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The proposal that evolution could be used as a metaphor for prob-
lem solving came with the invention of the computer1. In the 
1970s and 1980s the principal idea was developed into different 

algorithmic implementations under names such as evolutionary pro-
gramming2, evolution strategies3,4 and genetic algorithms5, followed 
later by genetic programming6. These branches merged in the 1990s, 
and in the past 20 years so-called evolutionary computation or evo-
lutionary computing has proven to be highly successful across a wide 
range of computational tasks in optimization, design and modelling7–9. 
For instance, urgent needs in the development of low-cost thin-film 
photovoltaic technologies were addressed using genetic algorithms 
for topology optimization10. This led to highly efficient light-trapping 
structures that exhibited more than a threefold increase over a classic 
limit, and achieved efficiency levels far beyond the reach of intuitive 
designs. It has also been convincingly demonstrated that evolutionary 
approaches are powerful methods for knowledge discovery. For exam-
ple, equations were evolved to model motion-tracking data captured 
from various physical systems, ranging from simple harmonic oscilla-
tors to chaotic double pendula. This approach discovered, with limited 
prior knowledge of physics, kinematics or geometry, several laws of 
geometric and momentum conservation, and uncovered the ‘alphabet’ 
used to describe those systems11.

From the perspective of the underlying substrate in which the evolu-
tion takes place, the emergence of evolutionary computation can be 
considered as a major transition of the evolutionary principles from 
‘wetware’, the realm of biology, to software, the realm of computers. 
Today the field is at an exciting stage. New developments in robotics and 
rapid prototyping (3D printing) are paving the way towards a second 
major transition: from software to hardware, going from digital evolu-
tionary systems to physical ones12,13. 

In this Review we outline the working principles of evolutionary algo-
rithms, and briefly discuss the differences between artificial and natural 
evolution. We illustrate the power of evolutionary problem solving by 
discussing a number of successful applications, reflect on the features 
that make evolutionary algorithms so successful, review the current 
trends of the field, and give our perspective on future developments.

Evolution and problem solving
The essence of an evolutionary approach to solve a problem is to equate 
possible solutions to individuals in a population, and to introduce a 
notion of fitness on the basis of solution quality. To obtain a working 

evolutionary algorithm one has to go through a number of design steps. 
The first step is to identify a representation: a suitable data structure 
that can represent possible solutions to the problem. The next step is to 
define a way of measuring the quality of an individual based on prob-
lem-specific requirements. The final step is to specify suitable selection 
and variation operators (Fig. 1). 

Analogous to natural evolution, an evolutionary algorithm can be 
thought of as working on two levels. At the higher level (the original 
problem context), phenotypes (candidate solutions) have their fitness 
measured. Selection mechanisms then use this measure to choose a pool 
of parents for each generation, and decide which parents and offspring 
go forward to the next generation. At the lower level, genotypes are 
objects that represent phenotypes in a form that can be manipulated 
to produce variations (Box 1). Genotype–phenotype mapping bridges 
the two levels. At the genotypic level, variation operators generate new 
individuals (offspring) from selected parents. Mutation operators are 
based on one parent (asexual reproduction) and randomly change some 
values. Recombination operators create offspring by combining values 
from the genotypes of two (or more) parents. Finally, an execution man-
ager controls the overall functioning of the algorithm. It regulates the 
initialization of the first population, the execution of the selection–vari-
ation cycles, and the termination of the algorithm. It also manages the 
population size (typically kept constant) and other parameters affect-
ing selection and variation. For instance, it determines the number of 
parents per generation, and whether mutation, recombination or both 
produce the offspring for a given set of parents.

