
2 6 2  |  N A T U R E  |  V O L  5 2 8  |  1 0  D E C E M B E R  2 0 1 5

LETTER
doi:10.1038/nature15766
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In recent years, several associations between common chronic 
human disorders and altered gut microbiome composition and 
function have been reported1,2. In most of these reports, treatment 
regimens were not controlled for and conclusions could thus be 
confounded by the effects of various drugs on the microbiota, which 
may obscure microbial causes, protective factors or diagnostically 
relevant signals. Our study addresses disease and drug signatures in 
the human gut microbiome of type 2 diabetes mellitus (T2D). Two 
previous quantitative gut metagenomics studies of T2D patients 
that were unstratified for treatment yielded divergent conclusions 
regarding its associated gut microbial dysbiosis3,4. Here we show, 
using 784 available human gut metagenomes, how antidiabetic 
medication confounds these results, and analyse in detail the 
effects of the most widely used antidiabetic drug metformin. 
We provide support for microbial mediation of the therapeutic 
effects of metformin through short-chain fatty acid production, 
as well as for potential microbiota-mediated mechanisms behind 
known intestinal adverse effects in the form of a relative increase 
in abundance of Escherichia species. Controlling for metformin 
treatment, we report a unified signature of gut microbiome shifts 
in T2D with a depletion of butyrate-producing taxa3,4. These in turn 
cause functional microbiome shifts, in part alleviated by metformin-
induced changes. Overall, the present study emphasizes the need to 
disentangle gut microbiota signatures of specific human diseases 
from those of medication.

T2D is a disorder of elevated blood glucose levels (hyperglycaemia) 
primarily due to insulin resistance and inadequate insulin secretion, 
with rising global prevalence. Genetic and environmental risk fac-
tors are known, the latter including dietary habits and a sedentary 
lifestyle5. Gut microbiota involvement is also increasingly recog-
nized3,4,6,7, although findings diverge between studies8; for example, 
Qin et al.3 report several Clostridium species enriched in T2D, whereas 
Karlsson et al.4 instead report enrichment of several lactobacilli species 
(see Supplementary Discussion). Treatment involves medication and  

lifestyle intervention, which may confound reported gut dysbiosis.  
Many T2D patients receive metformin, an oral blood-glucose- 
lowering non-metabolizable compound whose primary and dominant 
metabolic effect is the inhibition of liver glucose production9. At least 
30% of patients report adverse effects including diarrhoea, nausea, 
vomiting and bloating, with underlying mechanisms poorly under-
stood. Studies in animals10 and humans11 suggest that some benefi-
cial effects of metformin on glucose metabolism may be microbially 
mediated. Here, we built a multi-country T2D metagenomic data set, 
starting with gut microbial samples from a nondiabetic Danish cohort 
of 277 individuals within the MetaHIT project12 and additional novel 
Danish MetaHIT metagenomes from 75 T2D and 31 type 1 diabetes 
(T1D) patients, sequenced using the same protocols (samples abbre-
viated as MHD). Treatment information was obtained for all MHD 
samples, as well as for samples from a previously reported4 cohort 
of 53 female Swedish T2D patients, along with 92 nondiabetic indi-
viduals (43 with normal glucose tolerance, 49 with impaired glucose 
tolerance) (SWE) and a subgroup of 71 Chinese T2D patients with 
available information on antidiabetic treatment as well as 185 nondi-
abetic Chinese individuals3 (CHN). For these 784 gut metagenomes 
(Supplementary Table 1), taxonomic and functional profiles were 
determined (see Methods), verifying our meta-analysis framework to 
be appropriate and robust in the context of theoretical considerations 
and through simulations (Supplementary Discussion 1 and Extended 
Data Fig. 1a), as well as characterizing differences between the data 
sets (Extended Data Fig. 2). Initial analysis unstratified for treatment 
but controlling for demographic and technical variation between data 
sets (Supplementary Discussion 2 and Supplementary Table 2) recov-
ered a majority of previously reported associations (Supplementary 
Discussion 2 and Supplementary Table 3) but with large divergence 
between data sets. Suspecting confounding treatments, we tested 
for influence of diet and antidiabetic medications (Supplementary 
Discussion 3, Supplementary Table 4 and Extended Data Fig. 1b), 
finding an effect resulting only from use of metformin. As the fraction 

1European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany. 2VIB Center for the Biology of Disease, Katholieke Universiteit Leuven, 3000 
Leuven, Belgium. 3Department of Bioscience Engineering, Vrije Universiteit Brussel, 1040 Brussels, Belgium. 4The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health 
and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark. 5Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular 
Bacteriology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium. 6MICALIS, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France. 7Metagenopolis, Institut National de 
la Recherche Agronomique, 78352 Jouy en Josas, France. 8Institute of Cardiometabolism and Nutrition, 75013 Paris, France. 9Department of Systems Biology, Center for Biological Sequence 
Analysis, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. 10Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark. 11Department of Applied Tumor 
Biology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany. 12Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology 
Laboratory, 69120 Heidelberg, Germany. 13Bejing Genomics Institute (BGI)-Shenzhen, 518083 Shenzhen, China. 14Research Centre for Prevention and Health, Capital Region of Denmark, 2600 
Glostrup, Denmark. 15Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 2600 Copenhagen, Denmark. 16Faculty of Medicine, University of Aalborg, 
9100 Aalborg, Denmark. 17Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, 
Denmark. 18Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark. 19Princess Al Jawhara Albrahim Center of Excellence in the Research of Hereditary Disorders, 
King Abdulaziz University, 80205 Jeddah, Saudi Arabia. 20Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China. 21Department of Medicine and State Key Laboratory 
of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong. 22Centre for Host-Microbiome Interactions, Dental Institute Central Office, Guy’s Hospital, King’s College London, London 
SE1 9RT, UK. 23Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany. 24Department of Bioinformatics, University of Wuerzburg, 97074 Würzburg, Germany.
*These authors contributed equally to this work. 
†A list of participants and their affiliations appears in the Supplementary Information.

