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Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events
and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse
genome-wide single nucleotide polymorphism (SNP) data from a carefully chosen geographically diverse sample of
2,039 individuals from the United Kingdom. This reveals a rich and detailed pattern of genetic differentiation with
remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing
patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic
events. We estimate the genetic contribution to southeastern England from Anglo-Saxon migrations to be under half,
and identify the regions not carrying genetic material from these migrations. We suggest significant pre-Roman but
post-Mesolithic movement into southeastern England from continental Europe, and show that in non-Saxon parts of
the United Kingdom, there exist genetically differentiated subgroups rather than a general ‘Celtic’ population.

The genetic composition of human populations varies throughout the
world, as a result of the interplaybetweenpopulationmovement, admix-
ture, natural selection and genetic drift. Characterizing such geograph-
ical population structure provides insights into demographic history
and is critical to genetic studies of disease1–3.
Human population structure is reasonably well understood at broad

scales, for example between and within continents4–10. Here we invest-
igate structure overmuch finer scales, in Caucasians within the United
Kingdom (UK) consisting of England, Scotland, Wales and Northern
Ireland.Weuse ‘Britain’ (technicallyGreatBritain) to refer to the single
islandconsistingofmodern-dayEngland, ScotlandandWales.UKpopu-
lation structurehas been studiedbefore, typically on relatively small sam-
ples using various single-locus systems and recently genome-wide SNP
data11,12. These earlier studies showsomeregional variation at particular
loci,with aweak, roughlynorth–south cline in allele frequencies genome-
wide, suggesting that population structure in the UK is rather limited.

Samples and analysis
To investigate fine-scale population structure in the UK, and to pro-
vide well-characterized controls for disease studies, we assembled a
sample, the People of the British Isles (PoBI) collection, as previously
described13. Our analyses used 2,039 PoBI samples from rural areas
within theUK, genotyped as part of theWellcomeTrust Case Consor-
tium 2 (WTCCC2), who had all four grandparents born within 80 km
of each other.We thus effectively sample DNA from the grandparents.
The grandparents’ average year of birth was 1885 (s.d. 18 years). As
the DNA from each PoBI participant is a random sample of their
grandparents’ DNA, our approach allows investigation of fine-scale

population structure in rural areas of the UK before the major popu-
lation movements of the twentieth century.
To provide context for the UK samples, we analysed 6,209 samples

from 10 countries in continental Europe genotyped in the WTCCC2
study ofmultiple sclerosis14. To ensure compatibility between the PoBI
and continental European samples we restricted attention to autoso-
mal SNPs genotyped in both samples (approximately 500,000 SNPs,
see Methods).

Fine-scale UK population differentiation
Consistent with earlier studies of the UK, population structure within
the PoBI collection is very limited. The average of the pairwise FST esti-
mates between each of the 30 sample collection districts is 0.0007, with
a maximum of 0.003 (Supplementary Table 1).
Against this background of very limited structure within the UK,

we applied a recently developedmethod for detecting fine-scale popu-
lation structure, fineSTRUCTURE15, to the PoBI samples, to look for
more subtle effects. SeeMethods (also Extended Data Figs 1 and 2) for
an informal description, details, interpretation under both discrete and
isolation-by-distancemodels, assessmentof convergence, and enhance-
ments to the algorithmas applied in this study. In contrast to commonly
used approaches such as principal components or ADMIXTURE16,
fineSTRUCTUREexplicitlymodels the correlationbetweennearbySNPs
and uses extended multi-marker haplotypes throughout the genome.
This substantially increases its power to detect subtle levels of genetic
differentiation.
The fineSTRUCTURE algorithm can divide samples into genetic

clusters hierarchically, from coarser to finer levels of structuring. We
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applied fineSTRUCTURE to the PoBI samples’ genetic data without
reference to the known geographical locations. The genetic clustering
can be assessed with respect to geography by plotting individuals on a
map of the UK (at the centroid of their grandparents’ places of birth)
and examining the inferred genetic clusters, for different levels of the
hierarchical clustering.
Figure 1 shows thismap for 17 clusters, together with the tree show-