Evolutionary algorithms are easily transferable from one application 
to another because only two components are problem dependent: the 
way that the genotypes are converted to phenotypes and the fitness func-
tion. The history of evolutionary computation has shown that suitable 
combinations of a few simple data structures can represent possible 
solutions to a huge variety of different problems (Box 1). In other words, 
a relatively small collection of possible genotypes can accommodate 
many different kinds of phenotypes. Just as the genetic mechanisms 
underpinning natural evolution are largely species independent, acting 
on DNA or RNA, so too in evolutionary computation the choice of suit-
able variation operators depends solely on the data structure present in 
the genotypes and not on the specific problem being tackled. Selection 
operators do not even depend on the chosen representation, as they only 
consider fitness information. This implies that for a certain problem a 
suitable evolutionary algorithm can be designed easily, as long as the 
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problem-dependent phenotypes can be mapped to one of the ‘standard’ 
genotypes. From that point on, freely available evolutionary algorithm 
machinery can be used. 

It should be noted that just because an algorithm is formally suit-
able, it does not necessarily mean it will be successful. Suitability only 
means that the evolutionary algorithm is capable of searching through 
the space of possible solutions of a problem, but gives no guarantees that 
this search will be either effective or efficient. 

Positioning of evolutionary computation
From a historical perspective, humans have had two roles in evolu-
tion. Just like any other species, humans are the product of, and are 
subject to, evolution. But for millennia (in fact, for about twice as 
long as we have used wheels) people have also actively influenced 
the course of evolution in other species — by choosing which plants 
or animals should survive or mate. Thus humans have successfully 
exploited evolution to create improved food sources14 or more useful 
animals15, even though the mechanisms involved in the transmission 
of traits from one generation to the next were not understood. 

Historically, the scope of human influence in evolution was very 
limited, being restricted to interfering with selection for survival and 
reproduction. Influencing other components, such as the design of 
genotypes, or mutation and recombination mechanisms, was far 
beyond our reach. This changed with the invention of the computer, 
which provided the possibility of creating digital worlds that are 
very flexible and much more controllable than the physical reality 
we live in. Together with the increased understanding of the genetic 
mechanisms behind evolution, this brought about the opportunity 
to become active masters of evolutionary processes that are fully 
designed and executed by human experimenters ‘from above’.

It could be argued that evolutionary algorithms are not faithful 
models of natural evolution (Table 1). However, they certainly are a 
form of evolution. As Dennett16 said “If you have variation, heredity, 
and selection, then you must get evolution”. 

From a computer-science perspective, evolutionary algorithms are 

randomized heuristic search methods based on the generate-and-test 
principle: producing an offspring amounts to generating a new point 
in the search space, and testing is done through fitness evaluation. 
What distinguishes evolutionary algorithms from other algorithms 
in computer science is the unique combination of being stochastic 
and maintaining their working memory in the form of a population 
of candidate solutions. It should be noted that there are many varia-
tions of the generic evolutionary computation template under various 
names. Today, the family of evolutionary algorithms includes histori-
cal members: genetic algorithms, evolution strategies, evolutionary 
programming and genetic programming; and younger siblings, such 
as differential evolution and particle swarm optimization17–25. These 
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Figure 1 | The principal diagram of evolutionary algorithms. The 
initialization process seeds the search with a population of randomly 
created solutions. After this the algorithm enters a loop of evaluating the 
current generation of solutions, selecting some to act as the basis for the next 
generation, and then creating new solutions through variation (mutation or 
crossover). Periodically, the algorithm checks to see whether user-specified 
termination criteria are met — such as reaching a desired level of fitness, or 
undergoing a certain number of generations without improvement.   

Genotypes are objects that represent phenotypes (candidate solutions to 
problems) in a form that can be manipulated to produce variations.

Examples of data structures frequently used as genotypes are shown 
in the Figure. One suitable mutation operator is shown for each, with 
its action shown by red arrows. Note that the mutation operator must 
deliver a child of the same data type — for example, a valid mutation 
operator for permutations must result in a valid permutation. Complex 
problems might require complex genotypes with appropriate mutation 
operators. 

Bitstrings are the natural choice for problems for which solutions 
are composed of on/off or true/false decisions. The most commonly 
used mutation operator makes an independent choice in each position 
whether to invert the bit value. 

Permutations can be used when the problem involves ordering a set of 
entities, such as in routing or scheduling. One simple mutation operator 
swaps the values in two randomly selected locations. 

