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Whole-genome sequencing identifies EN1 as a
determinant of bone density and fracture
A list of authors and affiliations appears at the end of the paper

The extent to which low-frequency (minor allele frequency (MAF)
between 1–5%) and rare (MAF # 1%) variants contribute to com-
plex traits and disease in the general population is mainly
unknown. Bone mineral density (BMD) is highly heritable, a major
predictor of osteoporotic fractures, and has been previously assoc-
iated with common genetic variants1–8, as well as rare, population-
specific, coding variants9. Here we identify novel non-coding
genetic variants with large effects on BMD (ntotal 5 53,236) and
fracture (ntotal 5 508,253) in individuals of European ancestry
from the general population. Associations for BMD were derived
from whole-genome sequencing (n 5 2,882 from UK10K (ref. 10); a
population-based genome sequencing consortium), whole-exome
sequencing (n 5 3,549), deep imputation of genotyped samples
using a combined UK10K/1000 Genomes reference panel
(n 5 26,534), and de novo replication genotyping (n 5 20,271).
We identified a low-frequency non-coding variant near a novel
locus, EN1, with an effect size fourfold larger than the mean of
previously reported common variants for lumbar spine BMD8

(rs11692564(T), MAF 5 1.6%, replication effect size 5 10.20 s.d.,
Pmeta 5 2 3 10214), which was also associated with a decreased risk
of fracture (odds ratio 5 0.85; P 5 2 3 10211; ncases 5 98,742 and
ncontrols 5 409,511). Using an En1cre/flox mouse model, we observed
that conditional loss of En1 results in low bone mass, probably as a
consequence of high bone turnover. We also identified a novel low-
frequency non-coding variant with large effects on BMD near
WNT16 (rs148771817(T), MAF 5 1.2%, replication effect size 5
10.41 s.d., Pmeta 5 1 3 10211). In general, there was an excess of
association signals arising from deleterious coding and conserved
non-coding variants. These findings provide evidence that
low-frequency non-coding variants have large effects on BMD
and fracture, thereby providing rationale for whole-genome
sequencing and improved imputation reference panels to study
the genetic architecture of complex traits and disease in the general
population.

Recently, genetic discoveries have generally focused on common
variants of small effect and rare coding variants identified through
genome-wide association studies (GWAS) and whole-exome sequen-
cing initiatives, respectively11,12. The effect of low-frequency and rare
non-coding variants upon common diseases, and their underlying
traits has been recently explored in an isolated population13,14, but
has not been well-studied to date in the general population. The
UK10K project has generated a large whole-genome sequence-based
resource to address this question in a general European-ancestry
population10, which is tenfold larger than the European subset of the
1000 Genomes project reference15.

Osteoporosis, diagnosed mainly through measurement of bone
mineral density (BMD), is a common systemic skeletal disease char-
acterized by an increased propensity to fracture. The narrow-sense
heritability of BMD has been estimated to be ,85%, and GWAS have
successfully identified numerous loci associated with BMD which in
total explain ,5% of the genetic variance for this trait16. However,
these studies have been mainly unable to assess the role of low fre-
quency (MAF 1–5%) and rare (MAF # 1%) genetic variation, as these

methods rely on testing common variants (MAF $ 5%). A recent
sequencing-based study identified a rare nonsense variant associated
with BMD using 4,931 Icelandic subjects with low BMD and 69,034
population-based controls9. This coding variant, which disrupts the
function of LGR4, appears to be confined to the Icelandic population.
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Figure 1 | Association signals near engrailed homeobox-1 for lumbar spine
BMD. a, A topological domain includes associated variants and EN1, and
chromatin interaction analysis with paired-end tag sequencing (ChIA-PET for
CTCF in MCF-7 cell line) suggests a smaller interacting region containing EN1,
and three genome-wide significant variants for lumbar spine BMD (in red). hES
cell, human embryonic stem cell. b, Association signals at the EN1 locus (green
line at P 5 1.2 3 1028) for lumbar spine BMD. Red circles and triangles
represent results from discovery and combined discovery and replication using
fixed-effects meta-analysis (see Supplementary Information), respectively.
c, Allele frequency versus absolute effect size for lumbar spine BMD for
previously identified variants (blue)8 and the three EN1 novel variants (red).
The red line denotes the mean of previously reported effect sizes.
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To investigate the role of rare and low-frequency genetic variation
on BMD in the general population of European descent, we first
undertook whole-genome sequencing in 2,882 subjects from two
cohorts in the UK10K project and whole-exome sequencing in 3,549
subjects from five cohorts (Supplementary Table 1) with BMD phe-
notypes. We then used a novel imputation reference panel generated
by the UK10K and 1000 Genomes consortia to impute variants
that were missing, or poorly captured, from previous GWAS
studies in 26,534 subjects (Supplementary Table 1 and Extended
Data Fig. 1a). The combined UK10K and 1000 Genomes reference
panel, which contained 3,781 and 379 European individuals with
whole-genome sequences from UK10K and 1000 Genomes projects,
respectively, enabled improved imputation, particularly of low-
frequency variants, when compared to the 1000 Genomes reference
panel alone17. We then undertook de novo replication genotyping of
lead variants in 13 cohorts for BMD, comprising 20,271 individuals of
European descent.