inghow these clusters are related at coarser levelsof thehierarchy. (There
is nothing special about this level of clustering, but it is convenient for
describing some of the main features of our analysis; Supplementary
Fig. 1 depictsmaps showing other levels of the hierarchical clustering.)
The correspondencebetween thegenetic clusters andgeography is strik-
ing: most of the genetic clusters are highly localized, with many occu-
pying non-overlapping regions. Because the genetic clustering made
no reference to the geographical location of the samples, the resulting
correspondence between genetic clusters and geography reassures us
that our approach is detecting real population differentiation at fine
scales.Our approach can separate groups in close proximity, such as in
Cornwall and Devon in southwest England, where the genetic clusters
closely match the modern county boundaries, or in Orkney, off the
north coast of Scotland.

It is instructive to consider the tree that describes the hierarchical
splitting of the 2,039 genotyped individuals into successively finer clus-
ters (Fig. 1). The coarsest level of genetic differentiation (that is, the
assignment into two clusters) separates the samples inOrkney fromall
others. Next the Welsh samples separate from the other non-Orkney
samples. Subsequent splits reveal more subtle differentiation (reflected
in the shorter distancesbetweenbranches), including separationofnorth
and southWales, then separationof thenorth ofEngland, Scotland and
Northern Ireland from the rest of England, and separation of samples
inCornwall from the large English cluster. There is a single large cluster
(red squares) that covers most of central and southern England and
extends up the east coast. Notably, even at the finest level of differen-
tiation returnedby fineSTRUCTURE (53 clusters), this cluster remains
largely intact and contains almost half the individuals (1,006) in our
study.
Although larger than between the sampling locations, estimated FST

values between theclusters represented inFig. 1 are small (average0.002,
maximum 0.007, Supplementary Table 2), confirming that differenti-
ation is subtle. On the other hand, all comparisons between pairs of
clusters of their patterns of ancestry as estimated by fineSTRUCTURE
show highly significant differences (Supplementary Table 3).
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Figure 1 | Clustering of the 2,039
UK individuals into 17 clusters
based only on genetic data. For each
individual, the coloured symbol
representing the genetic cluster to
which the individual is assigned is
plotted at the centroid of their
grandparents’ birthplaces. Cluster
names are in side-bars and ellipses
give an informal sense of the range of
each cluster (see Methods). No
relationship between clusters is
implied by the colours/symbols.
The tree (top right) depicts the order
of the hierarchical merging of
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interpretation of branch lengths).
Contains OS dataE Crown
copyright and database right 2012.
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Wecompared our approach to twowidelyused analysis tools, namely
principal components4,12,17 andADMIXTURE16 (ExtendedData Fig. 3).
Both approachesbroadly separate samples fromWales and fromOrkney,
but are not able to distinguish many of the other clusters found by
fineSTRUCTURE.We also performed analyses to show that the clus-
tering is not an artefact of our sampling schemepreferentially selecting
related individuals (seeMethods, ExtendedData Fig. 4 and Supplemen-
tary Note).

UK clusters in relation to Europe
Genetic differences betweenUKclustersmight in part reflect their rela-
tive isolation from each other, and in part differing patterns of migra-
tion and admixture from populations outside the UK. To gain further
insight into this secondaspect,we first applied similar fineSTRUCTURE
analyses to 6,209 samples from continental Europe (henceforth referred
to as ‘Europe’, see Extended Data Fig. 5a for the distribution of the
samples by region), and then characterized the genetic composition of
theUK clusters with respect to the genetic groups we found in Europe.
A fuller analysis of the clustering within Europe and its interpretation
will be described elsewhere.
To avoid confusion below, wewill refer to each of the 17 sets of indi-

viduals definedbyour fineSTRUCTUREanalyses in theUKas a ‘cluster’,
and to each of the sets of individuals defined in our analyses of Europe
as a ‘group’.We focus in these analyses on the division of the European
samples into51 such groups (ExtendedDataFig. 5b).We italicise names
of UK clusters, to distinguish them from the geographic region (for
example, the pink cross cluster Cornwall, and the county Cornwall).
European groups are each given a unique identifying number (these
are consecutive at the finest level of clustering, but not at the level we
consider). In the text, groups are identified by this number and, for
clarity, a three-letter label identifying the country (or countries) where
thegroup ismainly represented (for example,GER6 for thegroup labelled
‘6’, which is mostly found in Germany).

