
1VU University Amsterdam, de Boelelaan 1081a, 1081HV Amsterdam, the Netherlands. 2University of the West of England, Bristol BS16 1QY, UK.

The proposal that evolution could be used as a metaphor for prob-
lem solving came with the invention of the computer1. In the
1970s and 1980s the principal idea was developed into different

algorithmic implementations under names such as evolutionary pro-
gramming2, evolution strategies3,4 and genetic algorithms5, followed
later by genetic programming6. These branches merged in the 1990s,
and in the past 20 years so-called evolutionary computation or evo-
lutionary computing has proven to be highly successful across a wide
range of computational tasks in optimization, design and modelling7–9.
For instance, urgent needs in the development of low-cost thin-film
photovoltaic technologies were addressed using genetic algorithms
for topology optimization10. This led to highly efficient light-trapping
structures that exhibited more than a threefold increase over a classic
limit, and achieved efficiency levels far beyond the reach of intuitive
designs. It has also been convincingly demonstrated that evolutionary
approaches are powerful methods for knowledge discovery. For exam-
ple, equations were evolved to model motion-tracking data captured
from various physical systems, ranging from simple harmonic oscilla-
tors to chaotic double pendula. This approach discovered, with limited
prior knowledge of physics, kinematics or geometry, several laws of
geometric and momentum conservation, and uncovered the ‘alphabet’
used to describe those systems11.

From the perspective of the underlying substrate in which the evolu-
tion takes place, the emergence of evolutionary computation can be
considered as a major transition of the evolutionary principles from
‘wetware’, the realm of biology, to software, the realm of computers.
Today the field is at an exciting stage. New developments in robotics and
rapid prototyping (3D printing) are paving the way towards a second
major transition: from software to hardware, going from digital evolu-
tionary systems to physical ones12,13.

In this Review we outline the working principles of evolutionary algo-
rithms, and briefly discuss the differences between artificial and natural
evolution. We illustrate the power of evolutionary problem solving by
discussing a number of successful applications, reflect on the features
that make evolutionary algorithms so successful, review the current
trends of the field, and give our perspective on future developments.

Evolution and problem solving
The essence of an evolutionary approach to solve a problem is to equate
possible solutions to individuals in a population, and to introduce a
notion of fitness on the basis of solution quality. To obtain a working

evolutionary algorithm one has to go through a number of design steps.
The first step is to identify a representation: a suitable data structure
that can represent possible solutions to the problem. The next step is to
define a way of measuring the quality of an individual based on prob-
lem-specific requirements. The final step is to specify suitable selection
and variation operators (Fig. 1).

Analogous to natural evolution, an evolutionary algorithm can be
thought of as working on two levels. At the higher level (the original
problem context), phenotypes (candidate solutions) have their fitness
measured. Selection mechanisms then use this measure to choose a pool
of parents for each generation, and decide which parents and offspring
go forward to the next generation. At the lower level, genotypes are
objects that represent phenotypes in a form that can be manipulated
to produce variations (Box 1). Genotype–phenotype mapping bridges
the two levels. At the genotypic level, variation operators generate new
individuals (offspring) from selected parents. Mutation operators are
based on one parent (asexual reproduction) and randomly change some
values. Recombination operators create offspring by combining values
from the genotypes of two (or more) parents. Finally, an execution man-
ager controls the overall functioning of the algorithm. It regulates the
initialization of the first population, the execution of the selection–vari-
ation cycles, and the termination of the algorithm. It also manages the
population size (typically kept constant) and other parameters affect-
ing selection and variation. For instance, it determines the number of
parents per generation, and whether mutation, recombination or both
produce the offspring for a given set of parents.

Evolutionary algorithms are easily transferable from one application
to another because only two components are problem dependent: the
way that the genotypes are converted to phenotypes and the fitness func-
tion. The history of evolutionary computation has shown that suitable
combinations of a few simple data structures can represent possible
solutions to a huge variety of different problems (Box 1). In other words,
a relatively small collection of possible genotypes can accommodate
many different kinds of phenotypes. Just as the genetic mechanisms
underpinning natural evolution are largely species independent, acting
on DNA or RNA, so too in evolutionary computation the choice of suit-
able variation operators depends solely on the data structure present in
the genotypes and not on the specific problem being tackled. Selection
operators do not even depend on the chosen representation, as they only
consider fitness information. This implies that for a certain problem a
suitable evolutionary algorithm can be designed easily, as long as the

Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field,
evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the
astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed,
opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolution-
ary computation compares with natural evolution and what its benefits are relative to other computing approaches, and
we introduce the emerging area of artificial evolution in physical systems.

From evolutionary computation
to the evolution of things
Agoston E. Eiben1 & Jim Smith2

4 7 6 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEW
doi:10.1038/nature14544

© 2015 Macmillan Publishers Limited. All rights reserved

problem-dependent phenotypes can be mapped to one of the ‘standard’
genotypes. From that point on, freely available evolutionary algorithm
machinery can be used.

It should be noted that just because an algorithm is formally suit-
able, it does not necessarily mean it will be successful. Suitability only
means that the evolutionary algorithm is capable of searching through
the space of possible solutions of a problem, but gives no guarantees that
this search will be either effective or efficient.

Positioning of evolutionary computation
From a historical perspective, humans have had two roles in evolu-
tion. Just like any other species, humans are the product of, and are
subject to, evolution. But for millennia (in fact, for about twice as
long as we have used wheels) people have also actively influenced
the course of evolution in other species — by choosing which plants
or animals should survive or mate. Thus humans have successfully
exploited evolution to create improved food sources14 or more useful
animals15, even though the mechanisms involved in the transmission
of traits from one generation to the next were not understood.