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nature15766


LETTER RESEARCH

1 0  D E C E M B E R  2 0 1 5  |  V O L  5 2 8  |  N A T U R E  |  2 6 3

of medicated patients (denoted as T2D metformin+) varied strongly 
(21% CHN, 38% SWE and 77% MHD), samples were stratified on 
metformin treatment status. Multivariate analysis showed significant 
(permutational multivariate analysis of variance (PERMANOVA) false 
discovery rate (FDR) < 0.005) differences in gut taxonomic composi-
tion between metformin-untreated T2D (T2D metformin−) (n = 106) 
patients and nondiabetic controls (ND control) (n = 554), consistent  
with a broad-range dysbiosis in T2D (Fig. 1a and Supplementary  
Table 5; see also Extended Data Table 1a and Supplementary 
Discussion 3 for an analysis of variances broken down by source). 
While metformin treatment status could be reliably recovered from 
microbial composition using support vector machines, metformin- 
untreated T2D status itself could not (Fig. 1b and Supplementary  
Table 6). In contrast, in all three cohorts, drug-treatment-blinded 
T2D samples could be separated from ND control samples with  
similar accuracy as previously reported3,4, suggesting that the T2D 
metformin+  classifier robustly outperforms T2D metformin−   
classifiers across data sets (Supplementary Table 7).

We further explored T2D gut microbiome alterations in 106  
metformin-untreated T2D compared with 554 ND control samples 
through univariate tests of microbial taxonomic and functional differ-
ences, with significant trends shown in Fig. 2a. Metformin-untreated 
T2D was associated with a decrease in genera containing known 
butyrate producers such as Roseburia spp., Subdoligranulum spp. and 
a cluster of butyrate-producing Clostridiales spp. (Supplementary 
Table 8), consistent with previous indications3,4. More fine-grained 
taxonomic analysis indicated some driver species (Supplementary 
Discussion 4 and Supplementary Table 9), and further found 
changes in abundance of several unclassified Firmicutes, often 
reduced or reversed under metformin treatment (see Supplementary  
Discussion 4). Although an increase in Lactobacillus spp. was seen in 
treatment-unstratified T2D samples (as previously found experimen-
tally13), this trend was eliminated or reversed when controlling for 
metformin. Functionally, we found enrichment of catalase (conceiv-
ably a response to increased peroxide stress under inflammation) and 
modules for ribose, glycine and tryptophan amino acid degradation, 

but a decrease in threonine and arginine degradation, and in pyruvate 
synthase capacity (Supplementary Table 10). While these functional 
differences could result from strain-level composition changes or be 
a compound effect of subtle enrichment/depletion of larger ecological 
guilds, the abundance of most of these modules correlated with abun-
dance of the significantly altered microbial genera (Fig. 2a).

To interpret our findings on T2D gut microbiota shifts further, we 
compared them with 31 adult T1D patients (Supplementary Table 1;  
for further discussion of this sub-cohort, see also Supplementary 
Discussion 5 and Supplementary Tables 6 and 11). This group is dys-
glycaemic like T2D patients, allowing us to separate purely glycaemic 
phenotype effects from T2D-specific microbial features. Gene richness 
was significantly increased in the T1D microbiomes (Wilcoxon rank 
sum test FDR < 0.1) (Fig. 2b), but was reduced in T2D (Supplementary 
Table 10), as reported previously6. Features found to distinguish  
metformin-untreated T2D from ND control microbiomes did not rep-
licate when comparing T1D to ND control. Instead, most differences 
between metformin-untreated T2D samples and ND controls were 
reversed in adult T1D patients. In contrast, some microbial functions 
differentially abundant between metformin-untreated T2D and con-
trols showed similar trends in T1D samples (Fig. 2a), although not 
significantly, possibly owing to lower statistical power. We therefore 
conclude that the majority of gut microbiota shifts visible in metformin- 
untreated T2D are not simply effects of dysglycaemia, but rather 
directly or indirectly associated with the causes or progression of T2D.

Suspecting microbial mediation of some of the therapeutic effects 
of metformin, we next compared T2D metformin-treated (n = 93) 
and T2D metformin-untreated (n = 106) samples to characterize 
the treatment effect in more detail. Multivariate contrasts of T2D  
metformin-treated with T2D metformin-untreated samples appeared 
weaker than those between T2D metformin-untreated and ND con-
trol samples, the former only significant at the bacterial family level 
(PERMANOVA FDR < 0.1), suggesting that the effects of metformin 
treatment on gut microbial composition are poorly captured by mul-
tivariate analysis. Univariate tests of the effects of metformin treat-
ment showed a significant increase of Escherichia spp. and a reduced 
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Figure 1 | Type 2 diabetes is confounded by metformin treatment. 
Major treatment effects are seen in multivariate analysis and in classifier 
performance. a, Projection of genus-level gut microbiome samples 
from Danish, Chinese and Swedish studies constrained by diabetic state 
and metformin treatment. Multivariate analysis (dbRDA plot based on 
Canberra distances between bacterial genera) reveals a T2D dysbiosis, 
which overlaps only in part with taxonomic changes in metformin-
treated patients. The ordination projects all T2D metformin+  (n = 93, 
dark red), T2D metformin−  (n = 106, orange) and ND control (n = 554, 
teal) gut metagenomes, with confounding country effect adjusted for. 
Bacterial genera that show significant effects of metformin treatment 
and T2D status compared to ND control, respectively (limited to top five 
for each), are interpolated into the plane of maximal separation based 
on their abundances across all samples. Marginal box/scatter plots show 
the separation of the constrained projection coordinates (boxes show 
medians/quartiles, error bars extend to most extreme value within  