We meta-analyzed association results from all discovery cohorts
(ntotal 5 32,965, Supplementary Table 1) for BMD measured at the
forearm, femoral neck and lumbar spine, the sites where osteoporotic
fractures are most prevalent. We tested bi-allelic single nucleotide var-
iants (SNVs) with MAF $ 0.5% for association, declaring genome-wide
statistical significance at P # 1.2 3 1028 (accounting for all independ-
ent SNVs above this MAF threshold; Supplementary Methods)18. The
sequence kernel association test (SKAT) was used to assess association
of regions containing SNVs with MAF # 5% and #1% (Supplementary
Methods). All summary-level meta-analytic results are available for
unrestricted download (http://www.gefos.org). Novel genome-wide
significant loci were then tested for their relationship with fracture in
up to 508,253 individuals. Finally, functional genomics as well as cel-
lular and animal models were used to investigate the relevance of these
novel genetic associations to bone physiology.

Through meta-analysis of sequenced and imputed single-SNV asso-
ciation tests from the discovery cohorts (Supplementary Table 1), we
identified a novel locus at 2q14.2 harbouring variants associated
with lumbar spine BMD (lead low-frequency SNV rs11692564(T),
MAF 5 1.7%, effect size 5 10.24 s.d., P 5 4 3 1029, Fig. 1 and
Table 1). The direction of effect was consistent across all discovery
cohorts (Extended Data Fig. 2) and the mean imputation information
score for the imputed cohorts was 0.71 (Supplementary Table 2). This
variant is located 53 kilobase pairs (kb) downstream from engrailed
homeobox-1 (EN1), which, to our knowledge, has not previously
been associated with any osteoporosis-related traits in humans. The
rs11692564 variant was not present on HapMap imputation panels,
nor on genotyping chips, underlining the importance of developing
more comprehensive imputation reference panels.

To validate whole-genome sequencing genotypes at rs11692564, we
genotyped 1,853 whole-genome sequenced subjects, and found all
genotypes to be perfectly concordant (Supplementary Table 3). We
validated imputation of rs11692564 in 3,601 imputed subjects through
direct genotyping and observed that the association strengthened, and
its statistical significance improved, as compared to imputed results
(lumbar spine: imputed effect size 5 0.22 s.d.; P 5 0.05, genotyped
effect size 5 0.31 s.d.; P 5 0.004) (Supplementary Table 4). We
next sought additional evidence for the association at rs11692564 by

performing additional de novo genotyping in 16,233 independent
individuals and found a similarly large effect size in this population
(effect size 5 10.20 s.d.; P 5 3 3 1026). Meta-analysis of the discovery
and replication cohorts provided strong evidence for association
(Pcombined-meta 5 2 3 10214) (Table 1).

We also identified an additional association signal, arising from
rs55983207 (MAF 5 4%), 17 kb downstream of rs11692564 (r2 5

0.001) to be associated with femoral neck BMD from the combined
meta-analysis (Pmeta 5 7.2 3 10215, Table 1). A haplotype containing
both effect alleles was not observed from within the UK10K whole-
genome sequenced cohort (total number of haplotypes 5 7,562).

In addition to rs11692564, we also observed two additional novel
genome-wide significant variants for lumbar spine BMD near EN1,
rs6542457 (MAF 5 5.8%) and rs188303909 (MAF 5 1.6%), which are
391 kb downstream and 67 kb upstream from rs11692564, respectively
(Fig. 1b and Table 1). Variant rs188303909 was in moderate linkage
disequilibrium (LD) with rs11692564 (r2 5 0.47), and conditional ana-
lysis demonstrated that these two association signals were not inde-
pendent (Supplementary Table 5). However, rs6542457 was in low LD
with rs11692564 (r2 5 0.002), and remained independent in con-
ditional analyses (Supplementary Table 5). Overall, the EN1 locus
harbours multiple non-coding variants associated with lumbar spine

Table 1 | Novel variants from single SNV association tests
Discovery meta-analysis Replication meta-analysis Combined meta-analysis