Historically, the scope of human influence in evolution was very
limited, being restricted to interfering with selection for survival and
reproduction. Influencing other components, such as the design of
genotypes, or mutation and recombination mechanisms, was far
beyond our reach. This changed with the invention of the computer,
which provided the possibility of creating digital worlds that are
very flexible and much more controllable than the physical reality
we live in. Together with the increased understanding of the genetic
mechanisms behind evolution, this brought about the opportunity
to become active masters of evolutionary processes that are fully
designed and executed by human experimenters ‘from above’.

It could be argued that evolutionary algorithms are not faithful
models of natural evolution (Table 1). However, they certainly are a
form of evolution. As Dennett16 said “If you have variation, heredity,
and selection, then you must get evolution”.

From a computer-science perspective, evolutionary algorithms are

randomized heuristic search methods based on the generate-and-test
principle: producing an offspring amounts to generating a new point
in the search space, and testing is done through fitness evaluation.
What distinguishes evolutionary algorithms from other algorithms
in computer science is the unique combination of being stochastic
and maintaining their working memory in the form of a population
of candidate solutions. It should be noted that there are many varia-
tions of the generic evolutionary computation template under various
names. Today, the family of evolutionary algorithms includes histori-
cal members: genetic algorithms, evolution strategies, evolutionary
programming and genetic programming; and younger siblings, such
as differential evolution and particle swarm optimization17–25. These

Initialization

Termination

Evaluation

Variation

Selection

Figure 1 | The principal diagram of evolutionary algorithms. The
initialization process seeds the search with a population of randomly
created solutions. After this the algorithm enters a loop of evaluating the
current generation of solutions, selecting some to act as the basis for the next
generation, and then creating new solutions through variation (mutation or
crossover). Periodically, the algorithm checks to see whether user-specified
termination criteria are met — such as reaching a desired level of fitness, or
undergoing a certain number of generations without improvement.

Genotypes are objects that represent phenotypes (candidate solutions to
problems) in a form that can be manipulated to produce variations.

Examples of data structures frequently used as genotypes are shown
in the Figure. One suitable mutation operator is shown for each, with
its action shown by red arrows. Note that the mutation operator must
deliver a child of the same data type — for example, a valid mutation
operator for permutations must result in a valid permutation. Complex
problems might require complex genotypes with appropriate mutation
operators.

Bitstrings are the natural choice for problems for which solutions
are composed of on/off or true/false decisions. The most commonly
used mutation operator makes an independent choice in each position
whether to invert the bit value.

Permutations can be used when the problem involves ordering a set of
entities, such as in routing or scheduling. One simple mutation operator
swaps the values in two randomly selected locations.

Real-valued vectors can capture continuous optimization problems,
for example where the variables represent quantities such as dimensions
or mass. Typically, the mutation operator perturbs each value by adding
a (small) random number.

Trees are branching data structures suitable for representing
equations, logical expressions or program code. A common mutation
operator selects a node at random, and replaces the subtree below with a
new, randomly generated one.

BOX 1

Representing solutions to problems as genotypes

Child

1 0 1 0 0 1 1 0 0 1

Parent

1 1 1 0 0 1 1 0 0 0

Bitstrings

Parent

a b c d e f g h i j k

Child

a g c d e f b h i j k

Permutations

Parent

2.1 –0.6 3.1 4.4 9.0

Child

1.1 –0.6 3.3 4.0 9.0

Real-valued vectors

Parent Child

9z1x

if

&

≤=

5y1x

if

G G&

>=

Trees

2 8 M A Y 2 0 1 5 | V O L 5 2 1 | N A T U R E | 4 7 7

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

differ in some details, terminology or motivational metaphor, but are,
in essence, all instances of the same algorithmic template.

It is common to categorize algorithms according to completeness
(can they generate every possible solution), optimality (are they guar-
anteed to find the best solution, and identify it as such) and efficiency.
The completeness of an evolutionary algorithm can be achieved by
an appropriate choice of representation and variation operators.
The optimality is a more complex issue. Although optimal methods
exist for many problems, their run time scales so poorly that they
are impractical to use in most non-trivial cases — hence the inter-
est in heuristic methods. As long as the heredity principle (similar
individuals have similar fitness) holds, an evolutionary algorithm
will have a ‘basic instinct’ to improve the population’s fitness over
time — because the selection operators are biased towards choos-
ing fitter individuals for reproduction and survival. Thus, if we can
define artificial fitness on the basis of a criterion grounded in the
problem to be solved then the evolutionary algorithm will tend to
find solutions that optimize the fitness values, or at least approximate
them. This implies that evolutionary algorithms can be used to solve
optimization problems and, consequently, any problem that can be
transformed into an equivalent optimization task. This includes most
problems in design, and those connected with building or learning
models from data. Nevertheless, it is important to understand that
evolutionary algorithms are not optimizers26, but approximators, and
they are not optimal since we might not know whether the fitness of
the best evolved solution is in fact the highest value possible. Yet, they
become very interesting when approximate solutions are acceptable,
for instance, if the global optimum is not known or not required.

Applications of evolutionary computation
The hypothesis that embedding the principles of evolution within com-
puter algorithms can create powerful mechanisms for solving difficult,
poorly understood problems is now supported by a huge body of evi-
dence. Evolutionary problem solvers have proven capable of delivering
high-quality solutions to difficult problems in a variety of scientific and
technical domains, offering several advantages over conventional opti-
mization and design methods.