Real-valued vectors can capture continuous optimization problems, 
for example where the variables represent quantities such as dimensions 
or mass. Typically, the mutation operator perturbs each value by adding 
a (small) random number. 

Trees are branching data structures suitable for representing 
equations, logical expressions or program code. A common mutation 
operator selects a node at random, and replaces the subtree below with a 
new, randomly generated one. 

BOX 1

Representing solutions to problems as genotypes
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differ in some details, terminology or motivational metaphor, but are, 
in essence, all instances of the same algorithmic template.

It is common to categorize algorithms according to completeness 
(can they generate every possible solution), optimality (are they guar-
anteed to find the best solution, and identify it as such) and efficiency. 
The completeness of an evolutionary algorithm can be achieved by 
an appropriate choice of representation and variation operators. 
The optimality is a more complex issue. Although optimal methods 
exist for many problems, their run time scales so poorly that they 
are impractical to use in most non-trivial cases — hence the inter-
est in heuristic methods. As long as the heredity principle (similar 
individuals have similar fitness) holds, an evolutionary algorithm 
will have a ‘basic instinct’ to improve the population’s fitness over 
time — because the selection operators are biased towards choos-
ing fitter individuals for reproduction and survival. Thus, if we can 
define artificial fitness on the basis of a criterion grounded in the 
problem to be solved then the evolutionary algorithm will tend to 
find solutions that optimize the fitness values, or at least approximate 
them. This implies that evolutionary algorithms can be used to solve 
optimization problems and, consequently, any problem that can be 
transformed into an equivalent optimization task. This includes most 
problems in design, and those connected with building or learning 
models from data. Nevertheless, it is important to understand that 
evolutionary algorithms are not optimizers26, but approximators, and 
they are not optimal since we might not know whether the fitness of 
the best evolved solution is in fact the highest value possible. Yet, they 
become very interesting when approximate solutions are acceptable, 
for instance, if the global optimum is not known or not required.

Applications of evolutionary computation
The hypothesis that embedding the principles of evolution within com-
puter algorithms can create powerful mechanisms for solving difficult, 
poorly understood problems is now supported by a huge body of evi-
dence. Evolutionary problem solvers have proven capable of delivering 
high-quality solutions to difficult problems in a variety of scientific and 
technical domains, offering several advantages over conventional opti-
mization and design methods.

One appealing example from the design domain concerns X-band 
antennas for the NASA Space Technology 5 (ST5) spacecraft27. The 
normal approach to this task is very time and labour intensive, rely-
ing heavily on expert knowledge. The evolutionary-algorithm-based 

approach not only discovered effective antenna designs, but could also 
adjust designs quickly when requirements changed. One of these anten-
nas was actually constructed and deployed on the ST5 spacecraft, thus 
becoming the first computer-evolved hardware in space. This project 
also demonstrates a specific advantage of evolutionary over manual 
design. The evolutionary algorithms generated and tested thousands 
of completely new solutions, many with unusual structures that expert 
antenna designers would be unlikely to produce. Evolutionary algo-
rithms have also been successful in many other aeronautical and aero-
space engineering endeavours. Problems in this field typically have 
highly complex search spaces and multiple conflicting objectives. Pop-
ulation-based methods such as evolutionary algorithms have proven 
effective at meeting the challenges of this combination. In particular, 
so-called multi-objective evolutionary algorithms change the selection 
function to explicitly reward diversity, so that they discover and main-
tain high-quality solutions representing different trade-offs between 
objectives — technically, they approximate diverse segments of the 
Pareto front28. Many examples can also be found in bioinformatics. For 
instance, by mining the ChEMBL database (which contains bioactive 
molecules with drug-like properties), a set of transformations of chemi-
cal structures was identified that were then used as the mutation opera-
tor in an automated drug-design application29. The results showed clear 
benefits, particularly in accommodating multiple target profiles such as 
desired polypharmacology. This nicely illustrates how other approaches, 
or existing knowledge, can be easily co-opted or accommodated within 
an evolutionary computing framework.

