; ref. 25), or are spec-
ulated to have (HR 8799; ref. 20), resonant chains, but these are com-
posed of planets that are substantially more massive and have much 
greater orbital distances; hence, these observations may not be rel-
evant to the formation of systems of close-in sub-Neptunes. Several 
Kepler systems are probably in a true resonance (as opposed to near 
resonance; for example, the 6:5 system Kepler-50 and the 5:4:3 sys-
tem Kepler-60; ref. 26); however, owing to the large number of known 
multi-planet systems, even if the orbital-period ratios of planets are 
essentially random, consistent with in situ, giant-impact formation, we 
would expect to observe some systems whose period ratios were near 
enough to integer values that they entered true dynamical resonances. 
By contrast, the precise conditions for the four-planet resonant chain 
of Kepler-223 cannot be accounted for by random selection of period 
ratios7, and the system is probably too fragile to have been assembled 
by giant impacts27.

The dynamical fragility of Kepler-223 suggests that resonant chains 
were precursors to some of the more common, non-resonant systems 
and that planet–planet scattering post-formation is probably an impor-
tant step in creating the observed period distribution10. A model of the 
formation of the Solar System that has parallels with observed exoplanets  
involves the four giant planets entering a series of resonances, reaching  
their current configuration only after destabilization hundreds of mil-
lions of years later12. Numerical simulations for Kepler-223 indicate 
that only a small mass of orbit-crossing planetesimals is needed to 
move Kepler-223 off resonance28, but that it could escape this fate if 
intrinsic differences in protoplanetary disks resulted in the lack of such 
a planetesimal population. In fact, various mechanisms including disk 
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Figure 3 | A migration simulation that ends in a configuration matching 
the observed semi-major axis ratios, and libration angle centres and 
amplitudes. a, Time evolution of orbital-period ratios of planets b and c 
(Pc/Pb; red), c and d (Pd/Pc; green), and d and e (Pe/Pd; blue) in a migration 
simulation. b–d, Time evolution of the Laplace angles (φ1–3) defined in the 
text. The resonant angles and libration amplitudes that the planets end up 
in (indicated by the black horizontal lines) match those observed in the 
data (see, for example, Extended Data Fig. 3).
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dissipation9, planet–planet scattering10, tidal dissipation5 and plane-
tesimal scattering11 could break migration-induced resonances in the 
majority of exoplanet systems. It has been suggested that some mul-
ti-resonant systems (for example, Kepler-80, which has planetary pairs 
near, but not in, two-body resonances) might have undergone resonant 
disruption as a result of tidal dissipation, which would explain most 
of the period ratios that are slightly greater than resonant values in 
Kepler data29,30. It is possible that the Kepler-223 resonance has sur-
vived as a result of its relatively more distant innermost planet. Overall, 
we suggest that substantial migration of planets, including epochs of 
resonance that are typically only temporary, rather than in situ for-
mation, leads to the final, observed planetary orbits for many close-in 
sub-Neptune systems.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MeThOdS
Stellar properties. To improve our knowledge of the Kepler-223 system, we 
obtained a spectrum of the host star on 10 April 2012 using the HIRES spectro-
meter31 at the Keck-1 10-m telescope. These data are now publicly available at 
http://cfop.ipac.caltech.edu. After normalizing the continuum, we model the 
observed spectrum using synthetic spectra. Model spectra are generated by 
interpolating within a grid of synthetic spectra32. The resulting spectroscopic 
parameters for Kepler-223 are Teff =  5,821 ±  123 K, log(g) =  4.070 ±  0.096 dex 
and [Fe/H] =  0.060 ±  0.047 dex (where g is the surface gravity in cm s−2 and the 
metallicity [Fe/H] is the logarithm of the ratio of iron to hydrogen in the star 
relative to that ratio in the sun).

To determine an age and mass of the star, we match the measured properties to 
Y2 isochrones33. We ran a Markov chain Monte Carlo (MCMC) using the spectro-
scopic data and an interpolation of the Y2 grid values as the model to obtain an age 
of  . − .

+ .6 3 Gyr1 7
1 8  and mass of  . − .

+ .
�M1 125 0 073

0 095  (see Extended Data Fig. 1). Combining 
these values with log(g), we measure the stellar radius, �= . − .

+ .
�R R1 54 0 18

0 21 , and  
stellar density, �ρ ρ= . .− .

+ .
�0 31 0 09

0 12  We also derive a distance from Earth of  
. − .

+ .2 29 kpc0 34
0 34  to Kepler-223 and find the mean flux S on the planets to be 

Sb =  (492 ±  47)S0, Sc =  (335 ±  32)S0, Sd =  (195 ±  19)S0 and Se =  (133 ±  13)S0, where 
S0 =  1,377 W m−2 is the average insolation of Earth .