1.5 interquartile ranges). The T2D separation is significant (PERMANOVA  
FDR < 0.005) in the joint data set and independently significant in CHN and  
MHD samples. The metformin separation is significant (PERMANOVA 
FDR < 0.1; Canberra distances) in MHD and SWE samples. bp, butyrate-
producing. b, Classifying T2D and metformin treatment status based on 
gut microbiome profiles. Support vector machine classifiers were used to 
separate T2D metformin+  (n = 93), T2D metformin−  (n = 106) and ND 
control (n = 554) gut metagenomes from each other based on genus-level 
gut microbiome taxonomic composition. Bold curves represent mean 
performance in hold-out testing of 1 out of 5 of the data each time, with 
separate tests shown as dashed curves. Error bars show ±1 s.d. Metformin-
treated T2D samples can be well separated from controls (using Intestinibacter 
abundance as the only feature), whereas distinguishing T2D metformin−  
samples from ND control samples works poorly even in the best case, 
requiring 63 distinct microbial features to achieve this separation.  
ROC-AUC, area under the receiving operating characteristic curve.
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abundance of Intestinibacter spp., the latter fully consistent across 
the different country data sets (Fig. 3a), whereas the former is not 
seen in the CHN cohort where both diabetic individuals and controls 
are enriched in Escherichia spp. relative to Scandinavian controls. 
Correcting for differences in gender, body mass index and fasting 
levels of plasma glucose or serum insulin (some of which were signif-
icantly different between data sets, Supplementary Table 12) retained 
these differences as significant (Supplementary Table 13). Fasting 
serum concentrations of metformin were obtained for the MHD 
cohort and correlated significantly with abundances of both genera 
(Fig. 3b). Amplicon-based analysis of an independent T2D cohort like-
wise validated an increase of Escherichia spp. and a reduced abundance 
of Intestinibacter spp. in metformin-treated patients (Extended Data 
Fig. 1c, Extended Data Table 1b and Supplementary Discussion 6). 
The metformin-associated changes might derive from taxon-specific 
resistance/sensitivity to the bacteriostatic or bactericidal properties 
of the drug14. The genus Intestinibacter was defined only recently15 
and includes the human isolate Clostridium bartletti16, since reclas-
sified as Intestinibacter bartlettii. Little is known about its role in the 
gut ecosystem and how it might affect human health. However, I. 
bartlettii abundances were lower in pigs susceptible to colonization 
by enterotoxigenic Escherichia spp.17, consistent with the pattern 
seen here following metformin treatment. Analysis of the SEED (see 
Supplementary Discussion 7) and GMM (see Methods) functional 
annotations linked to Intestinibacter shows it to be resistant to oxida-
tive stress and able to degrade fucose, indicative of an indirect involve-
ment in mucus degradation. It also appears to possess the genetic 
potential for sulfite reduction, including part of an assimilatory sulfate 
reduction pathway. Analysis of gut microbial functional potential more 
generally suggested that indirect metformin treatment effects (Fig. 3c), 
including reduced intestinal lipid absorption18 and lipopolysaccharide 
(LPS)-triggered local inflammation, can provide a competitive advan-
tage to Escherichia species19, possibly triggering a positive feedback 
loop that further contributes to the observed taxonomic changes. At 
the same time, metformin may reverse T2D-associated changes, as 

several gut microbial genera were more similar in abundance to ND 
control levels under metformin treatment, notably Subdoligranulum 
and to some extent Akkermansia. The latter was previously shown to 
reduce insulin resistance in murine models when increased in abun-
dance through prebiotics20, and has been shown to similarly increase 
in abundance under metformin treatment10,21. In human samples, 
however, the trend was inconsistent between country subsets, and 
only MHD samples show a similar response (Extended Data Fig. 3). 
With respect to microbiota-mediated impact on host glucose regu-
lation, the functional analyses demonstrated significantly enhanced 
butyrate and propionate production potential in metformin-treated 
individuals (Fig. 3c and Supplementary Table 14). Interestingly, recent 
studies in mice have shown that an increase in colonic production of 
these short-chain fatty acids triggers intestinal gluconeogenesis (IGN) 
via complementary mechanisms. Butyrate activates IGN gene expres-
sion through a cAMP-dependent mechanism in enterocytes, whereas 
propionate, itself a substrate of IGN, activates IGN gene expression 
via the portal nervous system and the fatty acid receptor FFAR3  
(refs 22, 23). In rodents, the net result of increased IGN is a beneficial 
effect on glucose and energy homeostasis with reductions in hepatic 
glucose production, appetite and body weight. Taken together, our 
characterization of a metformin-associated human gut microbiome 
suggests novel mechanisms contributing to the beneficial effects of the 
drug on host metabolism.

Both on a compositional and functional level, we found significant 
microbiome alterations that are consistent with well-known side- 
effects of metformin treatment (Fig. 3c). Most of these metform-
in-associated functional shifts, including enrichment of virulence 
factors and gas metabolism genes, could be attributed to the signif-
icantly increased abundance of Escherichia species (Supplementary 
Discussion 7 and Supplementary Tables 14 and 15).

In conclusion, our results suggest partial gut microbial mediation of 
both therapeutic and adverse effects of the most widely used antidia-
betic medication, metformin, although further validation is required 
to conclude causality and to clarify how such mediation might occur. 
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Figure 2 | Gut microbiome signatures in metformin-naive T2D and in 
T1D. Differences between healthy controls and T2D patients contrasted 
against T1D as an alternative form of dysglycaemia. a, Taxonomic and 
functional microbiome signatures of metformin-naive T2D. The heat 
maps show bacterial genera (horizontal axis) and microbial gene functions 
(vertical axis) that are significantly (study-source-adjusted Kruskal–Wallis 
test and post-hoc Mann–Whitney U-test, markers in innermost marginal 
heat maps indicating * FDR < 0.05, + FDR < 0.1) different in abundance 
(nonparametric enrichment scores shown as intensity of innermost 
marginal heat maps; red–green colour scale) between T2D metformin−  
(n = 106) and ND control (n = 554) gut metagenomes, revealing a robust 
diabetic signature across data sets. None of these features is significantly 