One appealing example from the design domain concerns X-band
antennas for the NASA Space Technology 5 (ST5) spacecraft27. The
normal approach to this task is very time and labour intensive, rely-
ing heavily on expert knowledge. The evolutionary-algorithm-based

approach not only discovered effective antenna designs, but could also
adjust designs quickly when requirements changed. One of these anten-
nas was actually constructed and deployed on the ST5 spacecraft, thus
becoming the first computer-evolved hardware in space. This project
also demonstrates a specific advantage of evolutionary over manual
design. The evolutionary algorithms generated and tested thousands
of completely new solutions, many with unusual structures that expert
antenna designers would be unlikely to produce. Evolutionary algo-
rithms have also been successful in many other aeronautical and aero-
space engineering endeavours. Problems in this field typically have
highly complex search spaces and multiple conflicting objectives. Pop-
ulation-based methods such as evolutionary algorithms have proven
effective at meeting the challenges of this combination. In particular,
so-called multi-objective evolutionary algorithms change the selection
function to explicitly reward diversity, so that they discover and main-
tain high-quality solutions representing different trade-offs between
objectives — technically, they approximate diverse segments of the
Pareto front28. Many examples can also be found in bioinformatics. For
instance, by mining the ChEMBL database (which contains bioactive
molecules with drug-like properties), a set of transformations of chemi-
cal structures was identified that were then used as the mutation opera-
tor in an automated drug-design application29. The results showed clear
benefits, particularly in accommodating multiple target profiles such as
desired polypharmacology. This nicely illustrates how other approaches,
or existing knowledge, can be easily co-opted or accommodated within
an evolutionary computing framework.

Numerical and combinatorial optimization are important applica-
tion areas of evolutionary algorithms. Particularly challenging is black-
box optimization, where the nature of the objective function requires
numerical (rather than analytical) methods, and gradient informa-
tion can only be approximated by sampling solutions. A systematic
experimental study compared mathematical programming and evo-
lutionary computation of a range of synthetic black-box optimization
problems, which were allowed different amounts of computing time
and resources30. The results showed that mathematical programming
algorithms — that were designed to provide quick progress in the ini-
tial stages of the search — outperform evolutionary algorithms if the
maximum number of evaluations is low, but this picture changes if the
computational budget is increased. Ultimately, the study concludes that
an evolutionary algorithm, in particular BIPOP-CMA-ES, is able to
find the optimum of a broader class of functions, solve problems with

Table 1| Main differences between natural evolution and evolutionary algorithms

Natural evolution Evolutionary algorithms

Fitness

Observed quantity: a posteriori effect of selection and reproduction (‘in the eye of
the observer’).

Predefined a priori quantity that drives selection and reproduction.

Selection

Complex multifactor force based on environmental conditions, other individuals
of the same species and those of other species (predators). Viability is tested
continually; reproducibility is tested at discrete times.

Randomized operator with selection probabilities based on given fitness
values. Survivor selection and parent selection both happen at discrete times.

Genotype–phenotype mapping

Highly complex biochemical and developmental process influenced by the
environment.

Typically a simple mathematical transformation or parameterized procedure. A
few systems use generative and developmental genotype–phenotype maps.

Variation

Offspring are created from one (asexual reproduction) or two parents (sexual
reproduction). Horizontal gene transfer can accumulate genes from more
individuals.

Unconstrained vertical gene transfer. Offspring may be generated from any
number of parents: one, two or many.

Execution

Parallel, decentralized execution; birth and death events are not synchronized. Typically centralized with synchronized birth and death.

Population

Spatial embedding implies structured populations. Population size varies
according to the relative number of birth and death events. Populations can and
do go extinct.

Typically unstructured and panmictic (all individuals are potential partners).
Population size is usually kept constant by synchronizing time and number of
birth and death events.

4 7 8 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

a higher precision and solve some problems faster. The power of evolu-
tion strategies (especially the very successful CMA-ES variants31) for
real-life black-box optimization problems from industry has been dis-
cussed extensively32. Evidence gathered from years of academic research
and development for industrial applications suggests that the niche for
evolution strategies is formed by optimization tasks with a very lim-
ited budget for how many solutions can have their fitness evaluated.
Although this finding is not in line with conventional wisdom within
the field, there is ample support for this proposal.

Machine learning and modelling is another prominent area in which
evolutionary algorithms have proved their power, especially as many
contemporary approaches would otherwise rely on (often crude) greedy
or local search algorithms to refine and optimize models. For example,
neuroevolutionary approaches use evolutionary algorithms to optimize
the structure, parameters, or both simultaneously, of artificial neural
networks33,34. In other branches of machine learning, using evolutionary
computing to design algorithms has been shown to be very effective as
an alternative to handcrafting them, for instance, for inducing decision
trees35. Furthermore, evolutionary algorithms have been applied to pre-
diction problems. For instance, to tackle the problem of predicting the
tertiary structure of a protein, an algorithm was designed to evolve a key
component of automated predictors — the function used to estimate a
structure’s energy36. State-of-the-art methods in protein-structure pre-
diction are limited by assuming a linear combination of energy terms,
whereas a genetic programming method easily accommodates expres-
sions based on a much richer syntax. The best energy function found
by the genetic programming algorithm provided significantly better
prediction guidance than conventional functions. The algorithm was
able to automatically discover the most and least useful energy terms,
without having any knowledge of how these terms alone are correlated
to the prediction error.