BMD phenotype SNP Effect allele N b P I2 N b P I2 Freq. N b P I2

Lumbar spine rs11692564 T 25,225 0.24 4.1 3 1029 0.37 15,291 0.20 2.8 3 1026 0.46 0.016 40,516 0.22 1.7 3 10214 0.40
Lumbar spine rs188303909 T 25,225 0.18 1.7 3 1026 0.36 15,228 0.14 3.3 3 1024 0.13 0.019 40,453 0.16 1.3 3 1029 0.21
Lumbar spine rs6542457 C 25,225 0.08 6.5 3 1026 0.00 15,240 0.09 1.5 3 1024 0.00 0.058 40,465 0.09 2.2 3 1029 0.00
Femoral neck rs55983207 C 29,188 0.10 2.5 3 1027 0.19 16,248 0.17 9.8 3 10210 0.03 0.042 45,436 0.12 7.2 3 10215 0.23
Femoral neck rs11024028 G 29,188 0.06 2.2 3 1028 0.00 15,397 0.03 2.6 3 1022 0.30 0.198 44,585 0.05 1.3 3 1029 0.04
Forearm rs148771817 T 7,848 0.47 9.3 3 1029 0.15 2,539 0.41 5.5 3 1024 - 0.012 10,387 0.46 1.1 3 10211 0.00

b is the additive effect of the effect allele and is measured in standard deviations of bone mineral density.
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Figure 2 | Genome-wide features of association signals. a, Box plots of the
effect sizes of genome-wide significant SNVs (P , 1.2 3 1028), pruned for
LD (r2 , 0.2) by MAF bin for discovery cohorts. Grey bars represent the
values of b not observed and for which we lack statistical power to observe
(at a# 1.2 3 1028 and power $ 0.8). P values per phenotype are from the non-
parametric trend test across MAF bins (see Supplementary Information).
b, Proportion of single nucleotide variants (SNVs) passing a false discovery rate
(FDR) q-value of 0.05 across different annotation features in discovery cohorts
(green) versus matched control variants (red). The three panels on the right-
hand side show enrichment across a range of evolutionary constraint scores
(GERP11 score), in which green denotes SNVs above the threshold and red
denotes variants below the threshold. Bars represent standard error (for
Methods refer to the Supplementary Information). FA, forearm; FN, femoral
neck, LS, lumbar spine.
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and a single variant associated with femoral neck BMD. All three
genome-wide significant variants for lumbar spine BMD (Table 1)
co-localize solely with EN1 in a sub-region of high interaction fre-
quency within a single topologically associated domain19 (Fig. 1a).

The mean effect size of previously reported genome-wide significant
single nucleotide polymorphisms (SNPs) (MAF $ 5%) from the lar-
gest GWAS meta-analysis to date for lumbar spine and femoral BMD
was 0.048 s.d. and the largest effect size was 0.1 s.d.8. Hence, the
observed effect size at rs11692564 is fourfold larger than this mean
and twice that of the largest previously reported effect (Fig. 1c)8. For all

genome-wide significant variants, we observed larger effect sizes across
decreasing MAF bins (Fig. 2a).

An increase in BMD is associated with a decrease in risk of bone
fracture. We therefore tested the association of rs11692564(T)
(the low-frequency allele at EN1 associated with the largest increase
in BMD) in 18 cohorts comprising 508,253 individuals (98,742
cases and 409,511 controls, Supplementary Table 6). rs11692564(T)
was strongly associated with a decreased risk of fracture (odds
ratio (OR) 5 0.85 (95% confidence interval (CI): 0.80–0.89); P 5 2.0 3

10211; I2 5 0.00) (Table 2 and Supplementary Table 7). Table 2 also
shows clear associations between other variants near EN1 and risk of
fracture. The fracture association at rs11692564 was 2.9-fold larger
than the mean of fracture associations detected in the largest GWAS
to date, and 2.0-fold larger than the largest previously identified frac-
ture association8.

EN1 encodes a homeobox gene central to mouse limb development20,
which has been shown to be involved in Wnt signalling interaction
with Dkk1 (ref. 21). Studies of calvarial bone development and frac-
ture healing of long bones in mice have shown that perinatal En12/2

mutants display osteopenia and enhanced skull bone resorption22,
whereas in normal adult mice En1 is upregulated in the bone callus
post-fracture22. Investigating the functional role of EN1, we detected
En1 expression during osteoblastogenesis in developing and mature
cultured murine calvarial osteoblasts, but not in marrow-derived osteo-
clasts, or in human primary osteoclast cultures (Fig. 3a and Extended
Data Fig. 3). To determine where En1 is active in adult bones, we
analysed vertebrae from En1lacZ/1 knock-in mice23 and detected LacZ
expression in proliferative and hypertrophic chondrocytes, osteogenic
cells in the periosteum and trabecular bone surface, and in osteocytes of
cortical and trabecular bone (Fig. 3b and Extended Data Fig. 4).