different in a comparison of T1D (n = 31) with ND control (n = 277) gut 
metagenomes (outermost marginal heat maps, same notation as above), 
implying that they are not direct effects of dysglycaemia. The central heat 
map shows Spearman correlations (purple–red colour scale) between 
abundance of bacterial taxa and microbial gene modules (Spearman test 
FDR scores: * FDR < 0.05, * * * FDR < 0.001). b, Elevated gene richness 
in adult type 1 diabetes samples. Comparing MHD samples only, T1D 
(n = 31) gut metagenomes show significantly (Mann–Whitney U-test, 
+ FDR < 0.1, * FDR < 0.05) higher gut microbiome richness (that is, gene 
count) than all other sample subsets (n = 277 ND control, n = 58 T2D 
metformin+ , n = 17 T2D metformin−  gut metagenomes). Sample median 
richness is shown as horizontal black bars.
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Our study of T2D illustrates the need to disentangle specific disease 
dysbioses from effects of treatment on the human-associated micro-
biota. The importance of this point was further shown by the fact that 
the previously reported high accuracy3,4 of gut microbial signatures 
for identifying patients with treatment-unstratified T2D decreased 
markedly when considering a large set of metformin-naive patients 
only, highlighting a general need to bear treatment regimens in mind 
both when developing and applying microbiome-based diagnostic 
and prognostic tools for common disorders or their pre-morbidity 
states.
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 3 | Impact of metformin on the human gut microbiome. 
Characterization of the microbially mediated therapeutic and adverse 
effects of metformin. a, Gut microbial shifts under metformin treatment. 
Metformin treatment significantly (study-source-adjusted Kruskal–Wallis 
test and post-hoc Mann–Whitney U-test, * FDR < 0.05, * * * FDR < 0.001) 
increases Escherichia and lowers Intestinibacter abundance. Box plots show 
median/quartile abundances, whiskers extend to 1.58×  interquartile 
range/ n , for T2D metformin+  (nCHN = 15, nMHD = 58, nSWE = 20), T2D 
metformin−  (nCHN = 56, nMHD = 17, nSWE = 33) and ND control (nCHN 
= 185, nMHD = 277, nSWE = 92) gut metagenome samples. b, Correlations 
between serum levels of metformin and gut microbiota in Danish 
MetaHIT samples, including short-chain fatty acid production modules. 
Serum metformin levels of T2D patients (n = 75 gut metagenomes) are 
significantly (Spearman FDR < 0.1) positively correlated with Escherichia 
abundance, and in significant negative correlation with Intestinibacter 
abundance. Bacterial gene function modules for butyrate and propionate 

production increase in abundance as serum metformin levels increase.  
Dot markers are shown for all MHD samples for which serum metformin 
concentration was measured. Metformin-untreated T2D samples (serum 
concentration <10 mg ml−1) are shown in orange, treated samples in dark 
red. Spearman coefficients (ρ; calculated for treated samples only) and 
FDRs (Q) are shown. c, Microbial shifts under metformin treatment 
contribute to improved glucose control and to adverse effects. Schematic 
illustration of gut microbial changes and their impact on host health. 
Observed associations (orange lines) between microbial taxa abundances 
(orange ellipses), microbial functional potential (orange boxes), and blood 
values (filled orange boxes) and metformin treatment are linked with 
literature-derived metformin- or microbiota-induced host physiological 
effects (blue boxes and arrows; dashed arrows indicate hypothesized 
causality). Drug–host–microbiota interactions can contribute to 
previously described therapeutic (green triangles) and side (red triangles) 
effects of metformin treatment.
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METHODS
No statistical methods were used to predetermine sample size.
Danish MetaHIT diabetic study. Patient recruitment, enrolment and processing. 
Patients with T2D were either recruited from the Inter99 study population24 or 
from the out-patient clinic at Steno Diabetes Center, Gentofte, Denmark. Patients 
with known T2D were included if the patient had clinically defined T2D on the day 
of examination according to the WHO definition25. Inclusion criteria were fasting 
serum C-peptide above 200 pmol l−1 and negative testing for serum glutamic acid 
decarboxylase (GAD) 65 antibodies (to exclude T1D, latent autoimmune diabetes 
in adults), no secondary forms of diabetes like chronic pancreatitis diabetes or syn-
dromic diabetes, no antibiotic treatment 2 months before inclusion, and no known 
gastro-intestinal diseases, no previous bariatric surgery or medication known to 
affect the immune system.

All patients with T1D were recruited from the out-patient clinic at Steno 
Diabetes Center, Gentofte, Denmark (n = 31). Inclusion criteria were dependence 
on insulin treatment from time of diagnosis, fasting serum C-peptide below 
200 pmol l−1, glycated haemoglobin (HbA1c) above 8.0% (64 mmol l−1) to ensure 
current hyperglycaemia, T1D duration and dependence on insulin treatment 
> 5 years, no antibiotic treatment at least 2 months before inclusion, and no 
known gastrointestinal diseases. All study participants were of North European  
ethnicity.

The study participants were examined on 2 days that were approximately  
14 days apart. On the first day, study participants were examined after an over-
night fast. Height was measured without shoes to the nearest 0.5 cm, and weight 
was measured without shoes and wearing light clothes to the nearest 0.1 kg. 
Hip and waist circumference was measured using a non-expandable measuring 
tape to the nearest 0.5 cm. Waist circumference was measured midway between 
the lower rib margin and the iliac crest. Hip circumference was measured as 
the largest circumference between the waist and the thighs. Blood pressure was 
assessed while the participant was lying in an up-right position after at least  
5 min of rest using a cuff of appropriate size (A&D, UA-787 plus digital or A&D, 
UA-779). Blood pressure was measured at least twice and the average of the 
measurements was calculated. On the second day of examination, all participants 
provided a stool sample which was immediately frozen after home collection 
and stored at − 80 °C.

Information on medication status was obtained by questionnaire and inter-
view on the first day of examination. Of the 75 T2D patients, 10 patients (13%) 
received no hyperglycaemic medications and 58 patients (77%) received the 
biguanide metformin; of these 75 TD2 patients, 28 patients (37%) received met-
formin as the only anti-hyperglycaemic medication, 10 patients (13%) received 
sulfonylurea alone or in combination with metformin, 14 patients (19%) received 
a combination of oral antidiabetic drugs and insulin treatment and 4 patients 
(5%) were on insulin treatment only. Eleven patients (15%) received dipeptidyl 
peptidase-4 (DPP4) inhibitors or glucagon-like peptide-1 (GLP1), all of them in 
combination with metformin. Patients were reported as receiving anti-hyperten-
sive treatment if at least one of the following drugs was reported: spironolactone, 
thiazides, loop diuretics, beta blockers, calcium channel blockers, moxonidine 
or drugs affecting the renin–angiotensin system (n = 55 for T2D (73%) and 
n = 23 (74%) for T1D). Patients receiving statins, fibrates and/or ezetimibe 
were reported as receiving lipid-lowering medication (n = 56 for T2D (75%; all 
on statin treatment), and n = 24 for T1D (77%; 74% on statin treatment)). All 
T1D patients were on insulin treatment as their only blood glucose lowering 
treatment.