The design of controllers for physical entities, such as machinery
or robots, has proved to be another fruitful area. For example, control
strategies for operating container cranes were evolved using a physi-
cal crane to determine fitness values37. The evolution of controllers is
also possible in situ, for example in a population of robots during, and
not just before, their operational period38,39. Evolutionary robotics40 is
an especially challenging application area because of two additional
issues that other branches of evolutionary computing do not face: the
very weak and noisy link between controllable design details and the
target feature or features; and the great variety of conditions under
which a solution should perform well. Normally in evolutionary com-
puting there is a three-step evaluation chain: genotype to phenotype
to fitness. For robots the chain is four-step: genotype to phenotype to
behaviour to fitness. In this four-step chain the robots morphology
and controller form the phenotype. However, it could be argued that
the behaviour should be considered as phenotype, because it is the
entity that is being evaluated. Furthermore, the behaviour depends
on many external factors, creating an unpredictable environment in
which the robot is expected to perform. Nevertheless, since the manual
design of an autonomous and adaptive mobile robot is extremely dif-
ficult, evolutionary approaches offer large potential benefits. These
include the possibility of continuous and automated design, manu-
facture and deployment of robots of very different morphologies and
control systems41. Several studies have demonstrated such benefits,
in which robot control systems that were automatically generated by
artificial evolution were comparatively simpler or more efficient than
those engineered using other design methods42. In all cases, robots
initially exhibited uncoordinated behaviour, but a few hundreds of
generations were sufficient to achieve efficient behaviours in a wide
range of experimental conditions.

Several state-of-the-art algorithms for applications across a great vari-
ety of problem domains are based on hybridizing evolutionary search
with existing algorithms, especially local search methods. This kind of
hybridization can be thought of as adding ‘lifetime learning’ to the evolu-
tionary process. Freed from the restrictions of natural evolution (such as

learned traits not being written back immediately to the genotype), and
being able to experiment with novel types of individual and social learn-
ing, the theory and practice of so-called memetic algorithms has become
an important topic in the field43–45. Such hybrid algorithms can often find
good (or better) solutions faster than a pure evolutionary algorithm when
the additional method searches systematically in the vicinity of good
solutions, rather than relying on the more randomized search carried
out by mutation46,47. For example, the cell suppression problem (decid-
ing which data cells to disclose in published statistical tables in order to
protect respondents’ confidentiality)48 was solved using a combination of
graph partitioning, linear programming and evolutionary optimization
of the sequence in which vulnerable cells were considered. This produced
methods that could protect published statistical tables at a size that was
several orders of magnitude greater than had previously been possible.
Memetic algorithms have obtained an eminent place among the best
approaches to solving really hard problems.

State of the art
Although initially considerable scepticism surrounded evolution-
ary algorithms, over the past 20 years evolutionary computation has
grown to become a major field in computational intelligence7–9. As well
as solving hard problems in various application areas, the emphasis of
evolutionary algorithms on randomness as a source of variation has
been shown to have particular advantages: the lack of problem-specific
preconceptions and biases of the algorithm designer opens up the way
to unexpected ‘original’ solutions that can even have artistic value49–51
(http://endlessforms.com/). The perception of evolution as a problem
solver has broadened from seeing evolution as a heuristic algorithm for
(parametric) optimization to considering it to be a powerful approach
for (structural) design52,53.

In general, evolutionary algorithms have proven competitive in
solving hard problems in the face of challenging characteristics like
non-differentiability, discontinuities, multiple local optima, noise and
nonlinear interactions among the variables, especially if the computa-
tional budgets are sufficiently high. Evolution is a slow learner, but the
steady increase in computing power, and the fact that the algorithm is
inherently suited to parallelization, mean that more and more genera-
tions can be executed within practically acceptable timescales.

The performance of evolutionary algorithms has also been com-
pared with that of human experts, and there is now substantial and
well-documented evidence of evolutionary algorithms producing meas-
urably human-competitive results54. The annual Humies competition
(http://www.genetic-programming.org/combined.php), which rewards
human-competitive results from evolutionary computation, highlights
the great variety of hard problems for which evolutionary algorithms
have delivered excellent solutions.

The success and popularity of evolutionary algorithms can be attrib-
uted to a number of algorithmic features, which makes them attractive.
First, they are assumption free because applying an evolutionary algo-
rithm consists of specifying the representation for candidate solutions
and providing an external function that first transforms the genotype
into a candidate solution and then provides an evaluation. Internally,

Software
in silico

Wetware
in vivo

Natural
evolution
Natural

evolution
Evolutionary
computation
Evolutionary
computation

Hardware
in materio

Evolution of things

Twentieth century Twenty-�rst century

Figure 2 | Two major transitions in the history of artificial evolution. In
the twentieth century computer technology enabled artificial Darwinian
processes in silico — the evolution of digital entities. In the twenty-first
century, developments in robotics, materials science and 3D printing will
enable the evolution of physical artefacts or machines.

2 8 M A Y 2 0 1 5 | V O L 5 2 1 | N A T U R E | 4 7 9

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

evolutionary algorithms make no explicit assumptions about the
problem, hence they are widely applicable and easily transferable at
low cost. Second, they are flexible because they can be easily used in
collaboration with existing methods, such as local search; they can be
incorporated within, or make use of, existing toolsets; and combina-
tions with domain-specific methods often lead to superior solvers
because they can exploit the best features of different approaches.
Third, they are robust, owing to the use of a population and rand-
omized choices, which mean evolutionary algorithms are less likely to
get trapped in suboptimal solutions than other search methods. They
are also less sensitive to noise or infidelity in the models of the system
used to evaluate solutions, and can cope with changes in the problem.
Fourth, they are not focussed on a single solution because having
a population means that an algorithm terminates with a number of
solutions. Thus, users do not have to pre-specify their preferences and
weighting in advance, but can make decisions after they see what is
possible to achieve. This is a great advantage for problems with many
local optima, or with a number of conflicting objectives. Finally, they
are capable of producing unexpected solutions because they are blind
to human preconceptions and so can find effective, but non-intuitive
solutions, which are often valuable in design domains.