For each UK cluster we estimated an ‘ancestry profile’ which char-
acterizes the ancestry of the cluster as a mixture of the ancestry of
the 51 European groups. (seeMethods for details, also Supplementary
Table 4). As for the fineSTRUCTURE clustering, these analyses use no
geographical information.The estimatedancestry profiles are illustrated
in Fig. 2 which also depicts the sampling locations in Europe of the
groups contributing to the ancestry profiles (see also Extended Data
Fig. 6a). Note that it is possible for distinct clusters within the UK to
have very similar ancestry profiles: for example, twoUK regions could
receive similar contributions froma set of Europeangroups (thus similar
ancestry profiles) but then evolve separately (leading to different pat-
terns of shared ancestry within and between the regions, and thus to
distinct clusters in fineSTRUCTURE).
The bar charts in Fig. 2 show that some European groups feature

substantially in the ancestry profiles of allUKclusters. These are:GER6
(yellowgreen) foundpredominantly inwesternGermany;BEL11 (green),
in the northern, Flemish, part of Belgium; FRA14 (light blue), in north-
west France; DEN18 (dark blue), in Denmark; SFS31 (blue/purple) in
southern France and Spain. In contrast, some European groups feature
substantially in the ancestry profiles of someUKclusters but are absent
from those of otherUKclusters:GER3 (orange), in northernGermany;
FRA12 (dark green), in France; and FRA17 (blue), also in France. Two
Swedish groups (SWE117 and SWE121) feature in the ancestry profiles
of theUK clusters, withNorwegian groups (shades of purple) featuring
substantially in the ancestry profiles of the Orkney clusters, and to a
lesser extent the clusters involving Scotland and Northern Ireland.

Discussion
Theapplicationofpowerfulhaplotypebasedanalysismethods togenome-
wide SNP data from a large, carefully-collected, UK sample reveals a
rich pattern of subtle fine-scale genetic differentiation within the UK,
which showsamarked concordancewith geography. Fewof these details
have been captured previously.
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Figure 2 | European ancestry
profiles for the 17UKclusters. Each
row represents one of the 51
European groups (labels at right) that
were inferred by clustering the
6,029 European samples using
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contribution to the ancestry profile of
at least one UK cluster are shown.
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cluster. Coloured bars have heights
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The clustering (Fig. 1 and Supplementary Fig. 1) is notable both for
its exquisite differentiation over small distances and the stability of
some clusters over very large distances. Genetic differentiation within
theUK isnot related in a simpleway togeographical distance. Examples
of fine-scale differentiation include the separation of: islands within
Orkney; Devon from Cornwall; and the Welsh/English borders from
surrounding areas.The edges between clusters follownatural geograph-
ical boundaries in some instances, for example, between Devon and
Cornwall (boundaries the Tamar Estuary and Bodmin Moor), and
Orkney is separated by sea fromScotland.However, inmany instances
clusters span geographic boundaries; for example, the clusters in Nor-
thern Ireland span the sea to Scotland.
Although the branch lengths of the hierarchical clustering tree in

Fig. 1 are not easy to interpret directly, they are indicative of the relative
differentiation betweenUKclusters, so that for example, the differences
between Orkney, Wales and the remainder of the UK are substantial
compared to some of the finer differences (splits closer to the tips of
the tree). North and southWales are about as distinct genetically from

each other as are central and southern England fromnorthernEngland
and Scotland, and the genetic differences betweenCornwall andDevon
are comparable to or greater than those between northern English and
Scottish samples, and to those between islands in Orkney.
To facilitate further discussion, Fig. 3 and Extended Data Fig. 7 give

an overview of themajor population groups andmovements of people
within and into theUKatdifferent times, basedonarchaeological, histor-
ical and linguistic evidence. Formoredetail see theSupplementaryNote.
Ourobservation that samples inOrkneydiffer genetically fromthose