Using En1cre/1; R26lox-STOP-lox–EYFP reporter mice to genetically tag
cells for which the En1 promoter was active at any point within a cell

Table 2 | Fracture meta-analysis of EN1 variants
Locus SNP Effect allele Effect allele freq. OR (95% CI) P N cases N controls I2

EN1

rs11692564 T 0.02 0.85 (0.80–0.89) 2.0 3 10211 98,742 409,511 0.00
rs188303909 T 0.03 0.89 (0.85–0.93) 9.8 3 1027 95,669 405,697 0.00
rs55983207 C 0.05 0.93 (0.90–0.96) 5.4 3 1026 97,651 407,487 0.20
rs6542457 C 0.06 0.98 (0.95–1) 1.2 3 1021 95,669 405,697 0.17
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Figure 3 | Mouse En1 functional experiments. a, Left, quantitative
expression of En1 and its temporal pattern (RNA-seq) in cultured calvarial
murine osteoblasts (n 5 3 per time point). Right, confirmation of the
expression of En1 in a separate RT–PCR experiment of cultured calvarial
murine osteoblasts and lack of expression in osteoclasts matured from bone-
marrow-derived precursor cells (positive controls for osteoblasts (osteocalcin)
and osteoclast (RANK) are also shown). TPM, transcripts per million.
b, Representative sections from lumbar vertebra 2 show the growth plate and
bone marrow (GP and BM, left), cortical bone (CB, middle), and trabecular
bone (TB, right) at 340 magnification from En1lacZ/1 adult mice (n 5 2)
stained for b-gal activity (LacZ blue, En11 cells) and alkaline phosphatase
(AP, red late chondrocytes and actively calcifying tissues). In the periosteum
(PO), all the LacZ1 cells were AP1; some AP2 BM cells expressed LacZ.
Some AP2 proliferative chondrocytes in the GP expressed LacZ1, whereas
most AP1 hypertrophic chondrocytes expressed LacZ. Some AP2 osteocytes
(Ocy) in CB and TB were LacZ1. c, Left, histomorphometry images of lumbar
vertebrae 5 show decreased trabecular bone volume and increased bone
surface area occupied by osteoclast cells when comparing En1cre/flox (self-
deleted En1, sdEn1) mutants and En1flox/1 control mice. Right, reconstructed
micro-CT images show the mineral density in a control and an sdEn1 animal.
d, Micro-CT and histomorphometry measures within sdEn1 (n 5 5) and
controls (En1lox/1, n 5 6). By micro-CT, sdEn1 mutants exhibit decreased L5
trabecular number (Tb.N) and thickness (Tb.Th), as well as deceased bone
volume fraction (BV/TV). Using histomorphometry, sdEn1 mutants exhibit
increased osteoclastic area (TRAP/BS). BS, bone surface; TRAP, tartrate
acid staining. Average for each measure denoted by the solid horizontal line.
For each group, P value between control and sdEn1 is noted below label and was
computed using paired t-test.
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lineage, we confirmed that En1 expression was only observed in osteo-
genic lineages (Extended Data Fig. 4). As most En12/2 animals die
soon after birth, we generated En1cre/flox self-deleted En1 (sdEn1)
conditional mutants24 (n 5 5) and demonstrated by X-ray micro-
computed tomography (micro-CT) that mutants have lower trabecu-
lar bone volume fraction (BV/TV), trabecular number, and trabecular
thickness in both the lumbar L5 vertebrae (Fig. 3c, d and Extended
Data Fig. 5) and the femur (Extended Data Fig. 5) as compared to
littermate controls (n 5 6). A decrease in femoral cortical thickness
was also observed (Extended Data Fig. 5). By histomorphometry
(Fig. 3c), we observed that the sdEn1 mice had a statistically higher
proportion of osteogenic and osteoclastic cells compared to littermate
controls (Fig. 3d and Supplementary Table 8). The driving force for the
low bone mass would appear to be an increase in osteoclastic activity
induced by En1 null osteogenic cells. This in turn initiates the expected
coupled increase in mineralizing bone formation (Fig. 3b, d) mediated
by an increased number of osteogenic cells and thus conforms to a high
turnover osteoporosis-like phenotype, although dynamic histomor-
phometry and evidence from bone turn-over markers would be
required to confirm an increased rate of bone formation (Extended
Data Fig. 4). Genetic evidence from homologous regions in mice also
supported a role for En1 in bone, as the homologous region contained
a quantitative trait loci (QTL) peak for femur BMD (Supplementary
Table 9)25. These findings, together with an earlier study focusing on
En1 function in calvarial bone development22 implicate this gene as an
important mediator in skeletal biology.

Together, these findings suggest that EN1 plays an important role in
bone physiology and that low-frequency non-coding variants map-
ping near EN1 have large effects on BMD and risk of fracture in the
general European population.