Numerical and combinatorial optimization are important applica-
tion areas of evolutionary algorithms. Particularly challenging is black-
box optimization, where the nature of the objective function requires 
numerical (rather than analytical) methods, and gradient informa-
tion can only be approximated by sampling solutions. A systematic 
experimental study compared mathematical programming and evo-
lutionary computation of a range of synthetic black-box optimization 
problems, which were allowed different amounts of computing time 
and resources30. The results showed that mathematical programming 
algorithms — that were designed to provide quick progress in the ini-
tial stages of the search — outperform evolutionary algorithms if the 
maximum number of evaluations is low, but this picture changes if the 
computational budget is increased. Ultimately, the study concludes that 
an evolutionary algorithm, in particular BIPOP-CMA-ES, is able to 
find the optimum of a broader class of functions, solve problems with 

Table 1| Main differences between natural evolution and evolutionary algorithms

Natural evolution Evolutionary algorithms

Fitness

Observed quantity: a posteriori effect of selection and reproduction (‘in the eye of 
the observer’).

Predefined a priori quantity that drives selection and reproduction.

Selection

Complex multifactor force based on environmental conditions, other individuals 
of the same species and those of other species (predators). Viability is tested 
continually; reproducibility is tested at discrete times.

Randomized operator with selection probabilities based on given fitness 
values. Survivor selection and parent selection both happen at discrete times.

Genotype–phenotype mapping

Highly complex biochemical and developmental process influenced by the 
environment.

Typically a simple mathematical transformation or parameterized procedure. A 
few systems use generative and developmental genotype–phenotype maps.

Variation

Offspring are created from one (asexual reproduction) or two parents (sexual 
reproduction). Horizontal gene transfer can accumulate genes from more 
individuals.

Unconstrained vertical gene transfer. Offspring may be generated from any 
number of parents: one, two or many.

Execution

Parallel, decentralized execution; birth and death events are not synchronized. Typically centralized with synchronized birth and death.

Population

Spatial embedding implies structured populations. Population size varies 
according to the relative number of birth and death events. Populations can and 
do go extinct.

Typically unstructured and panmictic (all individuals are potential partners). 
Population size is usually kept constant by synchronizing time and number of 
birth and death events.
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a higher precision and solve some problems faster. The power of evolu-
tion strategies (especially the very successful CMA-ES variants31) for 
real-life black-box optimization problems from industry has been dis-
cussed extensively32. Evidence gathered from years of academic research 
and development for industrial applications suggests that the niche for 
evolution strategies is formed by optimization tasks with a very lim-
ited budget for how many solutions can have their fitness evaluated. 
Although this finding is not in line with conventional wisdom within 
the field, there is ample support for this proposal. 

Machine learning and modelling is another prominent area in which 
evolutionary algorithms have proved their power, especially as many 
contemporary approaches would otherwise rely on (often crude) greedy 
or local search algorithms to refine and optimize models. For example, 
neuroevolutionary approaches use evolutionary algorithms to optimize 
the structure, parameters, or both simultaneously, of artificial neural 
networks33,34. In other branches of machine learning, using evolutionary 
computing to design algorithms has been shown to be very effective as 
an alternative to handcrafting them, for instance, for inducing decision 
trees35. Furthermore, evolutionary algorithms have been applied to pre-
diction problems. For instance, to tackle the problem of predicting the 
tertiary structure of a protein, an algorithm was designed to evolve a key 
component of automated predictors — the function used to estimate a 
structure’s energy36. State-of-the-art methods in protein-structure pre-
diction are limited by assuming a linear combination of energy terms, 
whereas a genetic programming method easily accommodates expres-
sions based on a much richer syntax. The best energy function found 
by the genetic programming algorithm provided significantly better 
prediction guidance than conventional functions. The algorithm was 
able to automatically discover the most and least useful energy terms, 
without having any knowledge of how these terms alone are correlated 
to the prediction error.