in the rest of the UK has been noted before18–21 and is consistent with
the historical settlement, and long-term control of Orkney by Norse
Vikings (Orkney was a part of Norway from 875 to 1472). Further, the
estimated ancestry profiles of the Orkney clusters show substantial
contributions from groups in Norway (Fig. 2). This consistency with
history and archaeology provides external validation of our approach.
Our approach is clearly powered to detect quite subtle levels of pop-

ulation structure. Not finding such structure in central and southern
England is thus informative. Although some structuremay exist within
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this region, there must have been sufficient movement of people, and
hence of their DNA, since the lastmajor invasions of the UK tomake it
relatively homogeneous genetically. This does not require large-scale
population movements; it could be achieved by relatively local migra-
tionovermanygenerations.This regionofBritain lacksmajor geograph-
ical and (for the most part since the Roman occupation) geo-political
barriers to human movement.
Other UK clusters may well reflect historical events. For example,

several genetic clusters in Fig. 1 match the geo-political boundaries in
Fig. 3c, and may represent remnants of communities/kingdoms pre-
sent after the Saxon migrations, while the cluster spanning Northern
Ireland and southern Scotlandmay reflect the ‘Ulster plantations’. The
Supplementary Note contains further observations relating to the gen-
etic clustering.
Relative isolation has clearly been amajor determinant of fine-scale

population structure within the UK. To assess the role of a different
possible cause, namely differential migration into different parts of the
UK,we estimatedEuropean ancestry profiles for each of theUKgenetic
clusters (Fig. 2). Here we must use modern-day groupings, in Europe
and the UK, as surrogates for the sources and results of major migra-
tion events. Population movements between these events and the pre-
sent, involving either the source populations or recipient groups, will
attenuate signals of the originalmigration. For this and other reasons, it
is hard to provide definitive explanations for our observations. None-
theless, genetic differences persist throughmanygenerations andwhere
we can check our conclusions against historical evidence, there is good
concordance. In what follows we focus on themost likely explanations
for various observations. See Supplementary Note for a fuller discus-
sion. For definiteness, we focus on the clustering in Fig. 1 andExtended
Data Fig. 5b, although other levels are informative. Analysis of addi-
tional UK and European samples, particularly in regions where our
data are sparse (for example, central Wales and Scotland, Spain, the
Netherlands) would improve our ability to infer historical events.
The observation (Fig. 2 and Supplementary Table 4) that particular

European groups (for example, GER3, FRA12, FRA17) contribute sub-
stantially to the ancestry profiles of some, butnot all,UKclusters strongly
suggests that at least some of the structure we observe in the UK results
fromdifferential input ofDNA todifferent parts of theUK: the absence
in particular UK clusters of ancestry from specific European groups is
best explainedby theDNA fromthoseEuropeangroupsnever reaching
those UK clusters. A critical observation which follows is that groups
which contribute significantly to the ancestry profiles of all UK clusters
most probably represent, at least in part, migration events into the UK
that are relatively old, since their DNA had time to spread throughout
the UK. Conversely, groups that contribute to the ancestry profiles of
only someUK clustersmost probably representmore recentmigration
events, with the resulting DNA not yet spread throughout the UK by
internal migration. ‘Old’ and ‘recent’ here are relative terms—we can
infer the order of some events in this way but not their absolute times.
Although we refer to migration events, we cannot distinguish between
movements of reasonable numbers of people over a short time or on-
going movements of smaller numbers over longer periods.
Applying this approach suggests a relative ordering of the peopling

of the British Isles. For a full discussion, and caveats, see Supplemen-
tary Note. Briefly, the earliest migrations whose descendants survive
to make a substantial contribution to the present population are best
captured by three groups in our European analyses, GER6 (western
Germany), BEL11 (Belgium), andFRA14 (north-westernFrance).These
groups still contribute to current patterns of population differentiation
(Fig. 2, see alsoExtendedDataFig. 6).OtherEuropeangroupsmay reflect
earlymigrations into the UK, but with smaller contribution, including
SFS31 (southern France/Spain), at least part ofDEN18 (Denmark), and
possibly parts of Norway and Sweden. A subsequent migration, best
capturedbyFRA17(France), contributed a substantial amount of ances-
try to theUKoutsideWales. Althoughwe cannot formally exclude this
being part of the Saxon migration, this seems unlikely (see Methods)