We also identified a novel SNV at 7q31.31 within the intron of
CPED1 (rs148771817(T), MAF 5 1.2%, effect size 5 10.47 s.d.,
Pdiscovery 5 9.31 3 1029) associated with forearm BMD (Table 1,
Supplementary Table 10 and Extended Data Fig. 6). We replicated
the association at rs148771817 in 2,539 independent individuals and
found a similar effect size (effect size 5 10.41 s.d., P 5 6 3 1024), and
combined meta-analysis of the discovery and replication cohorts for
further improved statistical evidence for association (10.46 s.d.,
P 5 1 3 10211) (Table 1). This variant had an effect size 2.2-fold larger
than the mean of previously reported effects for common variants
associated with forearm BMD (Extended Data Fig. 6)26.

We previously identified rs7776725 to be associated with BMD at
WNT16, a gene neighbouring CPED1, (Extended Data Fig. 6) and
demonstrated that knockout of Wnt16 in mice confers a 50% decrease
in bone strength (P 5 7 3 10213)26,27. We have recently shown that
osteoblast-derived Wnt16 represses osteoclastogenesis28. As a result,
we undertook conditional analysis of rs148771817 upon rs7776725.
The rs148771817 variant remained associated after conditioning,
albeit with lower statistical significance (effect size 5 0.35 s.d.;
Pmeta 5 1 3 1027; Extended Data Fig. 6d). Similarly, conditional ana-
lysis of the common variant upon rs148771817 revealed little change in
the effect size or the statistical significance (Supplementary Table 5).
Although we acknowledge that both variants may be causal, our data
does not permit us to distinguish if one or both of these variants have
distinct biologic effects.

While rs148771817 is intronic in CPED1, we found that DNA
accessibility at this region, as measured by DNase I hypersensitivity data
from ENCODE studies, was moderately correlated with DNA access-
ibility at the WNT16 promoter in 305 cell types (maximum r2 5 0.4,
P 5 2.2 3 10215, Supplementary Table 11), whereas correlation to
the promoter of CPED1 was lower (maximum r2 5 0.1, P 5 0.06).
Moreover, analysis of chromosome conformation capture Hi-C inter-
action frequencies from human H1 embryonic stem cells shows elevated
interaction frequency between rs148771817 and WNT16 (Extended
Data Fig. 6), though we also observed stronger interactions between
these loci and their immediate neighbouring regions.

We assessed whether association signals were enriched for deleteri-
ous coding SNVs or SNVs with increased evolutionary constraint (see
Supplementary Methods). These two groups of SNVs were matched to
control SNVs by MAF and distance to gene (Supplementary Methods
and Supplementary Table 12), followed by LD pruning (r2 , 0.2). We
observed enrichment of association signal across the spectrum of pos-
itive evolutionary constraint thresholds, which was comparable to
deleterious coding variants (Fig. 2b).

In total, we have identified multiple variants associated with BMD,
including 3 genome-wide significant loci for forearm BMD, 14 for
femoral neck and 19 for lumbar spine (Supplementary Tables 10,
13–15, and Extended Data Figs 7 and 8). A common variant not on
previous HapMap imputation panels, near the SOX6 gene was also
identified (rs11024028, MAF 5 20%) (Table 1), and was found to be an
independent signal from a previously reported signal at this locus
(rs7108738, r2 5 0.002)8. Consistent with recent experiments29,30,
region-based collapsing methods did not identify any convincing
novel associations that were not already identified as genome-wide
significant through single SNV associations. This included collapsing
variants below 1% and 5% MAF thresholds, including all variants, only
variants with increased GERP11 scores or those from protein-coding
regions (Supplementary Table 16 and Extended Data Figs 9 and 10).