All biochemical analyses were performed on blood samples drawn in the 
morning after an over-night fast of at least 10 h. Plasma glucose was analysed 
by a glucose oxidase method (Granutest, Merck) with a detection limit of  
0.11 mmol l−1 and intra- and interassay coefficients of variation (CV) of 
<0.8% and <1.4%, respectively. HbA1c was measured on G7 HPLC Analyzer 
(Tosoh) by ion-exchange high-performance liquid chromatography. Serum 
C-peptide was measured using a time-resolved fluoroimmunoassay with the 
AutoDELFIA C-peptide kit (PerkinElmer, Wallac), with a detection limit of 
5 pmol l−1 and intra- and interassay CV of <4.7% and <6.4%, respectively. 
Serum insulin (excluding des and intact proinsulin) was measured using 
the AutoDELFIA insulin kit (PerkinElmer, Wallac) with a detection limit of 
3 pmol l−1 and with intra- and interassay CV of <3.2% and <4.5%, respec-
tively. Plasma cholesterol, plasma high-density lipoprotein cholesterol and 
plasma triglycerides were all measured on Vitros 5600 using reflect-spec-
trophotometrics. Plasma low-density lipoprotein cholesterol was calculated 
using Friedewald’s equation. Blood leukocytes and white blood cell differen-
tial count were measured on Sysmex XS 1000i using flow cytometrics. Plasma 
metformin was determined by high performance liquid chromatography fol-
lowed by tandem mass spectrometry. Briefly, the proteins were precipitated 

with acetonitrile containing the deuterated internal standard, metformin-d6, 
hydrochloride and the supernatant diluted by acetonitrile. The analysis was  
performed on a Waters Acquity UPLC I-class system connected to a Xevo TQ-S 
tandem mass spectrometer in electrospray positive ionization mode. Separation 
was achieved on a Waters XBridgeT BEH Amide 2.5-μ m column and gradient 
elution with 100 mM ammonium formate (pH 3.2), and with acetonitrile. The 
multiple reaction monitoring transitions used for metformin and metformin-d6 
were 130.2 > 71.0 and 136.2 > 60.0. Calibrators were prepared by spiking drug-
free serum with metformin to a concentration of 2,000 ng ml−1. B12 was meas-
ured using Vitros Immunodiagnostic Products. GAD65 was measured on serum 
samples by a sandwich ELISA (RSR ltd.). Inter- and intra-assay CV were < 16.6% 
and < 6.7% respectively, and with a detection limit of 0.57 Uml−1.

Stool samples were obtained at the homes of each participant and samples were 
immediately frozen by storing them in their home freezer. Frozen samples were 
delivered to Steno Diabetes Center using insulating polystyrene foam containers, 
and then they were stored at − 80 °C until analysis. The time span from sampling 
to delivery at the Steno Diabetes Center was intended to be as short as possible 
and no more than 48 h.

A frozen aliquot (200 mg) of each faecal sample was suspended in 250 μ l of 
guanidine thiocyanate, 0.1 M Tris, pH 7.5, and 40 μ l of 10% N-lauroylsarcosine. 
Microbial DNA extraction was then performed as previously described12. The 
DNA concentration and its molecular size were estimated using nanodrop 
(Thermo Scientific) and agarose gel electrophoresis.
Generation and availability of metagenomic samples. Already available Danish 
metagenomic samples were those reported in ref. 26 and references therein 
(excluding 14 samples removed due to average read length below 40 nucleotides, 
and with 5 Chinese and 21 Swedish samples with less than the rarefaction threshold 
of 7 million reads in total excluded from functional profile or diversity analyses), 
with newly sequenced samples deposited in the European Bioinformatics Institute 
Sequence Read Archive under accession ERP004605.

All information on Swedish samples was retrieved from previously published 
data4. In addition to published data on Chinese individuals3, we retrieved infor-
mation on metformin treatment in a subset of 71 Chinese T2D patients. One-
hundred and twelve samples from ref. 3 lacked metformin treatment metadata 
and were therefore discarded, except for measuring differences between the 
country data sets disregarding treatment or diabetic status. Characteristics of 
all study participants included in the present protocol are given in Supplementary 
Table 1.
Validation cohort recruitment and sample processing. Additional Danish 
T2D patients were recruited at the Novo Nordisk Foundation Center for Basic 
Metabolic Research, University of Copenhagen throughout 2014 as a part of 
the ongoing MicrobDiab study (http://metabol.ku.dk/research-project-sites/ 
microbdiab/). T2D patients were included in the study if the time of T2D diagno-
sis was less than 5 years ago, they were between 35 and 75 years of age, Caucasian 
and they had not received antibiotics within the past 4 months of inclusion. In 
total, 30 T2D patients (21 male and 9 female) were identified. Faecal samples 
were collected at the home of the patients, followed by immediate freezing of 
samples in home freezers, and transport of samples to the hospital stored on 
dry ice. The samples were stored at − 80 °C until DNA extraction. Information 
of medication was obtained from questionnaires. In total, 21 (70%) of the T2D 
patients received metformin.
Ethics statement. All individuals in both the Danish MetaHIT study and the 
Danish validation study gave written informed consent before participation 
in the studies. Both studies were approved by the Ethical Committees of the 
Capital Region of Denmark (MetaHIT study: HC-2008-017; validation study:  
H-3-2013-102). Both studies were conducted in accordance with the principles of 
the Declaration of Helsinki.
Construction of a non-redundant metagenomic reference gene catalogue. 
Illumina shotgun sequencing was applied to DNA extracted from 620 faecal 
samples originating from the MetaHIT project (Supplementary Table 1). Raw 
sequencing data were processed using the MOCAT (version 1.1) software pack-
age27. Reads were trimmed (option read_trim_filter) using a quality and length 
cut-off of 20 and 30 bp, respectively. Trimmed reads were subsequently screened 
against a custom database of Illumina adapters (option screen_fastafile) and the 
human genome version 19 using a 90% identity cut-off (option screen). The 
resulting high-quality reads were assembled (option assembly) and assemblies 
revised (option assembly revision). Genes were predicted on scaftigs with a min-
imum length of 500 bp (option gene_prediction).