The design of controllers for physical entities, such as machinery 
or robots, has proved to be another fruitful area. For example, control 
strategies for operating container cranes were evolved using a physi-
cal crane to determine fitness values37. The evolution of controllers is 
also possible in situ, for example in a population of robots during, and 
not just before, their operational period38,39. Evolutionary robotics40 is 
an especially challenging application area because of two additional 
issues that other branches of evolutionary computing do not face: the 
very weak and noisy link between controllable design details and the 
target feature or features; and the great variety of conditions under 
which a solution should perform well. Normally in evolutionary com-
puting there is a three-step evaluation chain: genotype to phenotype 
to fitness. For robots the chain is four-step: genotype to phenotype to 
behaviour to fitness. In this four-step chain the robots morphology 
and controller form the phenotype. However, it could be argued that 
the behaviour should be considered as phenotype, because it is the 
entity that is being evaluated. Furthermore, the behaviour depends 
on many external factors, creating an unpredictable environment in 
which the robot is expected to perform. Nevertheless, since the manual 
design of an autonomous and adaptive mobile robot is extremely dif-
ficult, evolutionary approaches offer large potential benefits. These 
include the possibility of continuous and automated design, manu-
facture and deployment of robots of very different morphologies and 
control systems41. Several studies have demonstrated such benefits, 
in which robot control systems that were automatically generated by 
artificial evolution were comparatively simpler or more efficient than 
those engineered using other design methods42. In all cases, robots 
initially exhibited uncoordinated behaviour, but a few hundreds of 
generations were sufficient to achieve efficient behaviours in a wide 
range of experimental conditions.

Several state-of-the-art algorithms for applications across a great vari-
ety of problem domains are based on hybridizing evolutionary search 
with existing algorithms, especially local search methods. This kind of 
hybridization can be thought of as adding ‘lifetime learning’ to the evolu-
tionary process. Freed from the restrictions of natural evolution (such as 

learned traits not being written back immediately to the genotype), and 
being able to experiment with novel types of individual and social learn-
ing, the theory and practice of so-called memetic algorithms has become 
an important topic in the field43–45. Such hybrid algorithms can often find 
good (or better) solutions faster than a pure evolutionary algorithm when 
the additional method searches systematically in the vicinity of good 
solutions, rather than relying on the more randomized search carried 
out by mutation46,47. For example, the cell suppression problem (decid-
ing which data cells to disclose in published statistical tables in order to 
protect respondents’ confidentiality)48 was solved using a combination of 
graph partitioning, linear programming and evolutionary optimization 
of the sequence in which vulnerable cells were considered. This produced 
methods that could protect published statistical tables at a size that was 
several orders of magnitude greater than had previously been possible. 
Memetic algorithms have obtained an eminent place among the best 
approaches to solving really hard problems.

State of the art
Although initially considerable scepticism surrounded evolution-
ary algorithms, over the past 20 years evolutionary computation has 
grown to become a major field in computational intelligence7–9. As well 
as solving hard problems in various application areas, the emphasis of 
evolutionary algorithms on randomness as a source of variation has 
been shown to have particular advantages: the lack of problem-specific 
preconceptions and biases of the algorithm designer opens up the way 
to unexpected ‘original’ solutions that can even have artistic value49–51 
(http://endlessforms.com/). The perception of evolution as a problem 
solver has broadened from seeing evolution as a heuristic algorithm for 
(parametric) optimization to considering it to be a powerful approach 
for (structural) design52,53. 

In general, evolutionary algorithms have proven competitive in 
solving hard problems in the face of challenging characteristics like 
non-differentiability, discontinuities, multiple local optima, noise and 
nonlinear interactions among the variables, especially if the computa-
tional budgets are sufficiently high. Evolution is a slow learner, but the 
steady increase in computing power, and the fact that the algorithm is 
inherently suited to parallelization, mean that more and more genera-
tions can be executed within practically acceptable timescales. 

The performance of evolutionary algorithms has also been com-
pared with that of human experts, and there is now substantial and 
well-documented evidence of evolutionary algorithms producing meas-
urably human-competitive results54. The annual Humies competition 
(http://www.genetic-programming.org/combined.php), which rewards 
human-competitive results from evolutionary computation, highlights 
the great variety of hard problems for which evolutionary algorithms 
have delivered excellent solutions. 