We have identified low-frequency, non-coding genetic variants of
large effect that are present in the general population and associate
with BMD and fracture. These variants have effect sizes up to fourfold
larger than the mean effect described for common variants associated
with BMD and approximately threefold larger than those for fracture.
Our study illustrates that larger reference panels, covering relevant
ethnicities, will facilitate the discovery of low frequency and rare var-
iants. This was enabled here by a large imputation reference panel
(UK10K and 1000 Genomes) which offered tenfold more European
samples than the 1000 Genomes reference panel available at the time of
analysis (phase I version 3). Although we did not identify coding low-
frequency or rare variants associated with BMD at a genome-wide
significant level, we did observe that deleterious coding variants were
enriched for association as a group. This suggests the existence of as yet
undiscovered coding variants influencing BMD. Importantly, we have
also generated new functional evidence for a central role of the homeo-
box protein engrailed-1 gene in regulation of BMD and identified EN1
as a critical protein in bone biology. Our findings demonstrate the
utility of whole-genome sequencing-based discovery and deep
imputation to enable the identification of novel genetic associations.
These discoveries provide an improved understanding of the patho-
physiology of osteoporosis and suggest that more comprehensive sets
of whole-genome sequenced individuals, covering relevant ethnicities,
will enable accurate imputation and thus facilitate discovery of low
frequency and rare variants influencing complex traits and common
disease.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
More details for the Methods are in the Supplementary Information. All human
studies were approved by their institutional ethics review committees, and all
participants provided written informed consent.
Data reporting. No statistical methods were used to predetermine sample size. The
experiments were not randomized. The investigators were not blinded to allocation
during experiments and outcome assessment, except the teams undertaking micro-
CT and histomorphometry experiments were blinded to each other’s results.
Whole-genome sequencing. ALSPAC and TwinsUK cohorts were sequenced at
an average read depth of 6.73 through the UK10K program (http://www.UK10K.
org) using the Illumina HiSeq platform, and aligned to the GRCh37 human
reference using BWA31. SNV calls were completed using samtools/bcftools and
VQSR and GATK were used to recall these calls.
Whole-exome sequencing. The AOGC, FHS, RS-I, ESP and ERF cohorts were
whole-exome sequenced as described in the Supplementary Information.
Whole-genome genotyping. All remaining discovery cohorts were genome-wide
genotyped and imputed to the UK10K/1000 Genomes reference panel, as
described in the Supplementary Information.
Association testing for BMD. Single variants with a MAF . 0.5% were tested for
an additive effect on lumbar spine, femoral neck and forearm BMD, adjusting for
sex, age, age2, weight and standardized to have a mean of zero and a standard
deviation of one. Meta-analysis of cohort-level summary statistics was undertaken
using GWAMA32. Conditional analyses for significant SNVs was performed using
GCTA33. Region-based collapsing tests were performed using skatMeta34, an
implementation of the SKAT method35 that enables the meta-analysis of multiple
cohorts. For each cohort, variants with MAF # 5% or #1% were collected and
meta-analysis using skatMeta was conducted for windows of 30 SNVs within each
region, overlapping by 10 SNVs.
Replication genotyping. Lead SNVs were selected for replication genotyping,
which was performed at LGC Genomics, Erasmus MC and deCODE Genetics
using KASP genotyping. Association testing for replication genotyping was under-
taken using the same additive model, using the same covariates for BMD, as above.
Fracture association testing. Fractures were defined as those occurring at any
site, except fingers, toes and skull, after age 18. Both incident and prevalent frac-
tures were included and were verified by either radiographic, casting, physician, or
subject reporting. Fractures resulting from any type of trauma were considered.
Covariates included in the additive model were age, age2, sex, height, weight,
oestogen/menopause status (when available), ancestral genetic background and
cohort-specific covariates (such as clinical centre). Association testing was done in
two phases. The first involved all 1,482 genome-wide significant SNVs for BMD.
In the second phase of fracture association testing, variants at EN1 were assessed in
18 cohorts, comprising 98,467 cases and 409,736 controls. Meta-analysis of
cohort-level summary statistics was performed using GWAMA32.

Functional genomics. We tested whether variants with increasing GERP11

scores36 were more strongly associated with BMD than SNVs matched for distance
to gene and MAF, after LD pruning using PLINK37 at an r2 of ,0.2, using
windows of 100 kb and a step of 20 kb. Coding variants were partitioned as
deleterious using Variant Effect Predictor38 LD pruned (r2 , 0.2). The proportion
of variants passing an FDR q-value of #0.05 were reported.
En1 murine expression experiments. Pre-osteoblast-like cell were differentiated
to osteoblasts from calvaria of C57BL/6J mice and expression levels of each gene
was quantified using RNA-seq. The temporal expression of En1 in cell culture
experiments of these osteoblasts and bone-marrow-derived osteoclasts (isolated
from long bones of six-week-old mice) was measured by PCR, with Bglap (osteo-
calcin) and Tnfrsf11a (RANK), serving as controls. Total mRNA for En1 in osteo-
blasts was quantified using real-time PCR.
Micro-CT and histomorphometry. Mouse husbandry and all experiments were
performed in accordance with Memorial Sloan-Kettering Cancer Center
Institutional Animal Care and Use Committee-approved protocols. Bone char-
acteristics of self-deleted conditional En1(sdEn1) mutants were compared to
En11/flox littermates using micro-CT. The same animals were assessed for histo-
morphometry (and laboratories performing micro-CT and histomorphometry
were blinded to each other’s results). After tissue sectioning, samples were stained
for calcification (calcein blue), tartrate acid (TRAP) to assess for osteoclasts and
alkaline phosphatase to assess for osteoblasts.
Murine histology. Two-month-old En1lacZ/1 mice39 were sectioned at bone sites
and stained for X-gal and/or alkaline phosphatase and imaged at 3400.
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Extended Data Figure 1 | Discovery single variant meta-analysis. a, Overall
study design. b, From top to bottom, quantile–quantile plots for the sex-
combined single SNV meta-analysis, sex-stratified single SNV meta-analysis
(forearm phenotype consists solely of female-only cohorts), and sex-combined
single SNV conditional meta-analysis Plots depicts P values prior (blue)
and after (red) conditional analysis on genome-wide significant variants (see
Supplementary Methods). c, From top to bottom, Manhattan plots for sex-
combined meta-analysis for lumbar spine BMD, femoral neck BMD, and
forearm BMD. Each plot depicts variants from the UK10K/1000G reference
panel with MAF . 0.5% across the 22 autosomes (odd, grey; even, black)
against the 2log10 P value from the meta-analysis of 7 cohorts (dots). Also