The theoretical underpinning of evolutionary algorithms remains a
hard nut to crack. Mathematical analysis can illuminate some properties,
but even digital evolutionary processes exhibit very complex dynamics
that allow only limited theory forming, despite the diverse set of tools
and methods ranging from quantitative genetics to statistical physics55.
One important theoretical result is the no free lunch theorem. This states
that evolutionary algorithms are not generic super solvers — but neither
is any other method, because there is no such thing56. Instead, “an evo-
lutionary algorithm is the second best solver for any problem”, meaning
that in many cases a carefully hand-crafted solver that exploits problem
characteristics is superior for the problem at hand, but that it might take
years to create that solver. A long-standing issue for theorists is algorithm
convergence. Early results were based on Markov-chain analysis and
addressed convergence in general57, but more recent work found spe-
cific relationships between algorithmic set-up and expected run times58.
Despite all the difficulties, the field is making progress in theory59,60.

Important research trends
The development of evolutionary computation continues along a num-
ber of research threads.

Automated design and tuning of evolutionary algorithms
Experience has shown that there are several design choices behind an
evolutionary algorithm that greatly influence its performance. To reduce
the number of design decisions to be made, and the impact of poor
choices, the community is working on automated design aids. These can
customize an initial algorithm set-up for a given problem offline (before
the run) or online (during the run)61. Techniques such as automated
parameter tuning62–65 and adaptive parameter control continue to make
advances in this area66–69.

Using surrogate models
Increasingly, evolutionary algorithms are being used for problems in
which evaluating each population member over many generations
would take too long to permit effective evolution given the resources
available. A range of approaches — collectively known as surrogate
models — are being developed that use computationally cheaper models
in place of full fitness evaluations, and that refine those models through
occasional full evaluations of targeted individuals70–73.

Handling many objectives
Having proven highly successful for finding solutions to problems
with multiple objectives (typically up to ten)74, the community is now
making rapid advances in the field of many objectives — moving
way beyond the capabilities of other algorithms75–77. In tandem with

algorithmic advances, this has spurred renewed interest in interac-
tive evolutionary algorithms, which have been successfully applied to
elicit user preferences and knowledge in many areas from design to
art51 (http://picbreeder.org). Results suggest a useful synergy with peri-
odic user interaction to incorporate preferences that help to focus the
search down to a more manageable set of dimensions78. Importantly,
this involves eliciting user preferences in response to what is discovered
to be possible, rather than a priori.

Generative and developmental representations
Further to the conventionally simple genotype–phenotype mappings,
the use of indirect encodings is gaining traction. Such generative
and developmental representations allow the reuse of code, which
helps to scale up the complexity of artificially evolved phenotypes, for
instance, in evolutionary robotics, artificial life and morphogenetic
engineering79–83.

Outlook
The range of problems to which evolutionary algorithms have been
successfully applied has grown year on year, and there is every reason
to expect this to continue. In the future, we expect to see increasing
interest in applying evolutionary algorithms to embodied or embed-
ded systems; that is, employing evolution in populations for which the
candidate solutions are controllers or drivers that implement the opera-
tional strategy for some situated entities, and are evaluated within the
context of some rich dynamic environment; not for what they are, but
for what they do. Examples include policies for Web-crawlers, infor-
mation retrieval strategies, software for machinery and smart devices,
and controllers for autonomous robots84,85. In such cases the evolved
solutions are embedded in entities that exist and act in a ‘habitat’, the
internet or the physical world, that is too complex and dynamic to be
modelled perfectly. Enhancing the system with the ability to evolve
and adapt after deployment can complement the offline optimization
approach employed during the design stage. The novelty of such systems
is that evolutionary changes take place within the operational period.
These systems will be different because they replace the conventional
design-and-deploy approach by a design–deploy–adapt loop in which
the evolutionary component is a principal part of the system.

This approach is already gaining traction in two areas. In the field of
search-based software engineering, evolutionary algorithms are gain-
ing prominence in response to the mismatch between the availability of
expert software engineers and the explosion of interconnected devices
requiring new and/or updated software86. Meanwhile, recent develop-
ments in rapid fabrication technologies (3D printing) and ever smaller
and more powerful robotic platforms mean that evolutionary comput-
ing is now starting to make the next major transition to the automated
creation of physical artefacts and ‘smart’ objects87 (Fig. 2). In the long
term this could lead to a disruptive robotic technology in which design
and production are replaced by selection and reproduction without the
involvement of human designers and human-operated facilities.

Last but not least, we foresee a fruitful cross-fertilization with biol-
ogy in the coming decade based on a bidirectional flow of inspira-
tion, understanding and knowledge. On the one hand, the advancing
insights in molecular and evolutionary biology can be used to make
more sophisticated evolutionary algorithms and may help to solve pre-
viously intractable problems. The opportunities and challenges of this
avenue have been outlined in a research agenda to transform artificial
evolution to computational evolution88. On the other hand, a new kind
of artificial evolution — the evolution of things — opens new horizons
for biologists. In 1992, the evolutionary biologist John Maynard Smith
commented: “So far, we have been able to study only one evolving sys-
tem and we cannot wait for interstellar flight to provide us with a second.
If we want to discover generalizations about evolving systems, we will
have to look at artificial ones”89. Artificial evolution implemented on
real hardware, as in evolutionary robotics, offers a new research instru-
ment to this end42,90–95. The use of real hardware overcomes the principal

4 8 0 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

deficiency of software models, which lack the richness of matter that is
a source of challenges and opportunities not yet matched in artificial
algorithms96. Hence, they can provide new insights into fundamental
issues such as the factors influencing evolvability, resilience, the rate of
progress under various circumstances, or the co-evolution of mind and
body. Using a non-biochemical substrate for such research is becoming
technologically ever more feasible, and it increases the generalizability
of the findings. In particular, using a different medium for evolutionary
studies can separate generic principles and ground truth from effects
that are specific for carbon-based life as we know it. ■

Received 18 December 2014; accepted 24 March 2015.