To determine the size of model-dependent uncertainties, we compare our results 
to an independently developed, publicly available method for computing �M , �R  
and age using the Dartmouth isochrones34 (https://github.com/timothydmorton/
isochrones). All three values are consistent within the 1σ error bars, so we conclude 
that our measurements are robust and that model-dependent errors are small com-
pared to our quoted uncertainties. We also use a stellar population synthesis model, 
TRILEGAL35, with the default galaxy stellar distribution and population as 
described therein, to demonstrate that the best-fit mass and uncertainties described 
above are essentially unaffected by reasonable priors; so, we keep flat priors for all 
stellar parameters.
TTVs. To measure TTVs, we begin by detrending the simple aperture photom-
etry (SAP) flux data from the Kepler portal on the Mikulski Archive for Space 
Telescopes (MAST). For long-cadence data (quarters 1–8), we fit the amplitudes 
of the first five co-trending basis vectors (largest magnitude vectors from a singular 
value decomposition of the photometry for a given CCD channel) to determine 
a baseline. We discard points marked as low quality (quality flag of ≥ 16). For 
short-cadence data (58.8-s integrations, quarters 9–17), co-trending basis vectors 
are not available. Instead, we first masked out the expected transit times of a pre-
liminary model, plus 20% of the full duration of each transit intending to account 
for possible additional timing variations; then we fit a cubic polynomial model 
with a 2-day width centred within half an hour of each data point to determine its 
baseline. In both cases, the baseline remains dominated by instrumental system-
atics that are time-variable; thus, we divide the flux by this baseline.

In computing TTVs, we use only those data for which the transits do not overlap 
with another planetary transit (that is, two transit mid-times fall within 1 day of 
each other) according to a preliminary model (data with overlapping transits is 
modelled directly by the photodynamic method described later). To determine 
transit times, we first fit transit parameters (period, transit mid-time, planet-to-star 
radius ratio, transit duration, impact parameter and limb-darkening coefficient) 
to the entire long-cadence dataset. Second, we refit each quarter using the globally 
determined values for all parameters except for transit mid-time, which is solved 
for. Third, we refine the transit shape parameters and slide the refined transit 
model in time through the data for each planet in each quarter, computing the 
goodness-of-fit statistic χ2 in steps of 0.001 days. The values of the numerical χ2 
function that are within 1.0 of the minimum are fit with a parabola, the minimum 
of which we adopt as our best estimate of the mid-time. The time shifts in each 
direction at which the χ2 function rises by 1 and 9 above the minimum are adopted 
as narrow and conservative error bars. If the likelihood surface of the mid-time 
parameter was Gaussian, these values would correspond to 1σ and 3σ estimates. 
Extended Data Table 1 reports the average time of the transits that were combined 
to make each measurement, the best-estimate and uncertainty estimates of these 
time shifts. Once phased at these transit times, the transit light curves are shown 
in Fig. 2. These transit times are also represented graphically in Extended Data  
Fig. 2 as the horizontal error bar. Planets c, d and e all have visible fluctuations over 
the dataset. These data constitute our transit timing measurement, which does not 
depend on the photodynamical model we develop subsequently; also, the data are 
not used in this model.

We use these transit times to estimate the Laplace critical angles36 and their 
evolution. To do so, we note that for circular orbits the mean longitude, λ, is a 
linear function of time, t, related to the transit period, P, and a specific mid-time, 
′T0, as

′λ= π / + ( − )/t T P2 [1 4 ]0

In place of ′T0 we may use T0 +  Δ T0, where P and T0 define the linear ephemeris 
on which the quarterly Δ T0 of Extended Data Table 1 are based. Then, for Laplace’s 
critical angles we have
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where t is given in units of days in terms of the barycentric Julian date (BJD), and 
similarly
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These values are plotted in Extended Data Fig 3. The values are not constant, and 
the data appear to have sampled a minimum and maximum value of a libration 
cycle, which indicates a restoring torque. The specific values are sensitive to phase 
shifts due to eccentricity-vector precession; the libration centres may be different 
by about 30° if the eccentricities are as high as 0.1.
Photodynamic inputs. A Newtonian photodynamic model similar to existing 
models37, but developed independently, was used for a dynamical analysis of this 
system. To find the most likely parameter values and uncertainties in the system, we 
run a differential-evolution Markov chain Monte Carlo (DEMCMC)38 to compare 
model output for different system parameters to observed long- and short-cadence 
Kepler data, as well as spectroscopic data of the star. The TTV signal (Fig. 1), 
which here is constrained by the photometry directly, detects the gravitational 
perturbations due to planet mass. Combined with transit shape information, this 
constrains the eccentricities and provides positive mass detections at >2.5σ for all 
bodies with uncertainties approximately 10–30% of the fitted values.

Each planet (i =  b, c, d, e) has seven parameters: pi =  [P, T0, ecos(ω), esin(ω), i, 
Ω, Rp/ �R , Mp/ �M ] in which P is the period, T0 is the mid-transit time, e is the 
eccentricity, i is the inclination, ω  is the argument of periastron, Ω is the nodal 
angle, Rp/ �R  is the planet-to-star radius ratio and Mp/ �M  is the planet-to-star mass 
ratio. The star has five parameters: �p  =  [ �M ,  �R , c1, c2, dilution], in which ci are the 
two quadratic limb-darkening coefficients and ‘dilution’ is the amount of dilution 
from other stars. Because photometry constrains only stellar density, and not mass 
and radius individually, we fix �M  at the best-fit value found from spectroscopy 
and convolve the mass distribution with the DEMCMC posteriors when reporting 
final values.