and instead itmight representmovementofpeople takingplace between
the early migrations and those known from historical records. Migra-
tions represented by FRA12 essentially only affectWales andNorthern
Ireland and/or Scotland.We also see clear signals of some of the known
historical migrations and settlements, including the Saxons (GER3,
northernGermany, and probablymuch of DEN18, Denmark) and the
Norse Vikings (NOR53–NOR90).
To further shed light on twomajormigration events, inOrkney and

in central and southernEngland respectively,we applied a distinct ana-
lytical tool, GLOBETROTTER22 (Extended Data Figs 8 and 9). Infor-
mally, GLOBETROTTER exploits information in the rate of decay of
shared haplotype segments to test for the presence of recent admixture,
to identify groups contributing, and then date the admixture.
GLOBETROTTER detected strong evidence (P, 0.01) that the

largestOrkney cluster (Orkney 1)was influenced by a recent admixture
eventwith anoverall contribution of,25%of theDNA fromgroups in
Norway, confirming that the Norwegian contribution in the ancestry
profile for this cluster reflects recent admixture (ExtendedData Fig. 9).
The approach assumed the simplest model (a single pulse of admix-
ture), and estimated this tohave occurred29generations ago (95%con-
fidence interval (CI): 18–39 generations), corresponding to year 1100
(95% CI: 830–1418), assuming a 28 year generation time22; no clear
evidencewas found ofmultiple admixture dates.We expect less precise
estimates for the other twoOrkney clusters (due to their smaller sample
size), but these were consistent with those for Orkney 1. For Cent./S
England themethod also detected an admixture event, with a contribu-
tionof,35%ofDNAfromGER3, the group innorth-westernGermany,
and an estimated date of 38 generations (95% CI: 36–40 generations),
corresponding to year 858 (95% CI: 802–914) (Extended Data Fig. 9).
The GLOBETROTTER analyses detect likely source populations for
the known historical migrations (Norse Vikings and Saxons, respec-
tively)with the estimatedproportion contributed by these sources close
to that estimated in the ancestry profiles.Note that amigration event is
likely to precede any subsequent population admixture, possibly sub-
stantially so, if the migrants mate largely within the migrant group for
some time after their migration. Further, admixture is likely to be a
gradual process, so that using amodel of a single pulse of admixture in
GLOBETROTTER is likely to estimate a time after the commence-
ment of admixture. For these reasons, the admixture dates estimatedby
GLOBETROTTER should provide upper bounds on the dates of the
migrations22, as for both examples here, where the estimated dates are
200 or more years after the known dates of the migrations, suggesting
that the mixing was indeed a gradual process.
After the Saxonmigrations, the language, place names, cereal crops

andpottery styles all changed fromthat of the existing (Romano-British)
population to those of the Saxon migrants. There has been ongoing
historical and archaeological controversy about the extent towhich the
Saxons replaced the existingRomano-Britishpopulations. Earlier genetic
analyses, based on limited samples and specific loci, gave conflicting
results. With genome-wide data we can resolve this debate. Two sepa-
rate analyses (ancestry profiles andGLOBETROTTER) show clear evi-
dence in modern England of the Saxon migration, but each limits the
proportion of Saxon ancestry, clearly excluding the possibility of long-
term Saxon replacement. We estimate the proportion of Saxon ances-
try inCent./S England as very likely to be under 50%, andmost likely in
the range of 10–40%.
Amore general conclusion of our analyses is that while many of the

historical migration events leave signals in our data, they have had a
smaller effect on the genetic composition of UK populations than has
sometimes been argued. In particular, we see no clear genetic evidence
of theDanishViking occupation and control of a large part of England,
either in separate UK clusters in that region, or in estimated ancestry
profiles, suggesting a relatively limited input of DNA from the Danish
Vikings and subsequentmixingwithnearby regions, and clear evidence
for only a minority Norse contribution (about 25%) to the current
Orkney population.