1. Turing, A. M. in Machine Intelligence 5 (eds Meltzer, B. & Michie, D.) (Edinburgh
Univ. Press, 1969).

2. Fogel, L. Owens, A. J. & Walsh. M. J. Artificial Intelligence Through Simulated
Evolution (Wiley, 1966).

3. Rechenberg, I. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution [in German] (Fromman-Hozlboog, 1973).

4. Schwefel, H.-P. Numerical Optimization of Computer Models (Birkhäuser, 1977).
5. Holland, J. H. Adaption in Natural and Artificial Systems (Univ. Michigan Press,

1975).
6. Koza, J. R. Genetic Programming (MIT Press, 1992).
7. Eiben, A. E. & Smith, J. E. Introduction to Evolutionary Computing (Springer,

2003).
8. Ashlock, D. Evolutionary Computation for Modeling and Optimization (Springer,

2006).
9. De Jong, K. Evolutionary Computation: a Unified Approach (MIT Press, 2006).
10. Wang, C., Yu, S., Chen, W. & Sun, C. Highly efficient light-trapping structure

design inspired by natural evolution. Sci. Rep. 3, 1025 (2013).
11. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental

data. Science 324, 81–85 (2009).
 This paper provides a forceful demonstration of the power of evolutionary

methods for tasks that are thought to require highly educated scientists to
perform.

12. Eiben, A. E., Kernbach, S. & Haasdijk, E. Embodied artificial evolution: artificial
evolutionary systems in the 21st Century. Evol. Intel. 5, 261–272 (2012).

13. Eiben, A. E. in Parallel Problem Solving from Nature – PPSNXII (eds Filipic, B.,
Bartz-Beielstein, T. Branke, J. & Smith, J.) 24–39 (Springer, 2014).

14. Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J. & Dickau, R. Starch grain and
phytolith evidence for early ninth millennium B.P. maize from the Central
Balsas River Valley, Mexico. Proc. Natl Acad. Sci. USA 106, 5019–5024 (2009).

15. Akey, J. M. et al. Tracking footprints of artificial selection in the dog genome.
Proc. Natl Acad. Sci. USA 107, 1160–1165 (2010).

16. Dennett, D. Darwin’s Dangerous Idea (Penguin, 1995).
17. Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning

(Addison-Wesley, 1989).
18. Fogel, D.B. Evolutionary Computation (IEEE, 1995).
19. Schwefel, H.-P. Evolution and Optimum Seeking (Wiley, 1995).
20. Bäck, T. Evolutionary Algorithms in Theory and Practice (Oxford Univ. Press,

1996).
21. Banzhaf, W., Nordin, P., Keller, R. E. & Francone, F. D. Genetic Programming: an

Introduction (Morgan Kaufmann, 1998).
22. Storn, R. & Price, K. Differential evolution — a simple and efficient heuristic

for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359
(1997).

23. Price, K. V., Storn, R. N. & Lampinen, J. A. Differential Evolution: a Practical
Approach to Global Optimization (Springer, 2005).

24. Kennedy, J. & Eberhart, R. C. Particle swarm optimization. In Proc. IEEE
International Conference on Neural Networks 1942–1948 (IEEE, 1995).

25. Kennedy, J. & Eberhart, R.C. Swarm Intelligence (Morgan Kaufmann, 2001).
26. De Jong, K. A. Are genetic algorithms function optimizers? In Proc. 2nd

Conference on Parallel Problem Solving from Nature (eds Manner, R. &
Manderick, B.) 3–13 (North-Holland, 1992).

27. Hornby, G. S., Lohn, J. D. & Linden, D. S. Computer-automated evolution of an
X-band antenna for NASA’s space technology 5 mission. Evol. Comput. 19, 1–23
(2011).

28. Arias-Montano, A., Coello, C. A. C. & Mezura-Montes, E. Multiobjective
evolutionary algorithms in aeronautical and aerospace engineering. IEEE Trans.
Evol. Comput. 16, 662–694 (2012).

29. Besnard, J. et al. Automated design of ligands to polypharmacological profiles.
Nature 492, 215–220 (2012).

30. Posìk, P. Huyer, W. & Pal, L. A comparison of global search algorithms for
continuous black box optimization. Evol. Comput. 20, 509–541 (2012).

31. Hansen, N. & Ostermeier, A. Completely derandomized self-adaptation in
evolution strategies. Evol. Comput. 9, 159–195 (2001).

 This article introduced the CMA-ES algorithm, widely regarded as the state of
the art in numerical optimization.

32. Bäck, T., Foussette, C. & Krause, P. Contemporary Evolution Strategies (Springer,
2013).

33. Yao, X. Evolving artificial neural networks. Proc. IEEE 87, 1423–1447 (1999).
 This landmark paper, which was the winner of the 2001 Institute of Electrical

and Electronics Engineers Donald G. Fink Prize Paper Award, brought
together different strands of research and drew attention to the potential

benefits of combining these two forms of learning.
34. Floreano, D., Dürr, P. & Mattiussi, C. Neuroevolution: from architectures to

learning. Evol. Intel. 1, 47–62 (2008).
35. Barros, R. C., Basgalupp, M. P., de Carvalho, A. C. P. L. F. & Freitas, A. A. A survey

of evolutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man
Cybern. C 42, 291–312 (2012).