We fix Ω =  0 for all planets because the data do not sensitively measure mutual 
inclinations. The typical mean mutual inclination (MMI) of Kepler systems, 
approximately 1.8°, implies near coplanarity7. Additionally, multi-planet systems 
with higher mutual inclinations between planetary orbital planes are correlated 
with instability39, and we expect any observed system to be at least quasi-stable. 
Although, for some pairs of planets, photometry determines whether their incli-
nations are on the same side of 90° (refs 40, 41), in preliminary runs we find no 
preference for either conclusion. Therefore, we explore only i >  90° for each planet 
to reduce the volume of the symmetric parameter space. The value for the stellar 
limb-darkening coefficient c2 was chosen as 0.2 because this value is close to the 
median value for stars in the 4,000–6,500-K range in the Kepler bandpass42, and 
for low signal-to-noise ratio transits such as that in Kepler-223, a single limb-dark-
ening parameter is sufficient to match transit shape43,44.

United Kingdom Infrared Telescope (UKIRT) archives reveal that there are two 
objects within 2″  of the position specified by the Kepler Input Catalog (KIC)45. 
The brighter of the two objects is less than 0.2″  from the KIC position and has 
a predicted Kepler magnitude of 15.4932, which is based on the formula used 
within the UKIRT archives to convert the measured J-band magnitudes to a 
Kepler magnitude46. This value is 0.1492 magnitudes fainter than that reported in 
the KIC (15.344). The second object is 1.937″  away from the KIC location, but is 
about 8 times fainter. The sum of these two objects has a predicted intensity in the 
Kepler bandpass equal to 98.2% of the intensity of the object reported by the KIC. 
Faulkes Telescope North (FTN) imaging confirms the dual nature of the Kepler-223 
object47. Speckle imaging done at WIYN observatory indicates no additional bod-
ies between approximately 0.2″  and 1.9″  of the brighter object48. Because the fainter 
of the two objects contributes approximately 11.202% of the light in the Kepler 
bandpass, we perform our DEMCMC runs with the dilution fixed at 0.11202.
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Photodynamic fits. Beginning the DEMCMC by distributing parameters over 
the entire 30-dimensional prior is computationally untenable for this problem 
because it would take an excessively long time for the parameter sets, {pi}, of the 
DEMCMC to escape local minima and reach the global minimum. Instead we 
begin the DEMCMC by taking a four-planet solution found by exploration using 
migration-assembly solutions, p0, which approximately matches the observed data, 
and forming a set of 48 30-parameter vectors, {p0}, by adding 30-dimensional 
Gaussian noise to p0. We allow each set to explore the parameter space and, to 
eliminate any effects of the choice of p0, we wait until the DEMCMC chains have 
converged and then remove a ‘burn-in’ period, that is, the portion that is dependent 
on the choice of {p0}.

In the DEMCMC, a given choice of planetary parameters is accepted or rejected 
one the basis of the data over the Kepler observing window (about 4 years), and 
does not take into account the long-term evolution of a system with such parame-
ters. It is not computationally tenable to numerically integrate each model for the 
age of the Kepler-223 system during the DEMCMC run. Therefore, the DEMCMC 
posterior includes solutions that acceptably fit the data, but that become unsta-
ble shortly after. To prevent our posterior parameter estimates from representing 
unstable solutions, we take two steps to encourage stability. First, we do not allow 
the DEMCMC to explore any solutions where the orbits of two adjacent planets 
cross (which generates a posterior we call C1). This was implemented by allow-
ing the DEMCMC to explore a limited range of eccentricities for each planet, 
(eb,max, ec,max, ed,max, ee,max) =  (0.212, 0.175, 0.212, 0.175), with the symmetry of 
values due to the resonant-chain structure of the periods (posteriors can be found 
in Extended Data Table 2 and best-fits in Extended Data Table 3). Retrospectively, 
this eccentricity prior is justified because mean eccentricities greater than 0.1 
are very rarely stable (Extended Data Fig. 6). Further, the similarity between the  
106-year eccentricity-stability distribution and the 107-year distribution indicates 
that using either as a proxy for stable solutions will yield comparable results.