Predicted protein-coding genes with a minimum length of 100 bp were clus-
tered at 95% sequence identity using Cd-hit (version 4.6.1)28 with parameters set 
to: -c 0.95, -G 0 -aS 0.9, -g 1, -r 1. The representative genes of the resulting clusters 
were ‘padded’ (that is, extended up to 100 bp at each end of the sequence using 
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the sequence information available from the assembled scaftigs), resulting in the 
final reference gene catalogue used in this study.

The reference gene catalogue was functionally annotated using 
SmashCommunity29 (version 1.6) after aligning the amino acid sequence of each 
gene to the KEGG30 (version 62) and eggNOG31 (version 3) databases.
Profiling of metagenomic samples. Raw insert (sequenced fragments of DNA 
represented by single or paired-end reads) count profiles were generated using 
MOCAT27 by mapping high-quality reads from each metagenome to the reference 
gene catalogue (option screen) using an alignment length and identity cut-off of 
45% and 95%, respectively. For each gene, the number of inserts that matched 
the protein-coding region was counted. Counts of inserts that mapped with the 
same alignment score to multiple genes were distributed equally among them. 
Taxonomic abundances were computed at the level of metagenomic operational 
taxonomic units (mOTUs)32, normalized to the length of the concatenated marker 
genes for each mOTU to yield the abundances used for the study, and subse-
quently binned at broader taxonomic levels (genus, family, class, etc.).
Rarefaction of metagenomic data and microbial diversity measurements. For 
all metagenome-derived measures except the mOTU taxonomic assignments, 
read counts were ‘rarefied’ in order to avoid any artefacts of sample size on 
low-abundance genes. Rarefied matrices were obtained as follows. Data matrices 
were rarefied to 7 million reads per sample. This threshold was chosen to include 
most samples, but 5 Chinese and 21 Swedish samples were excluded due to having 
less than 7 million reads per sample. Rarefactions were performed using a C+ +  
program developed for the Tara project33. In total we performed 30 repetitions, 
and in each of these we measured the richness, evenness, chao1 and Shannon 
diversity metrics within a rarefaction. The median value of these was taken as the 
respective diversity measurement for each sample. The first of 30 rarefactions of 
each sample were used to create a rarefied gene abundance matrix and KEGG ort-
hologue abundance profiles were calculated by summing the rarefied abundance 
of genes annotated to the respective KEGG orthologue gene.
Metagenomic species (MGS) construction. Clustering of the catalogue genes by 
co-abundance, as described in ref. 34, defined 10,754 co-abundance gene groups 
(CAGs) with very high correlations (Pearson correlation coefficient > 0.9). The 
925 largest of these, with more than 700 genes, were termed metagenomic species 
(MGS). The abundance profiles of the CAGs and MGSs were determined as the 
medium gene abundance (downsized to 7 million reads per sample) throughout 
the samples. Furthermore, the CAGs and MGS were taxonomically annotated by 
sequence similarity to known reference genomes.
Functional annotation/binning of metagenomes. To avoid drawing false conclu-
sions about gut microbial functions from high abundance of single genes remotely 
homologous to members of a functional pathway, we used an approach that 
required presence of multiple pathway members. Functional pathway abundance 
was calculated from gene catalogue KEGG orthologue annotation and MGS abun-
dances per sample. Thus KEGG orthologues present in each MGS were used to 
determine for that CAG/MGS which functional modules were represented within 
its genetic repertoire. This required that >90% of KEGG orthologues necessary 
for the completion of a reaction pathway should be present, when also taking 
alternative enzymatic pathways into account. The module abundance within a 
sample was calculated from CAG abundance in each respective sample, summing 
over all CAGs which had the module present. Rarefied median coverages of CAG/
MGS were used, so no further normalization of the module abundance matrix 
was required. Abundance of genetic potential falling under the same higher-order 
functional levels was calculated by summing up all abundances of the lower-level 
functional modules within each sample.

Existing functional annotation databases cover gut metabolic pathways rela-
tively poorly. To account for this, a number of additional bacterial gene functional 
modules were curated and annotated, extending the KEGG system; these are 
referred to in result tables as GMMs (gut microbial modules) and were previously 
described in ref. 12.
16S amplicon processing. 16S amplicons from frozen samples were sequenced 
300 bp and 200 bp paired-end reads using an Illumina miSeq machine. We 
used the LotuS35 pipeline in short amplicon mode with default quality filtering, 
clustering and denoising operational taxonomic units (OTUs) with UPARSE36, 
removing chimaeric OTUs against the RDP reference database (http://drive5.
com/uchime/rdp_gold.fa) with uchime37, merging reads with FLASH38 and 
assigning a taxonomy against the SILVA 119 rRNA database39, and further 
refined by BLAST searches against the NCBI rRNA database40 to identify 
Intestinibacter OTUs, using the following LotuS command line options: ‘-p miSeq 
-refDB SLV -doBlast blast -amplicon_type SSU -tax_group bacteria -derepMin 
2 -CL 2 -thr 14’.
Univariate tests of taxonomic or functional abundance differences. Microbial 
taxa where mean abundance over all samples was less than 30 reads, or that were 

present in less than 3 samples, were excluded from univariate and classifier anal-
yses. All abundances were normalized by total sample sum. For module tables, 
no feature filters were used except requiring the module to be present in at least 
20 samples. Filtered data tables were made available online (http://vm-lux.embl.
de/~forslund/t2d/).

Univariate testing for differential abundances of each taxonomic unit between 
two or more groups was tested using Mann–Whitney-U or Kruskal–Wallis tests, 
respectively, corrected for multiple testing using the Benjamini–Hochberg false 
discovery rate control procedure (Q values)41. Post-hoc statistical testing for 
significant differences between all combinations of two groups was conducted 
only for taxa with abundances significantly different at P < 0.2. Wilcoxon rank-
sum tests were calculated for all possible group combinations and corrected for 
multiple testing again using the Benjamini–Hochberg false discovery rate, as 
implemented in R. When controlling for potential confounders such as source 
study, we used blocked ‘independence_test’ function calls with options ‘ytrafo =  
rank, teststat= scalar’ for blocked WRST and ‘ytrafo =  rank, teststat= quad’ for 
blocked Kruskal–Wallis test, as implemented in the COIN software package42 for 
R. Similarly, we applied these independence tests in the framework of post-hoc 
testing as described above.