36. Widera, P., Garibaldi, J. M. & Krasnogor, N. GP challenge: evolving energy
function for protein structure prediction. Genet. Program. Evolvable Mach. 11,
61–88 (2010).

37. Filipič, B., Urbančič, T. & Križman, V. A combined machine learning and genetic
algorithm approach to controller design. Eng. Appl. Artif. Intell. 12, 401–409
(1999).

38. Watson, R. A., Ficici, S. G. & Pollack, J. B. Embodied evolution: distributing an
evolutionary algorithm in a population of robots. Robot. Auton. Syst. 39, 1–18
(2002).

39. Bredeche, N., Montanier, J. M., Liu, W. & Winfield, A. F. T. Environment-driven
distributed evolutionary adaptation in a population of autonomous robotic
agents. Math. Comput. Model. Dyn. Syst. 18, 101–129 (2012).

40. Nolfi, S. & Floreano, D. Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines (MIT Press, 2000).

41. Bongard, J. Evolutionary robotics. Commun. ACM 56, 74–85 (2013).
42. Floreano, D. & Keller, L. Evolution of adaptive behavior in robots by means of

Darwinian selection. PLoS Biol. 8, e1000292 (2010).
43. Hinton, G. E. & Nowlan, S. J. How learning can guide evolution. Complex Syst. 1,

495–502 (1987).
 This seminal paper showed that learning can guide evolution even though

characteristics acquired by the phenotype are not communicated to the
genotype.

44. Borenstein, E., Meilijson, I. & Ruppin, E. The effect of phenotypic plasticity
on evolution in multipeaked fitness landscapes. J. Evol. Biol. 19, 1555–1570
(2006).

45. Paenke, I., Jin, Y. & Branke, J. Balancing population and individual level of
adaptation in changing environments. Adapt. Behav. 17, 153–174 (2009).

46. Chen, X. S., Ong, Y. S., Lim, M. H. & Tan, K. C. A. Multi-facet survey on memetic
computation. IEEE Trans. Evol. Comput. 15, 591–607 (2011).

47. Krasnogor, N. & Smith, J. E. A tutorial for competent memetic algorithms:
model, taxonomy and design issues. IEEE Trans. Evol. Comput. 9, 474–488
(2005).

48. Smith, J. E., Clark, A. R., Staggemeier, A. T. & Serpell, M. C. A genetic approach to
statistical disclosure control. IEEE Trans. Evol. Comput. 16, 431–441 (2012).

49. Bentley, P. & Corne, D. Creative Evolutionary Systems (Morgan Kaufmann, 2002).
50. Romero, J. J. & Machado, P. (eds). The Art of Artificial Evolution: A Handbook on

Evolutionary Art and Music (Springer, 2008).
51. Secretan, J. et al. Picbreeder: a case study in collaborative evolutionary

exploration of design space. Evol. Comput. 19, 373–403 (2011).
52. Bentley, P. Evolutionary Design by Computers (Morgan Kaufmann, 1999).
53. Hingston, P. F., Barone, L. C. & Michalewicz, Z. (eds). Advances in Evolutionary

Design (Springer, 2008).
54. Koza, J. R. Human-competitive results produced by genetic programming.

Genet. Program. Evolvable Mach. 11, 251–284 (2010).
 Offers quantifiable definitions for human competitiveness and a well-

documented overview of success stories, including the first patents thought
to be granted to inventions created by artificial intelligence.

55. Eiben, A. E. & Rudolph, G. Theory of evolutionary algorithms: a bird’s eye view.
Theor. Comput. Sci. 229, 3–9 (1999).

56. Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimisation. IEEE
Trans. Evol. Comput. 1, 67–82 (1997).

 This paper reported game-changing results that supported the shift in focus
in evolutionary computing and other fields away from the search for a ‘super
solver’, and inspired insightful discussions that are still ongoing.

57. Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans.
Neural Netw. 5, 96–101 (1994).

58. Lehre, P. R. & Yao, X. On the impact of mutation-selection balance on the
runtime of evolutionary algorithms. IEEE Trans. Evol. Comput. 16, 225–241
(2012).

59. Jansen, T. Analyzing Evolutionary Algorithms: The Computer Science Perspective
(Springer, 2005).

60. Borenstein, Y. & Moraglio, A. (eds). Theory and Principled Methods for Designing
Metaheuristics (Springer, 2014).

 This text provides good coverage of a range of recent approaches and results
in the theory of evolutionary algorithms.

61. Eiben, A. E., Hinterding, R. & Michalewicz, Z. Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999).

 This paper had a long-lasting effect by putting the issue of parameter
calibration on the research agenda and establishing the corresponding
conceptual framework.

62. Bartz-Beielstein, T. T. Experimental Research in Evolutionary Computation: the
New Experimentalism (Springer, 2006).

63. Hutter, F., Hoos, H. H., Leyton-Brown, K. & Stützle, T. ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009).

64. Eiben, A. E. & Smit, S. K. Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm Evol. Comput. 1, 19–31 (2011).

65. Bartz-Beielstein, T. & Preuss, M. in Theory and Principled Methods for Designing
Metaheuristics (eds Borenstein, Y. & Moraglio, A.) 205–245 (Springer, 2014).

66. Lobo, F. J., Lima, C. F., Michalewicz, Z. (eds). Parameter Setting in Evolutionary
Algorithms (Springer, 2007).

2 8 M A Y 2 0 1 5 | V O L 5 2 1 | N A T U R E | 4 8 1

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

67. Serpell, M. & Smith, J. E. Self-adaption of mutation operator and probability for
permutation representations in genetic algorithms. Evol. Comput. 18, 491–514
(2010).

68. Fialho, A., Da Costa, L., Schoenauer, M. & Sebag, M. Analyzing bandit-based
adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60, 25–64
(2010).