To assess the stability of the solutions in the posterior distribution, we selected 
500 random draws from the C1 posterior and numerically integrated each of these 
solutions for 107 years, which corresponds to more than 108 orbits of the outer-
most planet. We used the MERCURY symplectic integrator49 and stopped inte-
gration if a close encounter between any two bodies occurred. 30% of systems 
lasted the entire 107-year integration. We randomly selected 25 of the systems 
that lasted 107 years and numerically integrated them for an additional 9 ×  107 
years, or until a close encounter, with 64% of them lasting 108 years. The age of 
the Kepler-223 star is about 6 ×  109 years. We expect the planets to have reached 
their current configuration by migration through a disk within only a few million 
years, which corresponds to the lifetimes of gas disks50, suggesting that the current 
planet configuration has also survived for about 6 ×  109 years. However, integrat-
ing for this long is not computationally feasible for this study. Other numerical 
stability studies10 predict that systems are approximately equally likely to become 
unstable in bins of log(time), implying that approximately 12% of the tested sys-
tems (and thus approximately 12% of the systems in the C1 posterior) remain 
stable on timescales of billions of years . This fraction is high compared to a 
modelled population of compact, sub-Neptune systems, which are destabilized 
by mean motion resonances (MMRs) on a shorter timescale10. However, in such 
simulations there are generally a few bodies not engaged in the resonance; here 
all four bodies are involved in the resonance, remaining stable despite MMRs 
exciting eccentricities. Also, MERCURY is a Newtonian physics integrator, but 
adding a suitable general relativistic potential term, UGR =  − 3( �GM /(cr))2, where 
G is the gravitational constant, c is the speed of light and r is the distance from a 
planet to the star51, does not change our long-term stability results from  
100 trials (32 stable, 68 unstable).

To develop a second posterior based on parameters that are more likely to 
lead to stability, we randomly drew 5,000 parameter sets from the posterior of C1, 
and numerically integrated each of these solutions for 106 years (corresponding 
to more than 107 orbits of the outermost planet). This allows the problem to be 
computationally feasible, while still allowing for a large enough number of draws 
that we have sufficient statistics for parameter estimates. We retained only those 
parameter sets that remained stable at least this long (2,008 in total) to form a 
second posterior representative of physical (stable) solutions and call it C2. Future 
discussions of parameters and the data in the main text (Table 1 and Fig. 1) use 
this posterior (C2) because we judge it to be the optimal combination of selecting 
stable solutions that match the observed Kepler data, while avoiding discarding 
plausible parameter space as a result of further assumptions. The general shape 
of the eccentricity distribution remaining after 106 years does not change mark-
edly compared to solutions that are stable for an order of magnitude longer (see 
Extended Data Fig. 6) and is thus unlikely to change noticeable over the ~ 6-Gyr 
age of the system. The instability regions near the best-fit values discovered by 
our parameter fits suggest the ease with which the system, and others like it, could 

be moved out of resonance by small perturbations such as evaporation of the 
protoplanetary disk9,28.

Kepler-223 appears to possess two librating Laplace angles between the inner 
three and outer three planets, as discussed earlier. Migration simulations suggest 
that a very large Laplace-angle libration amplitude is unlikely in stable solutions. 
Further, in stable solutions in the C2 posterior, long-lived (up to about 105 years) 
Laplace-angle libration is likely to occur. To get another estimate of the parame-
ters of the system while balancing computational efficiency and a stricter stability 
constraint, we ran a third DEMCMC. For this run, at every step in the DEMCMC 
we integrate the parameter initial conditions for 100 years (corresponding to more 
than about 5 secular oscillations) and penalize Laplace-angle oscillation ampli-
tudes that grow too large, in addition to fitting the data. We call the posterior 
from this run C3. Our Laplace-angle criteria in C3 are designed to penalize large 
libration amplitudes and the speed at which the amplitudes grow. If the total range 
in Laplace angles, Δ φ1 or Δ φ2, exceeds a cut-off value K1 over the integration time 
(Tmax, in years), then the time at which this occurs is recorded (Trunaway). A value 
− 1 +  (Trunaway/Tmax)−2 is added to the χ2 value. All χ2 values were also penalized by 
an additional term equal to (Δ φ −  Vi)2 if Δ φi >  Vi and to 0 if Δ φi <  Vi for specified 
angles Vi, i =  1, 2, in degrees and with Δ φ =  φmax −  φmin. This way, if the Laplace 
angles were well behaved enough not to run away, but either or both still grew in 
amplitude above specified values for each angle (V1 and V2), then a χ2 penalty was 
assigned and the parameters were less likely to be accepted. We do not impose a 
direct eccentricity constraint. We report C3 with (Tmax, K1, V1, V2) =  (100 yr, 170°,  
30°, 50°), for which the numbers are roughly based on the results of migration 
and DEMCMC results that had long-term libration (see Extended Data Table 2).

Running a similar stability check for C3 as for C1 by choosing 300 chains from 
the posterior distribution resulted in 100% of the parameter sets leading to stable 
behaviour lasting 107 years. Ten parameter sets were numerically integrated for  
108 years, and 100% of those also lead to a system that survives with no close 
encounters. These results indicate that this method is effective at finding stable 
solutions. Comparing this to the stability results for C1, in which only 19% of solu-
tions were stable for 108 years (as described above), our argument that resonance 
does encourage stability is strengthened. Nevertheless, this method cannot be guar-
anteed to reject all unstable systems (because they might pass this test) or to include 
all stable ones (because some systems could remain stable for a very long time, but 
have large changes in Laplace angle); see Extended Data Fig. 4. This posterior has 
lower eccentricities, but because we assume short-term resonance for this fit, we 
do not take it as our nominal fit.
Future observations. We predict future transit times and uncertainties by averag-
ing the predicted transits from 152 solutions from the C1 posterior that are stable for 
107 years. We report transit times quarterly for 10 years, including over the Kepler 
observing window, in Supplementary Information.
Code availability. The code used for migration simulations is available as 
Supplementary Information. The code used to generate the TTV and photody-
namic analyses is available upon request and will be made publicly available once 
further analyses have been completed.50

31. Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 
10-m Telescope. Proc. SPIE 2198, 362–375 (1994).