ARTICLE RESEARCH

1 9 M A R C H 2 0 1 5 | V O L 5 1 9 | N A T U R E | 3 1 3

Macmillan Publishers Limited. All rights reserved©2015



We saw no evidence of a general ‘Celtic’ population in non-Saxon
parts of the UK. Instead there were many distinct genetic clusters in
these regions, some amongst the most different in our study, in the
sense of beingmost separated in thehierarchical clustering tree inFig. 1.
Further, the ancestry profile ofCornwall (perhaps expected to resemble
other Celtic clusters) is quite different from that of the Welsh clusters,
and much closer to that of Devon, and Cent./S England. However, the
data do suggest that theWelsh clusters represent populations that are
more similar to the early post-Ice-Age settlers of Britain than those
from elsewhere in the UK.
In summary, we have presented the first (to our knowledge) fine-

scale dissection of subtle levels of genetic differentiationwithin a coun-
try, by using careful sampling, genomic data and powerful statistical
methods.The resulting genetic clusters, and the characterizationof their
ancestry in terms of European groups, provide important and novel
insights into the peopling of the British Isles.
Genetic information can augment archaeological, linguistic and his-

torical approaches to understanding population history. It also com-
plements them, in providing evidence relating to the bulk of ordinary
people rather than the successful elite. We hope that our study will act
as a proof-of-principle for the power of such detailed genetic analyses.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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METHODS
Samples, genotyping and QC. The sampling scheme and general information
about the UK sample is described elsewhere13. Briefly, the aim was to collect sam-
ples from rural regions of the UK, for whom all four grandparents were born close
to each other. In total 4,371 samples were collected as part of the PoBI project. Of
these 2,886 were genotyped on the Illumina Human 1.2M-Duo genotyping chip
aspart of theWellcomeTrustCaseControlConsortium2 (WTCCC2) studies,with
2,510 passing theWTCCC2 genotype quality control (QC) procedures23. We then
applied a geographic filter, which imposed a maximum pairwise distance between
each sample’s grandparents’ places of birth of 80 km, leaving 2,039 samples avail-
able for analysis. Inwhat followswe refer to these samples as the ‘UKsample(s)’.We
give a detailed description of the choice of SNPs used for our analyses below.
For the European ancestry profile analysis we used 6,209 samples from the

WTCCC2multiple sclerosis study14, of which 5,682 were cases and 527 were con-
trols. We excluded all samples from the UK and Ireland (see ‘treatment of Eire’
below). Extended Data Fig. 5a shows a breakdown of sample numbers by region.
In the following textwe refer to these continental Europeansamples as the ‘European
sample(s)’. The European samples were genotyped on the Illumina Human 660-
Quad chip as previously described14. These samples had already passed through
the WTCCC2 SNP and sample quality control procedures14.
For all analyses we used intersections of the autosomal SNPs available for the

UK and European data sets, constructed in the following manner: we excluded
SNPs in the HLA region, and, for analyses involving the European samples, SNPs
in major multiple sclerosis associated regions (although any effect of the use of
disease samples should be small in analyses of genome-wide data). More specif-
ically, we first took the full intersection of theUKandEuropeandata SNP sets.We
removed a 15Mb region surrounding the HLA region on chromosome 6 because
the European samples were comprised ofmultiple sclerosis case samples, a disease
with strong HLA associations. This left 575,236 SNPs that were transferred to the
haplotype inference (phasing) step (see next section).Within the phasing software
(IMPUTE2) further SNPs were excluded based onWTCCC2 quality control pro-
cedures,which—in addition to IMPUTE2’s internal removal of SNPs due to strand
issues or lackof overlap between theSNParray and the referencepanel haplotypes—
removed 15,211 of these SNPs before phasing. After phasing, SNPs with IMPUTE2
info-threshold# 0.975 and SNPs thatwere singletons among all phased datawere
removed (these data include all POBI and European samples). This left 524,699
SNPs. For the analyses using only the UK data (the clustering analysis labelled
‘analysisA’ in thenext section) 522,862 SNPSwereused in theCHROMOPAINTER/
fineSTRUCTURE analyses (see next section), as the rest weremonomorphic in the
UK set of 2,039 individuals. For further analyses, using the European data (labelled
‘analysis B’ and ‘analysis C’ in the next section), multiple sclerosis associated SNPs
(regions defined by linkage disequilibrium around major loci of suggestive asso-
ciationwithmultiple sclerosis) were removed, as well as some other SNPs for tech-
nical reasons. In total this removedSNPs from56.8Mbof the genome.This resulted
in 515,981 SNPs remaining for the analyses involving European samples. In sum-
mary, there were 522,862 SNPs available for the UK clustering analyses, and
515,981 SNPs available for the analyses involving European samples. A complete
list of rsIDs is available at (http://www.well.ox.ac.uk/POBI).
Inference of population structure. To aid in understanding we give an informal
description of the approach we applied for inferring fine-scale population struc-
ture. This is followed by a more detailed elaboration of our analysis. A critical
feature of the algorithm, unlike other common approaches to detecting popula-
tion structure such as principal components, ADMIXTURE16 or STRUCTURE24,
is that it explicitly models the correlation structure amongst nearby SNPs due to
linkage disequilibrium, making use of the information in extended multi-marker
haplotypes throughout the genome. This adds substantially to fineSTRUCTURE’s
power to detect subtle levels of genetic differentiation. It has been known since the
early HLA studies that methods that account for linkage disequilibrium are more
informative for studies of humanpopulation structure thanapproacheswhich treat
each locus marginally25.
Very informally, in the fineSTRUCTURE approach, haplotype phase was first