depicted are the subset variants from the reference panel that are also present in
ref. 8 with P value ,5 3 1026 (diamonds). Variants with MAF , 5% and
P , 1.2 3 1026 are also depicted (red). d, Quantile–quantile plots for the sex-
combined meta-analysis of lumbar spine, femoral neck, and forearm BMD for
SNVs present across both exome-sequenced and genome-sequenced and
imputed cohorts, that is, SNV present only in genome-sequenced or imputed
cohorts are not shown. e, Manhattan plot for the meta-analysis of sex-
combined results for lumbar spine BMD for SNVs present in exome-sequenced
and genome-sequenced and imputed cohorts, that is, SNV present only in
genome-sequenced or imputed cohorts are not shown (from left to right:
lumbar spine, forearm and femoral neck BMD).
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Extended Data Figure 2 | Forest plots by cohort for genome-wide
significant loci from discovery meta-analysis. Forest plots for three BMD
phenotypes are shown. Title of each plot includes gene overlapping the SNV

and its genomic position on build hg19. P values are from fixed-effect meta-
analysis (see Supplementary Information).
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Extended Data Figure 3 | Gene expression in human and mouse.
a, Quantification of Dock8 expression and its temporal pattern through RNA-
seq in cultured calvarial murine osteoblasts across day 2 through to day 18 of
osteoblast development. Shown for comparison is Bglap, which encodes
osteocalcin, a critical protein in osteoblasts. b, Quantification of expression of
genome-wide significant genes and their temporal pattern through RNA-seq
in cultured calvarial murine osteoblasts across day 2 through to day 18 of
osteoblast development. c, Expression of EN1 mRNA in human cells presented

as per cent of GAPDH mRNA. d, Expression of En1 in control and sdEn1 mice
in purified osteoblast culture. For osteoblast marker gene expression, total
mRNAs were purified from osteoblast cultures at day 10 and measured using
quantitative real-time PCR. mRNA levels were normalized relative to
GAPDH mRNA. e. Real-time PCR expression of control and sdEn1 as
compared to 18S mRNA in whole vertebral bone extract. All data are shown
as mean 6 s.e.m. Significance computed by Student’s unpaired t-test.
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Extended Data Figure 4 | Histological assessment of En1cre-expressing cells
in skeletal cells of the vertebra. a, Lineage history of En1cre-expressing cells
in skeletal cells of the vertebra. The En1cre allele was combined with the
R26LSL-YFP reporter allele and examined using frozen fluorescent immunohisto-
chemistry and alkaline phosphatase (AP) staining. Cell nuclei were detected
with DAPI. YFP-expressing cells have expressed Cre (En1) at some time in their
history. In subpanel A, control animals lacking the R26LSL-YFP reporter show
low background YFP signal (green). In subpanel B, En1cre/1; R26LSL-YFP/1

mice YFP-expressing cells are detected in the growth plate chondrocytes of
the vertebra (asterisk), trabecular bone lining cells (arrow) and osteocytes
(arrowhead). Note, high fluorescent background staining in the marrow space.
In subpanel C, the same section is shown stained for AP activity using the Fast

Red substrate. Strong activity is present in the hypertrophic chondrocytes of
the growth plate and trabecular bone lining cells (arrow). In subpanel D,
alignment of the AP and YFP images shows that the trabecular lining cells
co-express AP and YFP. b, Co-localization of En1 and alkaline phosphatase
expression. Images of lumbar vertebrae sections (growth plate and trabecular
bone regions, 340 magnification) from two-month old En1lacZ/1 mice (see
Fig. 3b), stained for LacZ and alkaline phosphatase (AP), false-coloured as
indicated. Double-positive cells are indicated by arrows, single-positive cells are
indicated by arrowheads (LacZ1) or asterisks (AP1). Except for some
chondrocytes, most AP1 cells are also LacZ1, that is, express En1. The bone
marrow was digitally removed, as it contains no AP1 cells.
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Extended Data Figure 5 | Micro-CT results for control (En1flox/1) and self-
deleting En1 knockout (sdEn1, En1cre/flox) animals. a, Trabecular bone
micro-CT images from lumbar vertebra 5. b, Morphological characteristics
at lumbar vertebra 4, 5, and 6 (from bottom to top). c, d, Morphological
characteristics of left femur trabecular bone (c) and left femur cortical bone (d).