The success and popularity of evolutionary algorithms can be attrib-
uted to a number of algorithmic features, which makes them attractive. 
First, they are assumption free because applying an evolutionary algo-
rithm consists of specifying the representation for candidate solutions 
and providing an external function that first transforms the genotype 
into a candidate solution and then provides an evaluation. Internally, 
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Figure 2 | Two major transitions in the history of artificial evolution. In 
the twentieth century computer technology enabled artificial Darwinian 
processes in silico — the evolution of digital entities. In the twenty-first 
century, developments in robotics, materials science and 3D printing will 
enable the evolution of physical artefacts or machines.
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evolutionary algorithms make no explicit assumptions about the 
problem, hence they are widely applicable and easily transferable at 
low cost. Second, they are flexible because they can be easily used in 
collaboration with existing methods, such as local search; they can be 
incorporated within, or make use of, existing toolsets; and combina-
tions with domain-specific methods often lead to superior solvers 
because they can exploit the best features of different approaches. 
Third, they are robust, owing to the use of a population and rand-
omized choices, which mean evolutionary algorithms are less likely to 
get trapped in suboptimal solutions than other search methods. They 
are also less sensitive to noise or infidelity in the models of the system 
used to evaluate solutions, and can cope with changes in the problem. 
Fourth, they are not focussed on a single solution because having 
a population means that an algorithm terminates with a number of 
solutions. Thus, users do not have to pre-specify their preferences and 
weighting in advance, but can make decisions after they see what is 
possible to achieve. This is a great advantage for problems with many 
local optima, or with a number of conflicting objectives. Finally, they 
are capable of producing unexpected solutions because they are blind 
to human preconceptions and so can find effective, but non-intuitive 
solutions, which are often valuable in design domains.

The theoretical underpinning of evolutionary algorithms remains a 
hard nut to crack. Mathematical analysis can illuminate some properties, 
but even digital evolutionary processes exhibit very complex dynamics 
that allow only limited theory forming, despite the diverse set of tools 
and methods ranging from quantitative genetics to statistical physics55. 
One important theoretical result is the no free lunch theorem. This states 
that evolutionary algorithms are not generic super solvers — but neither 
is any other method, because there is no such thing56. Instead, “an evo-
lutionary algorithm is the second best solver for any problem”, meaning 
that in many cases a carefully hand-crafted solver that exploits problem 
characteristics is superior for the problem at hand, but that it might take 
years to create that solver. A long-standing issue for theorists is algorithm 
convergence. Early results were based on Markov-chain analysis and 
addressed convergence in general57, but more recent work found spe-
cific relationships between algorithmic set-up and expected run times58. 
Despite all the difficulties, the field is making progress in theory59,60.

Important research trends
The development of evolutionary computation continues along a num-
ber of research threads. 

Automated design and tuning of evolutionary algorithms 
Experience has shown that there are several design choices behind an 
evolutionary algorithm that greatly influence its performance. To reduce 
the number of design decisions to be made, and the impact of poor 
choices, the community is working on automated design aids. These can 
customize an initial algorithm set-up for a given problem offline (before 
the run) or online (during the run)61. Techniques such as automated 
parameter tuning62–65 and adaptive parameter control continue to make 
advances in this area66–69.

Using surrogate models 
Increasingly, evolutionary algorithms are being used for problems in 
which evaluating each population member over many generations 
would take too long to permit effective evolution given the resources 
available. A range of approaches — collectively known as surrogate 
models — are being developed that use computationally cheaper models 
in place of full fitness evaluations, and that refine those models through 
occasional full evaluations of targeted individuals70–73.