inferred in each sample, after which each resulting haploid genome is broken into
pieces, in such a way that for each piece the method identifies the homologous
piece in another individual to which it is most similar. This can be thought of as
identifying the other individual in the collection with the most similar ancestry
for that part of the genome (the average size of these pieces varies across indivi-
duals, but has median 0.51 cM with IQR 0.44–0.63 cM). For each individual, one
can tally up the number of pieces over which its genome is closest to each other
sampled individual. These individual vectors of similarity counts are then used to
cluster together individuals with similar ancestries, using a model-based statistical
algorithm (fineSTRUCTURE) fitted byMarkov chainMonte Carlo. The choice as
to the number of clusters, and the assignment of individuals to clusters, is made so
as to maximise the posterior probability under the probability model used for

clustering in fineSTRUCTURE. In the PoBI analysis, this yields 53 clusters of indi-
viduals. Similar clusters are then merged hierarchically to give a tree which can be
used todescribepopulation structure atdifferent levelsof granularity, aswedescribe
below.
More formally, haplotypes were inferred (phased) jointly for all individuals

used in the study (that is, the UK and European samples) with IMPUTE226, using
thedefault values (seehttp://mathgen.stats.ox.ac.uk/impute/impute_v2.html#mcmc_
options). The reference data used are available from the IMPUTE2website (http://
mathgen.stats.ox.ac.uk/impute/impute_v2.html#reference).
Next,weused thealgorithmimplemented in theCHROMOPAINTERprogram15

to represent the DNAof individuals as mosaics of the DNA from other individuals.
We performed three separate CHROMOPAINTER analyses:

A. Formeachhaplotypeof aUK individual as amosaic of allUKhaplotypes exclud-
ing those of that individual.
B. Form each UK haplotype as a mosaic of all European haplotypes.
C. Form each haplotype of a European individual as amosaic of all European hap-
lotypes excluding those of that individual.
For eachanalysis,A–C,weran thealgorithmimplemented inCHROMOPAINTER