e, Micro-CT parameter results for the comparison of control and sdEn1 animals
at lumbar vertebra 5, femur trabecula, and femur cortical bone. Horizontal lines
denote mean of observations. Significance between control and sdEn1 is
calculated using an unpaired t-test.
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Extended Data Figure 6 | Novel association from 7q31.3. a, Chromatin
interaction data from Hi-C performed in H1 embryonic stem cells23 of a 2 Mb
region encompassing rs148771817 (red and identified by arrow) and
WNT16. b, The left axis denotes the association P value (red and green lines
at P 5 1.2 3 1025 and 1.2 3 1028, respectively). The novel genome-wide
significant SNV, rs148771817, within an intron of CPED1, and the lead
genome-wide significant SNV rs7776725 upstream to WNT16 (within

FAM3C) are in low LD with each other. c, Allele frequency versus absolute
effect size (in standard deviations) for forearm BMD of all previously identified
genome-wide significant variants (blue)8 and the novel variant within
CPED1 (red), rs148771817 from replication meta-analysis. The blue line
denotes the mean of effect sizes for previously reported forearm BMD variants.
d, Meta-analysis summary statistics of rs148771817 conditioned on rs7776725.
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Extended Data Figure 7 | Regional plots of genome-wide significant loci
from single-SNV association tests for forearm and femoral neck BMD. Each
regional plot depicts SNVs within 1 Mb of a locus’ lead SNV (x axis) and
their associated meta-analysis P value (2log10). SNVs are colour-coded

according to r2 with the lead SNV (labelled, r2 calculated from UK10K whole-
genome sequencing data set). Recombination rate (blue line), and the
position of genes, their exons and the direction of transcription are also
displayed (below plot).
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Extended Data Figure 8 | Regional plots of genome-wide significant loci
from single-SNV association tests from lumbar spine BMD. Each
regional plot depicts SNVs within 1 Mb of a locus’ lead SNV (x axis) and
their associated meta-analysis P value (2log10). SNVs are colour coded

according to r2 with the lead SNV (labelled, r2 calculated from UK10K
whole genome sequencing data set). Recombination rate (blue line), and the
position of genes, their exons and the direction of transcription are also
displayed (below plot).
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Extended Data Figure 9 | Region-based association tests using skatMeta for
windows of 30 SNVs and window step of 20 SNVs. a, Left, quantile–quantile
plots for forearm (FA) BMD, femoral neck (FN) BMD, and lumbar spine (LS)
BMD. For each MAF range considered (,5% or , 1%), analysis was conducted
across all variants, variant overlapping coding exons, and variants with
GERP11 score .1. b, Right, Manhattan plots forearm BMD, femoral neck

BMD, and lumbar spine BMD. For each MAF range considered (,5%
or , 1%), analysis was conducted across all variants, variant overlapping
coding exons, and variants with GERP11 score .1. Blue lines indicate
genome-wide suggestive (P 5 1.2 3 1026) thresholds and red lines indicate
genome-wide significant (P 5 1.2 3 1028) thresholds.
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Extended Data Figure 10 | Single variant analysis of signals from region-
based tests. a, Drop-one SNV (left) and drop-one cohort (right) for genome-
wide significant 30 SNV windows for femoral neck and forearm BMD
from skatMeta analysis. On left, for a given 30 SNV window, the 2log10P
of skatMeta test for 29 SNVs, excluding (that is, dropping) the SNV at
position labelled on the x axis. On right, for given 30 SNV window on left,

the 2log10P of skatMeta test for all cohorts, excluding (that is, dropping)
cohort labelled on x axis. b, Regional view of CPED1/WNT16 locus for forearm
BMD. Significant SNVs from single variant meta-analysis (rs148771817 and
rs79162867, in blue) overlap significant regions found using region-based test
(red bars).

LETTER RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved


	Whole‐genome sequencing identifies EN1 as a determinant of bone density and fracture
	Main
	Methods
	Data reporting
	Whole‐genome sequencing
	Whole‐exome sequencing
	Whole‐genome genotyping
	Association testing for BMD
	Replication genotyping
	Fracture association testing
	Functional genomics
	En1 murine expression experiments
	Micro‐CT and histomorphometry
	Murine histology

	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