32. Coelho, P., Barbuy, B., Melndez, J., Schiavon, R. P. & Castilho, B. V. A library of 
high resolution synthetic stellar spectra from 300 nm to 1.8 μ m with solar and 
α -enhanced composition. Astron. Astrophys. 443, 735–746 (2005).

33. Demarque, P., Woo, J.-H., Kim, Y.-C. & Yi, S. K. Y2 isochrones with an 
improved core overshoot treatment. Astrophys. J. Suppl. Ser. 155, 667–674 
(2004).

34. Morton, T. D. isochrones: stellar model grid package. Astrophysics Source Code 
Library ascl:1503.010, http://ascl.net/1503.010 (2015).

35. Girardi, L., Groenewegen, M. A. T., Hatziminaoglou, E. & da Costa, L. Star counts 
in the Galaxy. Simulating from very deep to very shallow photometric surveys 
with the TRILEGAL code. Astron. Astrophys. 436, 895–915 (2005).

36. Quillen, A. C. Three-body resonance overlap in closely spaced multiple-planet 
systems. Mon. Not. R. Astron. Soc. 418, 1043–1054 (2011).

37. Carter, J. A. et al. KOI-126: a triply eclipsing hierarchical triple with two 
low-mass stars. Science 331, 562–565 (2011).

38. ter Braak, C. J. F. Genetic Algorithms and Markov Chain Monte Carlo: Differential 
Evolution Markov Chain Makes Bayesian Computing Easy. Report No. 010404 
(revised) http://edepot.wur.nl/39477 (Biometris, 2005).

39. Veras, D. & Armitage, P. J. The dynamics of two massive planets on inclined 
orbits. Icarus 172, 349–371 (2004).

40. Huber, D. et al. Stellar spin-orbit misalignment in a multiplanet system. Science 
342, 331–334 (2013).

41. Masuda, K., Hirano, T., Taruya, A., Nagasawa, M. & Suto, Y. Characterization of 
the KOI- 94 system with transit timing variation analysis: implication for the 
planet-planet eclipse. Astrophys. J. 778, 185 (2013).

42. Sing, D. K. Stellar limb-darkening coefficients for CoRot and Kepler.  
Astron. Astrophys. 510, A21 (2010).

© 2016 Macmillan Publishers Limited. All rights reserved

http://ascl.net/1503.010
http://edepot.wur.nl/39477


Letter reSeArCH

43. Southworth, J., Bruntt, H. & Buzasi, D. L. Eclipsing binaries observed with the 
WIRE satellite. II. β Aurigae and non-linear limb darkening in light curves. 
Astron. Astrophys. 467, 1215–1226 (2007).

44. Southworth, J. Homogeneous studies of transiting extrasolar planets – I. 
Light-curve analyses. Mon. Not. R. Astron. Soc. 386, 1644–1666 (2008).

45. Brown, T. M., Latham, D. W., Everett, M. E. & Esquerdo, G. A. Kepler input catalog: 
photometric calibration and stellar classification. Astron. J. 142, 112 (2011).

46. Howell, S. B. et al. Kepler-21b: a 1.6 REarth planet transiting the bright 
oscillating F subgiant star HD 179070. Astrophys. J. 746, 123 (2012).

47. Brown, T. M. et al. Las Cumbres Observatory Global Telescope network. Publ. 
Astron. Soc. Pacif. 125, 1031–1055 (2013).

48. Howell, S. B., Everett, M. E., Sherry, W., Horch, E. & Ciardi, D. R. Speckle camera 
observations for the NASA Kepler mission follow-up program. Astron. J. 142, 19 
(2011).

49. Chambers, J. E. Mercury: a software package for orbital dynamics. Astrophysics 
Source Code Library ascl:1201.008, http://ascl.net/1201.008 (2012).

50. Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Annu. Rev. 
Astron. Astrophys. 49, 67–117 (2011).

51. Lissauer, J. J. et al. Architecture and dynamics of Kepler’s candidate multiple 
transiting planet systems. Astrophys. J. Suppl. Ser. 197, 8 (2011).

52. Batalha, N. M. et al. Planetary candidates observed by Kepler. III. Analysis of the 
first 16 months of data. Astrophys. J. Suppl. Ser. 204, 24 (2013).