Analysis of correlations between taxonomic or functional features, com-
munity diversity indices and sample metadata variables were conducted using 
Spearman correlation tests as implemented in R, and corrected for multiple tests 
using the Benjamini–Hochberg false discovery rate control procedure. To control 
for confounders such as source study in univariate correlation analyses, blocked 
Spearman tests as implemented in COIN (settings ‘independence_test’, options 
ytrafo =  rank, xtrafo =  rank, distribution =  asymptotic) were used.

In some analyses, taxa were corrected for the influence of a continuous con-
founder variable such as microbial community richness; in these cases, the resid-
ual of a linear model between normalized log-transformed taxa abundances and 
overall sample gene richness was used to correct for the confounding variable. 
Power analysis was conducted by randomly subsampling to a given sample num-
ber, repeated 5 times to achieve robust results.
Ordinations and multivariate tests. All ordinations (NMDS, dbRDA) and sub-
sequent statistical analyses were calculated using the R package vegan43 using 
Canberra distances on normalized taxa abundance matrices, then visualized 
using the ggplot2 R package44. Community differences were calculated using a 
permutation test on the respective NMDS reduced feature space, as implemented 
in vegan.

Furthermore, we calculated intergroup differences for the microbiota using 
PERMANOVA45 as implemented in vegan. This test compares the intragroup 
distances to the intergroup distances in a permutation scheme and from this cal-
culates a P value. For all PERMANOVA tests, we used 2 × 105 randomizations and 
a normalized genus-level mOTU abundance matrix, using Canberra intersample 
distances. PERMANOVA post-hoc P values were corrected for multiple testing 
using the Benjamini–Hochberg false discovery rate control procedure. Analysis of 
variance broken down by cohort, treatment and disease status was conducted by 
fitting these distances to a linear model of sample metadata distances, as further 
described in Supplementary Discussion 3.2.
Classifier construction and evaluation. To create classifiers for separating sam-
ples from different subsets, an L1 restricted LASSO using the R glmnet pack-
age46 was carried out to test for an optimal value of lambda (number of features 
to be used in the final predictor) in a fivefold cross-validated and internally  
fourfold cross-validated LASSO run on all data. After this, the previously deter-
mined value of lambda was manually controlled for number of features used 
against the root mean square error of the classifier. In a fivefold cross-valida-
tion, an independent LASSO classifier was trained on 4/5 of the data using the  
previously determined value of lambda, and response values were predicted 
on 1/5 of the data. LASSO models with a Poisson response type were used in  
all cases.

Binary classifications between T2D and ND control samples were performed 
with an R reimplementation of the robust recursive feature elimination support 
vector machine (rRFE-SVM)47 procedure. The SVM was performed in an outer 
cross-validation scheme on 4/5 of the data. Of these, 90% were randomly selected 
200 times in each cross-validation for the RFE, to create a feature ranking from an 
average over these runs. Classifier performance was validated on the remaining 
1/5 of samples using the pre-established feature ranking. In case of several cohorts, 
the area under the receiver operating characteristic curve (ROC-AUC) scores were 
measured for each cohort separately.
Code availability. The MGS technology has previously been described34 and is 
available online (http://git.dworzynski.eu/mgs-canopy-algorithm/wiki/Home). 
The mOTU resource has been made publically available (http://www.bork.embl.
de/software/mOTU/) and was analysed using MOCAT27 which is also publically 
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available (http://vm-lux.embl.de/~kultima/MOCAT/). The 16S pipeline LotuS35 
is freely available online (http://psbweb05.psb.ugent.be/lotus). The novel gene 
catalogue has been deposited online (http://vm-lux.embl.de/~kultima/share/
gene_catalogs/620mhT2D/), as have the raw amplicon sequences (http://vm-lux.
embl.de/~forslund/t2d/). Statistical analysis and data visualization was conducted 
using freely available R libraries: vegan, COIN and ggplot2 and is described in 
more details elsewhere48,49. Data matrices and R source code for replicating the 
central tests conducted on the data have been deposited online (http://vm-lux.
embl.de/~forslund/t2d/).
Evaluation of dietary habits. A subset of the Danish study participants answered 
a validated food frequency questionnaire in order to obtain information on 
the habitual dietary habits. A complete data set was obtained for 66% of the  
nondiabetic individuals and 88% of T2D patients. When evaluating the die-
tary data, the consumed quantity was determined by multiplying portion size  
by the corresponding consumption frequency reported. Standard portion sizes 
for women and men, separately, were used in this calculation50,51. All food  
items in the questionnaire were linked to food items in the Danish Food 
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Extended Data Figure 1 | Validation of meta-analysis pipeline on 
simulated data. a, As a positive control for the meta-analysis pipeline, true 
signal was removed from the data by randomly reshuffling sample labels. 
Artificial contrast was thereafter introduced between random groups 
containing as many such reshuffled samples as were in the original sets of 
T2D metformin+  (nCHN = 15, nMHD = 58, nSWE = 20) and T2D 
metformin−  (nCHN = 56, nMHD = 17, nSWE = 33) samples in each original 
study subset, using the genus Akkermansia as an example feature. Samples 
randomly assigned to the sets of fake ‘metformin-treated’ and ‘control’ 
categories had their Akkermansia genus abundances adjusted to match the 
scale of the metformin effect on Escherichia genus abundance reported 
here (metformin-treated samples were roughly 150% as likely to have non-
zero abundance, with a roughly threefold higher abundance where 
present), while retaining their data set origin labels. The full meta-analysis 
pipeline (study set blocked Kruskal–Wallis test, post-hoc Wilcoxon rank-
sum test) was applied to these samples. Benjamini–Hochberg-corrected  
P values (FDR scores/Q values) from testing for a metformin effect on 
Akkermansia abundance are plotted in logarithmic scale on the vertical 
axis for 100 randomizations of the entire shuffled data set, either without 
(left box plot) or with (right box plot) the artificial Akkermansia 
metformin signal added after shuffling the data to remove original signal. 
Box plot borders show medians and quartiles, with points outside this 
range shown as vertical whisker lines and point markers. Whiskers extend 
to 1.58×  interquartile range/ n . Horizontal guide lines are shown for ease 
of visualization corresponding to different false discovery rate thresholds. 
For randomly reshuffled data, no significant contrast is detected as 
expected, whereas the artificially introduced signal is reliably detected, 