Handling many objectives
Having proven highly successful for finding solutions to problems 
with multiple objectives (typically up to ten)74, the community is now 
making rapid advances in the field of many objectives — moving 
way beyond the capabilities of other algorithms75–77. In tandem with 

algorithmic advances, this has spurred renewed interest in interac-
tive evolutionary algorithms, which have been successfully applied to 
elicit user preferences and knowledge in many areas from design to 
art51 (http://picbreeder.org). Results suggest a useful synergy with peri-
odic user interaction to incorporate preferences that help to focus the 
search down to a more manageable set of dimensions78. Importantly, 
this involves eliciting user preferences in response to what is discovered 
to be possible, rather than a priori.

Generative and developmental representations 
Further to the conventionally simple genotype–phenotype mappings, 
the use of indirect encodings is gaining traction. Such generative 
and developmental representations allow the reuse of code, which 
helps to scale up the complexity of artificially evolved phenotypes, for 
instance, in evolutionary robotics, artificial life and morphogenetic 
engineering79–83. 

Outlook
The range of problems to which evolutionary algorithms have been 
successfully applied has grown year on year, and there is every reason 
to expect this to continue. In the future, we expect to see increasing 
interest in applying evolutionary algorithms to embodied or embed-
ded systems; that is, employing evolution in populations for which the 
candidate solutions are controllers or drivers that implement the opera-
tional strategy for some situated entities, and are evaluated within the 
context of some rich dynamic environment; not for what they are, but 
for what they do. Examples include policies for Web-crawlers, infor-
mation retrieval strategies, software for machinery and smart devices, 
and controllers for autonomous robots84,85. In such cases the evolved 
solutions are embedded in entities that exist and act in a ‘habitat’, the 
internet or the physical world, that is too complex and dynamic to be 
modelled perfectly. Enhancing the system with the ability to evolve 
and adapt after deployment can complement the offline optimization 
approach employed during the design stage. The novelty of such systems 
is that evolutionary changes take place within the operational period. 
These systems will be different because they replace the conventional 
design-and-deploy approach by a design–deploy–adapt loop in which 
the evolutionary component is a principal part of the system. 

This approach is already gaining traction in two areas. In the field of 
search-based software engineering, evolutionary algorithms are gain-
ing prominence in response to the mismatch between the availability of 
expert software engineers and the explosion of interconnected devices 
requiring new and/or updated software86. Meanwhile, recent develop-
ments in rapid fabrication technologies (3D printing) and ever smaller 
and more powerful robotic platforms mean that evolutionary comput-
ing is now starting to make the next major transition to the automated 
creation of physical artefacts and ‘smart’ objects87 (Fig. 2). In the long 
term this could lead to a disruptive robotic technology in which design 
and production are replaced by selection and reproduction without the 
involvement of human designers and human-operated facilities.

Last but not least, we foresee a fruitful cross-fertilization with biol-
ogy in the coming decade based on a bidirectional flow of inspira-
tion, understanding and knowledge. On the one hand, the advancing 
insights in molecular and evolutionary biology can be used to make 
more sophisticated evolutionary algorithms and may help to solve pre-
viously intractable problems. The opportunities and challenges of this 
avenue have been outlined in a research agenda to transform artificial 
evolution to computational evolution88. On the other hand, a new kind 
of artificial evolution — the evolution of things — opens new horizons 
for biologists. In 1992, the evolutionary biologist John Maynard Smith 
commented: “So far, we have been able to study only one evolving sys-
tem and we cannot wait for interstellar flight to provide us with a second. 
If we want to discover generalizations about evolving systems, we will 
have to look at artificial ones”89. Artificial evolution implemented on 
real hardware, as in evolutionary robotics, offers a new research instru-
ment to this end42,90–95. The use of real hardware overcomes the principal 
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deficiency of software models, which lack the richness of matter that is 
a source of challenges and opportunities not yet matched in artificial 
algorithms96. Hence, they can provide new insights into fundamental 
issues such as the factors influencing evolvability, resilience, the rate of 
progress under various circumstances, or the co-evolution of mind and 
body. Using a non-biochemical substrate for such research is becoming 
technologically ever more feasible, and it increases the generalizability 
of the findings. In particular, using a different medium for evolutionary 
studies can separate generic principles and ground truth from effects 
that are specific for carbon-based life as we know it. ■
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