© 2016 Macmillan Publishers Limited. All rights reserved

http://ascl.net/1201.008


LetterreSeArCH

Extended Data Figure 1 | Spectroscopic fit of the Kepler-223 star.  
A fit to Yonsei–Yale (Y2) evolution tracks (coloured lines) with 0.01-Gyr 
increments marked with filled circles. Colours correspond to mass with 
increments of 0.01 �M  from 1.0 �M  (orange) to 1.4 �M  (darkest blue). 
Isochrones (grey lines) are over-plotted in 2-Gyr increments from 4 Gyr 
(darkest grey) to 10 Gyr (lightest grey) with filled circles every 0.01 �M  

increment. One point is labelled for reference (Msun =  �M  ). The best-fit 
(Teff, log(g)) value (black cross) and an ellipse (black) whose semi-major 
axes indicate 1σ uncertainties of each parameter found from spectral 
matching are indicated. The stars in this area of parameter space have 
evolved off the main sequence.
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Extended Data Figure 2 | Long-cadence light curve for each planet, 
broken down by quarter (Q). Data (black filled circles) are binned via 
a moving average to give the blue curve, to reduce the scatter relative to 
the horizontal red line indicating no signal. Each panel is centred on the 
transit times predicted using the linear ephemeris (T0 and P) of ref. 52 
(vertical black lines), with the horizontal axis the time in days from the 

Eth predicted transit time. The box-and-whisker error bars indicate the 
best-fit mid-transit time and 1σ and 3σ uncertainties based on Δ χ2 =  1 
and Δ χ2 =  9. χ2 values are computed by sliding an overall fit to the transit 
horizontally across the data and interpolating. Their offset relative to the 
linear ephemeris lines indicates the magnitudes of the TTVs.
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Extended Data Figure 3 | Laplace-angle librations detected by binning 
transits into quarters and assuming zero eccentricity. a–c, Error bars 
show 1σ uncertainties based on Δ χ2 =  1. Almost a full libration cycle of all 
angles is observed in the ~ 1,500-day observing window. The amplitude of 
oscillation in the four-body Laplace angle (φ3; c) is similar in amplitude to  

each of the individual Laplace angles (φ1, a; φ2, b). Because φ3 =  − 3φ1 +  2φ2,  
this amplitude could naively be expected to be much larger; however, 
φ1 and φ2 are closely related, owing to the four-body resonance of the 
Kepler-223 system, in contrast to two independent three-body resonances.
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Extended Data Figure 4 | Variation in Laplace angles for two 107-year-
stable solutions. a, The librating Laplace angles (φ1, red; φ2, blue) for 
a solution from the C3 DEMCMC posterior. Laplace angles librate over 
the entire 107 years. The orbital-period distribution in Extended Data 
Fig. 5 uses this model. b, Another solution from C3, in which the inner 

Laplace angle (φ1; red) librates near the observed value initially, but begins 
switching chaotically between three different libration centres. This is not 
uncommon in the C3 DEMCMC posterior. Despite the initial constraint 
on the outer Laplace angle (φ2; blue), there are long periods of circulation 
with intermittent libration.
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Extended Data Figure 5 | Orbital-period ratios of librating and  
non-librating solutions fitted to data. a, c, e, The distribution of 
osculating period ratios for each neighbouring planet pair (Pc/Pb, a;  
Pd/Pc, c; Pe/Pd, e) over a randomly selected 4-year window in the first 
104 years for two 107-year-stable parameter sets from the C3 DEMCMC 
posterior solution. The dotted histogram represents a solution that showed 

substantial periods of Laplace-angle circulation. The solid histogram 
represents a solution in which both φ1 and φ2 librate for 107 years.  
The blue vertical line indicates the empirical mean period; blue dashed 
vertical lines represent the highest and lowest quarter-to-quarter period 
measured. b, d, f, The same as in a, c, e, but over the entire 107-year 
interval.
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Extended Data Figure 6 | System stability as a function of mean 
planetary eccentricity. The fraction of 500 random draws from the C1 
posterior that survive for 107 years (crosses) and 106 years (squares)  
as a function of four-planet-mean eccentricity in bins of width 0.01.  
1σ statistical uncertainties are included as vertical error bars on the 

crosses. Dotted lines indicate the two eccentricity limits for the planets 
used in C1: 0.175 (planets c and e) and 0.212 (planets b and d). Numbers 
represent the total number of draws in each eccentricity bin. The fraction 
of 107-year-stable systems falls sharply and is consistent with zero well 
below the eccentricity cuts imposed by C1.
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extended data Table 1 | Mean Kepler-223 quarterly TTVs

Transit times and TTVs (in days) for each planet found by binning the data quarterly and iteratively solving for transit shape as described in Methods. Mean transit time in the quarter is given in the first 
column followed by the measured TTV and uncertainties as described in Extended Data Fig. 2.

t̄ − 2454900 (BJD) −3σ −σ Best +σ +3σ
Kepler-223b: P = 7.3840154 days, T0 − 2454900 (BJD) = 70.49489

123.32662 -0.0354 -0.0058 -0.0006 0.0059 0.0316
239.02516 -0.0517 -0.0103 0.0137 0.0101 0.0423
416.51724 -0.0200 -0.0061 -0.0010 0.0062 0.0210
521.69775 -0.0628 -0.0123 0.0068 0.0113 0.0342
699.18988 -0.0470 -0.0088 -0.0010 0.0084 0.0370
797.79657 -0.0417 -0.0097 -0.0123 0.0088 0.0243
886.54260 -0.0343 -0.0072 -0.0187 0.0074 0.0617
1073.89526 -0.0500 -0.0118 0.0730 0.0140 0.1150
1162.64136 -0.0542 -0.0071 0.0692 0.0071 0.0708
1251.38745 -0.0217 -0.0062 0.0507 0.0065 0.0333
1458.46155 -0.0379 -0.0129 0.0659 0.0090 0.0241