69. Karafotias, G., Hoogendoorn, M. & Eiben, A. E. Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19, 167–187
(2015).

 This is a recent follow up to ref. 61.
70. Jin, Y. A comprehensive survey of fitness approximation in evolutionary

computation. Soft Comput. 9, 3–12 (2005).
71. Jin, Y. Surrogate-assisted evolutionary computation: recent advances and

future challenges. Swarm Evol. Comput. 1, 61–70 (2011).
72. Loshchilov, I., Schoenauer, M. & Sebag, M. Self-adaptive surrogate-assisted

covariance matrix adaptation evolution strategy. In Proc. Conference on Genetic
and Evolutionary Computation (eds Soule, T. & Moore, J. H.) 321–328 (ACM,
2012).

73. Zaefferer, M. et al. Efficient global optimization for combinatorial problems. In
Proc. Conference on Genetic and Evolutionary Computation (eds Igel, C. & Arnold,
D. V.) 871–878 (ACM, 2014).

74. Deb, K. Multi-objective Optimization Using Evolutionary Algorithms (Wiley, 2001).
75. Zhang, Q. & Li, H. MOEA/D: a multi-objective evolutionary algorithm based on

decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007).
76. Deb, K. & Jain, H. An evolutionary many-objective optimization algorithm

using reference-point-based nondominated sorting approach, part I: solving
problems with box constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2014).

77. Jain, H. & Deb, K. An evolutionary many-objective optimization algorithm using
reference-point based non-dominated sorting approach, part II: handling
constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput.
18, 602–622 (2014).

78. Branke, J., Greco, S., Slowinski, R. & Zielniewicz, P. Learning value functions in
interactive evolutionary multiobjective optimization. IEEE Trans. Evol. Comput.
19, 88–102 (2015).

79. Stanley, K. O. Compositional pattern producing networks: a novel abstraction of
development. Genet. Program. Evolvable Mach. 8, 131–162 (2007).

80. O’Reilly, U.-M. & Hemberg, H. Integrating generative growth and evolutionary
computation for form exploration. Genet. Program. Evolvable Mach. 8, 163–186
(2007).

81. Clune, J., Stanley, K. O., Pennock, R. & Ofria, C. On the performance of indirect
encoding across the continuum of regularity. IEEE Trans. Evol. Comput. 15,
346–367 (2011).

82. Jin, Y. & Meng, Y. Morphogenetic robotics: an emerging new field in
developmental robotics. IEEE Trans. Syst. Man Cybern. C 41, 145–160 (2011).

83. Doursat, R., Sayama, H. & Michel, O. (eds). Morphogenetic Engineering: Toward
Programmable Complex Systems (Springer, 2013).

84. Doncieux, S., Bredeche, N. & Mouret, J.-B. (eds). New Horizons in Evolutionary
Robotics (Springer, 2011).

85. Vargas, P. A., Di Paolo, E. A., Harvey, I. & Husbands, P. (eds). The Horizons of
Evolutionary Robotics (MIT Press, 2014).

86. Harman, M. & McMinn, P. A theoretical and empirical study of search-based
testing: local, global, and hybrid search. IEEE Trans. Softw. Eng. 36, 226–247
(2010).

87. Preen, R. & Bull, L. Towards the coevolution of novel vertical-axis wind turbines.
IEEE Trans. Evol. Comput. 19, 284–294 (2015).

88. Banzhaf, W. et al. From artificial evolution to computational evolution: a
research agenda. Nature Rev. Genet. 7, 729–735 (2006).

89. Maynard Smith, J. Byte-sized evolution. Nature 355, 772–773 (1992).
90. Waibel, M., Floreano, D. & Keller, L. A quantitative test of Hamilton’s rule for the

evolution of altruism. PLoS Biol. 9, e1000615 (2011).
91. Long, J. Darwin’s Devices: What Evolving Robots Can Teach Us About the History of

Life and the Future of Technology (Basic Books, 2012).
92. Virgo, N., Fernando, C., Bigge, B. & Husbands, P. Evolvable physical self-

replicators. Artif. Life 18, 129–142 (2012).
93. Bongard, J. & Lipson, H. Evolved machines shed light on robustness and

resilience. Proc. IEEE 102, 899–914 (2014).
94. Bongard, J. Morphological change in machines accelerates the evolution of

robust behavior. Proc. Natl Acad. Sci. USA 108, 1234–1239 (2011).
 This article demonstrated a hitherto unknown relationship between

development, evolution, morphology and the neural control of behaviour, as
phrased by the title.

95. Eiben, A. E. Grand challenges for evolutionary robotics. Front. Robot. AI 1, http://
dx.doi.org/10.3389/frobt.2014.00004 (2014).

96. Fernando, C., Kampis, G. & Szathmáry, E. Evolvability of natural and artificial
systems. Procedia Comput. Sci. 7, 73–76 (2011).

Acknowledgements The authors would like to thank the editors and reviewers,
as well as A. Adamatzky, L. Bull, B. Filipic and M. Schoenauer for providing helpful
insights on earlier versions of this manuscript.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The author declares no competing financial
interests. Readers are welcome to comment on the online version of this paper
at go.nature.com/4r5hj1. Correspondence should be addressed to A.E.E.
(a.e.eiben@vu.nl).

4 8 2 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

	From evolutionary computation to the evolution of things
	Main
	Evolution and problem solving
	Positioning of evolutionary computation
	Applications of evolutionary computation
	State of the art
	Important research trends
	Automated design and tuning of evolutionary algorithms
	Using surrogate models
	Handling many objectives
	Generative and developmental representations

	Outlook
	Acknowledgements
	References