roughly matching expectations from the definition of the false discovery 
rate itself. b, To investigate statistical power for the other medications 
tracked, five random sub-samplings were made of pairs of medicated and 
non-medicated samples at each increasing number of included sample 
pairs and the overall analysis was replicated for each. We tested each genus 
for significantly differential abundance between cases and controls 
(Kruskal–Wallis test followed by post-hoc Wilcoxon rank-sum test) at 
different Benjamini–Hochberg FDR significance cut-offs, which are 
represented by different colours. Of the total number of samples for which 
medication status was known, equal numbers (n) of medicated and 
unmedicated samples were chosen randomly in repeated iterations. This 
number n was varied up to its largest possible value (smallest of either 
number of medicated or unmedicated samples in the overall data set) and 
is shown on the x axis. The y axis shows the number of significant features 
relative to each cut-off. Error bars show ± 1 s.d. of each set of five 
randomized samples. c, The graphs show Intestinibacter and Escherichia 
median and quartile abundances as box plots, whiskers extend to 1.58×  
interquartile range/ n , with samples that are extreme relative to the 
interquartile range shown as point markers, and with samples below 
detection threshold (DT) plotted at y = 0, in 21 additional T2D 
metformin+  and 9 additional T2D metformin−  samples. Differences in 
abundance between sample categories are significant (Wilcoxon rank-sum 
test, Benjamini–Hochberg FDR < 0.1). All samples in which Intestinibacter 
was detected fall among the 9 out of 30 untreated rather than the 21 out of 
30 metformin-treated samples, consistent with severe depletion under 
treatment; whereas Escherichia abundances increase under treatment, 
likewise consistent with observations from the main data set.
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Extended Data Figure 2 | Differences in physiological variables and 
microbiome characteristics between gut metagenome sample sets.  
Chinese (n = 368), Danish MetaHIT (n = 383) and Swedish (n = 145).  
a, Several participant metadata variables are significantly different 
between cohorts. A subselection is shown as box plots displaying median 
and quartiles, with samples outside this range shown as point markers and 
whiskers. Whiskers extend to 1.58×  interquartile range/ n . b, In a 
principal coordinates analysis ordination of Bray–Curtis distances 
between samples on bacterial family level, clear differences between 
samples from the different cohorts become apparent. These are largely 

explained by taxonomic differences as summarized at the phylum level.  
c, Box plots for gut microbial taxa show medians and quartiles of  
log-transformed read counts for mOTUs summarized at the level of 
bacterial genera for the three country subsets across sample categories, 
with samples outside this range shown as point markers and whiskers. 
Whiskers extend to 1.58×  interquartile range/ n . For all box plots, tests 
for significant differences (Kruskal–Wallis test adjusted for study source) 
were performed, with P values shown at the head of each figure. Asterisks 
denote statistical significance of tests done for each country subset 
separately (* * * P < 0.001).
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Extended Data Figure 3 | Microbiome taxonomic composition 
comparison between gut metagenomes with particular focus on 
possible taxonomic restoration under metformin treatment for certain 
taxa. T2D metformin−  (n = 106), T2D metformin+  (n = 93) and ND 
control (n = 554). Box plots show medians and quartiles log-transformed 
read counts for mOTUs summarized at the level of bacterial genera, for the 

three country subsets across sample categories, with samples outside this 
range shown as point markers and whiskers. Whiskers extend to 1.58×  
interquartile range/ n . Tests for significant differences (Kruskal–Wallis 
test adjusted for study source) were performed, with P values shown at the 
head of each figure. Asterisks denote statistical significance of tests for 
each country subset separately (* P < 0.05; * * P < 0.01; * * * P < 0.001).
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Extended Data Table 1 | Analysis of variances

a, The analysis of variances table shows the results of modelling the Canberra distances between T2D metformin−  (n = 106), T2D metformin+  (n = 93) and ND control (n = 554) samples with  
predictor variables encoding same/different diabetes status, same/different treatment, and same/different study source/country. Fractions of explained variance are taken as fractions of sum of  
square deviations from the model relative to the total deviation. b, Bacterial taxa found significantly different in gut abundance under metformin treatment were tested for significant differential  
relative abundance in a separate cohort under 16S amplicon sequencing between T2D metformin+  (n = 21) and T2D metformin−  (n = 9) samples (Wilcoxon rank-sum test).
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In the Supplementary Information to this Letter, data from two 
 previous studies were used in the meta-analysis. However, the unit con-
versions used to make the data comparable were inconsistent for two of 
the included phenotype measures. Although this error does not affect 
the data used to generate the conclusions of the Letter, it might affect 
follow-up studies using the glycated  haemoglobin (HbA1c) and serum  
insulin phenotypes. A revised Supplementary Table 1 (‘phenotypes’ tab) 
and corrected cohort summary statistics in Supplementary Tables 2  
(‘metadata’ tab) and 12 (‘metadata differences’ tab) are provided in 
Supplementary Information to this Corrigendum.

In addition, in the Supplementary Information on page 6, the sen-
tence “For clinically relevant markers, we found glycated haemoglobin 
A1c (HbA1c), reflecting long-term blood glucose levels, to be lowest 
in MHD T2D and highest in SWE ND CTRL samples (P < 2 × 10−16). 
Fasting plasma glucose levels were highest in CHN T2D patients and 
lowest in CHN ND CTRL, compared to corresponding SWE & MHD 
samples (P = 5.6 × 10−4).” should have read “For clinically relevant 
markers, we found fasting plasma glucose levels were highest in CHN 
T2D patients and lowest in CHN ND CTRL, compared to correspond-
ing SWE & MHD samples (P = 5.6 × 10−4).” On page 18, the sentence 
“To convert mU/l to pmol/l for insulin levels a factor of 6.0 was used.” 
should have read “To convert mU/l to pmol/l for insulin levels a factor 
of 6.945 was used.”

We would like to thank the readers who brought these issues to our 
 attention. The original Letter has not been corrected online.

Supplementary Information is available in the online version of the 
Corrigendum.
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