Kepler-223c: P = 9.8487130 days, T0 − 2454900 (BJD) = 71.37624
116.10564 -0.0362 -0.0103 -0.0168 0.0133 0.0518
242.86336 -0.0683 -0.0405 0.0023 0.0077 0.0747
420.32413 -0.0254 -0.0077 0.0264 0.0076 0.0476
509.05453 -0.0266 -0.0077 0.0166 0.0090 0.0304
701.30371 -0.0585 -0.0121 -0.0155 0.0126 0.0535
790.03418 -0.0302 -0.0075 -0.0318 0.0084 0.0268
886.15869 -0.0173 -0.0046 -0.0737 0.0048 0.0537
1071.01367 -0.1404 -0.0078 -0.0766 0.0066 0.0226
1148.65283 -0.0411 -0.0067 -0.0959 0.0064 0.0349
1252.17163 -0.0392 -0.0067 -0.0418 0.0068 0.0548
1470.30054 -0.0361 -0.0056 -0.0449 0.0051 0.0179

Kepler-223d: P = 14.7883997 days, T0 − 2454900 (BJD) = 109.76775
132.10997 -0.0416 -0.0058 0.0376 0.0054 0.0134
248.65308 -0.0221 -0.0062 -0.0169 0.0063 0.0229
427.57138 -0.0351 -0.0084 -0.0099 0.0070 0.0169
519.49268 -0.0285 -0.0070 0.0035 0.0066 0.0245
711.54260 -0.0260 -0.0086 0.0240 0.0094 0.0420
800.18097 -0.0226 -0.0060 0.0256 0.0057 0.0194
898.66815 -0.0192 -0.0057 0.0212 0.0055 0.0238
1077.35193 -0.0530 -0.0080 0.0020 0.0077 0.0210
1169.50781 -0.0354 -0.0085 -0.0236 0.0093 0.0286
1271.27771 -0.0272 -0.0131 -0.0578 0.0132 0.0328
1483.43542 -0.0298 -0.0061 -0.1612 0.0057 0.0302

Kepler-223e: P = 19.7213435 days, T0 − 2454900 (BJD) = 68.10686
135.47421 -0.0303 -0.0060 -0.0067 0.0053 0.0187
238.21753 -0.0232 -0.0067 0.0022 0.0072 0.0458
433.78842 -0.0542 -0.0095 0.0302 0.0084 0.0298
524.27625 -0.0244 -0.0061 -0.0106 0.0063 0.0296
709.21222 -0.0432 -0.0071 0.0022 0.0065 0.0208
797.82037 -0.0240 -0.0060 0.0090 0.0061 0.0240
893.81256 -0.0357 -0.0216 0.0297 0.0242 0.0513
1079.88989 -0.0662 -0.0083 0.0602 0.0078 0.0308
1170.71301 -0.1067 -0.0118 0.1167 0.0110 0.0453
1263.01343 -0.0252 -0.0049 0.1352 0.0049 0.0188
1469.48169 -0.0393 -0.0097 0.2283 0.0100 0.0467
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extended data Table 2 | Complete Kepler-223 parameters

DEMCMC posterior probability median values and 68% confidence intervals for all model parameters at Tepoch =  800.0 (BJD −  2,454,900). Three parameter sets are given with fixed stellar mass: (1) 
DEMCMC results with eccentricity constraint C1; (2) the subset of the C1 DEMCMC results that retain only those solutions that are stable for 106 years (C2); and (3) Laplace-angle constraint C3 and fixed 
Ωi =  0 for i =  b, c, d, e.

Parameter Name (Unit) Eccentricity Prior (C1) Eccentricity Prior and Stability (C2) Laplace Angle Constraint (C3)
Stellar Parameters:
R�(R�) 1.714+0.079−0.165 1.72+0.07−0.14 1.622+0.078−0.070
M�(M�) 1.125 (fixed) 1.125 (fixed) 1.125 (fixed)
c1 0.54+0.11−0.10 0.54+0.10−0.09 0.57+0.11−0.10
c2 0.2 (fixed) 0.2 (fixed) 0.2 (fixed)
dilution 0.11202 (fixed) 0.11202 (fixed) 0.11202 (fixed)
Kepler-223 b Parameters:
P (d) 7.38454+0.00024−0.00028 7.38449+0.00022−0.00022 7.38453+0.00024−0.00024
T0 (BJD-2454900) 801.5145+0.0044−0.0047 801.5155+0.0044−0.0046 801.5133+0.0042−0.0045
e · cos(ω) 0.057+0.034−0.031 0.054+0.022−0.022 0.035+0.014−0.016
e · sin(ω) 0.052+0.026−0.135 0.047+0.020−0.039 −0.004+0.029−0.034
|i − 90| (◦) 0.0+1.7 0.0+1.8 0.0+1.4
Ω (◦) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
M/M� 0.0000196+0.0000034−0.0000031 0.0000221+0.0000032−0.0000031 0.0000201+0.0000027−0.0000026
R/R� 0.01596+0.00053−0.00053 0.01597+0.00055−0.00054 0.01584+0.00052−0.00053
Kepler-223 c Parameters:
P (d) 9.84584+0.00085−0.00053 9.84564+0.00052−0.00051 9.84613+0.00046−0.00045
T0 (BJD-2454900) 800.1461+0.0049−0.0040 800.1459+0.0050−0.0039 800.1489+0.0061−0.0047
e · cos(ω) 0.030+0.050−0.047 0.029+0.041−0.038 −0.010+0.019−0.022
e · sin(ω) 0.134+0.027−0.156 0.139+0.021−0.050 0.060+0.033−0.038
|i − 90| (◦) 0.0+1.4 0.0+1.3 0.0+1.5
Ω (◦) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
M/M� 0.0000157+0.0000048−0.0000038 0.0000152+0.0000048−0.0000033 0.0000189+0.0000032−0.0000033
R/R� 0.01847+0.00055−0.00056 0.01842+0.00053−0.00053 0.01833+0.00056−0.00057
Kepler-223 d Parameters:
P (d) 14.78881+0.00049−0.00040 14.78869+0.00030−0.00027 14.78862+0.00025−0.00024
T0 (BJD-2454900) 804.8502+0.0022−0.0023 804.8504+0.0023−0.0024 804.8492+0.0022−0.0023
e · cos(ω) 0.020+0.031−0.030 0.020+0.026−0.024 0.000+0.011−0.013
e · sin(ω) 0.017+0.023−0.076 0.010+0.020−0.032 −0.001+0.015−0.021
|i − 90| (◦) 2.02+0.29−0.52 2.06+0.26−0.32 1.68+0.30−0.29
Ω (◦) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
M/M� 0.0000203+0.0000040−0.0000039 0.0000240+0.0000039−0.0000035 0.0000225+0.0000032−0.0000032
R/R� 0.02791+0.00056−0.00064 0.02800+0.00052−0.00059 0.02756+0.00053−0.00058
Kepler-223 e Parameters:
P (d) 19.72553+0.00067−0.00071 19.72567+0.00055−0.00054 19.72568+0.00054−0.00048
T0 (BJD-2454900) 817.5231+0.0055−0.0048 817.5237+0.0055−0.0051 817.5231+0.0053−0.0046
e · cos(ω) 0.017+0.042−0.033 0.017+0.026−0.024 0.013+0.014−0.014
e · sin(ω) 0.045+0.032−0.077 0.039+0.023−0.032 0.033+0.016−0.023
|i − 90| (◦) 1.95+0.25−0.45 2.00+0.21−0.27 1.69+0.25−0.24
Ω (◦) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
M/M� 0.0000102+0.0000044−0.0000042 0.0000145+0.0000039−0.0000036 0.0000130+0.0000031−0.0000029
R/R� 0.02450+0.00076−0.00077 0.02466+0.00074−0.00076 0.02421+0.00069−0.00068
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Planet Period (d) T0 (BJD-2454900) e i (◦) Ω (◦) ω (◦) Mass (MJup ) Radius (Rp/R�)
b 7.384720365879194 801.516262774051825 0.105758145660053 90.701847866139545 0.0 62.597372675420416 0.022730704097050 0.015954404145479
c 9.845453934132928 800.146170501596430 0.172729064427036 90.301811036839879 0.0 85.015828120049491 0.017312231285438 0.018346434846992
d 14.788902636701252 804.851045349929109 0.037330052890247 92.189693102657941 0.0 76.465729705828863 0.019623186719198 0.027674878130791
e 19.726218957815664 817.521944355066694 0.051464531998599 92.056638725826986 0.0 111.706814565803512 0.009576406850388 0.024759859857039

Stellar Parameters: 1.125 M� (M�) R�(R�): 1.744528317200141 c1: 0.479330549583184 c2: 0.2 dilute: 0.11202
b 7.384583733215798 801.513943095097261 0.061453702027857 91.105539095271382 0.0 37.604238003695137 0.020503806935496 0.015793288256059
c 9.845639757204141 800.144691508369419 0.112391047984129 91.085286013475226 0.0 86.059011138583742 0.019192688432573 0.018609959659302
d 14.788880252356291 804.849755312464254 0.026604678672708 91.966288309512123 0.0 58.807213313926120 0.025560722351934 0.028232411829371
e 19.725687523818440 817.519383441790524 0.060783217179960 91.806556478578258 0.0 76.156009027159996 0.015467248730564 0.024265426463497

Stellar Parameters: 1.125 M� (M�) R�(R�): 1.683974231305496 c1: 0.532243950638929 c2: 0.2 dilute: 0.11202

extended data Table 3 | Best-fit Kepler-223 initial conditions

Best-fit initial planet conditions found by DEMCMC under C1 (top) and C3 (bottom) constraints at Tepoch =  800.0 (BJD −  2,454,900) with χ2 =  746,480 and χ2 =  746,489, respectively. MJup, mass of 
Jupiter.
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