as recommended by the authors, except for aminor change to the value of a single
parameter for analysis A, implemented for technical reasons. Specifically, we
initially appliedCHROMOPAINTER to a subset of individuals and chromosomes
(chosen as described below) using 10 iterations of its expectation-maximization
(EM) algorithm to infer the genome-wide average switch and global emission
rates in CHROMOPAINTER’s HiddenMarkov model. We averaged the inferred
values of each across the chromosomes and individuals used, weighting chromo-
somes by their relative size, and fixed these final switch and global emission rates
in a final run of CHROMOPAINTER on all individuals and chromosomes. This
final CHROMOPAINTER run gave the final ‘counts’ and ‘lengths’ values used in
all subsequent analyses. For analysis A, we inferred switch and global emission
rates averaging across chromosomes 4, 10, 15, 22 (usingweights of 187, 131, 81 and
34, respectively) and 20 individuals from each of 30 UK sample regions (counties
ordistricts fromwhich thePoBI sampleswere collected, fromacross thewholeUK),
starting with an initial switch rate of 400,000/(2NUK), where NUK is the number of
samples used for theUKanalyses, and a default emission rate. For analyses B andC,
we inferred switch and global emission rates averaging across chromosomes 1, 8,
15, 22 (usingweights of 219, 142, 81 and34, respectively) for 20 individuals fromeach
of 30 United Kingdom regions, and 20 individuals out of every 200 in a combined
file of all European subjects, starting with an initial switch rate of 400,000/(2NE),
whereNE is the number of samples used for the European analyses, and a default
emission rate. PreviousworkwithCHROMOPAINTERhas shownthatdeviationsof
the switch rate (evenup to a factorof 10)have little effect onCHROMOPAINTER’s
inference (data not shown). Finally, for analysis C, we set the expected number of
haplotypic segments to define a region (that is, the ‘-k’ switch) toCHROMOPAIN
TER’s default value of 100 in order to estimate a normalizationparameter (denoted
by ‘c’) subsequently used by the clustering program fineSTRUCTURE15. In con-
trast, we set this value to 50 (that is, using ‘-k 50’) for analysis A. This slight
deviation fromCHROMOPAINTER’s default value was implemented for analysis
A because some UK individuals shared relatively long haplotype segments with
other UK haplotypes, such that they did not always have 100 total such segments
across the entirety of some of the smaller chromosomes. We used the June 2008
build 36 genetic map from the HapMap webpage (http://hapmap.ncbi.nlm.nih.
gov/downloads/recombination/2008-03_rel22_B36/rates/).
CHROMOPAINTERprovides estimates of the counts of haplotype segmentsand

total length of DNA (in cM) for which an individual shares most recent common
ancestry with a set of other individuals.When summed across all 22 autosomeswe
refer to the vector of these counts as the ‘copying profile’ for that individual. For
example, in analysis B, CHROMOPAINTER gives the counts of haplotype seg-
ments and total length of DNA for which each UK individual shares most recent
commonancestrywith eachEuropean individual. These values are given for chro-
mosome 1–22 of eachUK individual, and are also summed to give a genome-wide
total across the autosomes (in the case of the counts data, the copying profile).
Furthermore,withinaUK individual, these values canbe summedacross any group-
ing of European individuals (for example those sampled from the same geographic
region or assigned to the same European group, see below) providing an estimate
of the counts of haplotype segments and/or total length ofDNA forwhich eachUK
individual sharesmost recent commonancestrywith anyEuropeangroup (a group
copyingprofile). It is natural to average these values acrossUK individuals assigned
to the same cluster (see below) to get average values for all UK individuals from a
particular cluster; a ‘copying vector’ for the cluster as a whole.
For analyses A and C, described above, we used the algorithm implemented

in the program fineSTRUCTURE15 to group the UK and European individuals
respectively into genetically relativelyhomogeneous clusters.The fineSTRUCTURE
programtakes as its input the counts of haplotype segments forwhicheach individual
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shares recent commonancestrywith every other as inferredbyCHROMOPAINTER
(summed across all chromosomes, the copying profile). The choice to use counts
in this analysis ismotivated by the underlying ‘painting’model usedbyCHROMO
PAINTER, in which segments are shared with individuals chosen independently
from one another, and there is a constant switch rate between segments. Under
this model, each segment provides an equal amount of independent information,
while segment lengths are uninformative, so the segment counts provide a natural
basis for inference, and this is why they are used.However, we note that in practice
fineSTRUCTURE attempts to allow for departures from this modelling assump-
tion (which is expected to only be an approximation) through a scaling parameter
on the (log-) likelihood. Moreover we believe there is often useful information
provided in, for example, the fact that segments shared between genuinely closely
related groups tend tobe longer onaverage, akin to the ideaof long segments shared
‘identical by descent’ with respect to some founder population. Exploring and using
this length information may provide an interesting topic for future work.
We initiallyput all of our individuals into a single cluster at iteration0, butother-

wise used default values when running fineSTRUCTURE (see ref. 15 for details).
EachMarkovChainMonteCarlo (MCMC) iterationof fineSTRUCTUREprovides
the number of clusters and the cluster membership of each individual, sampled
according to their posterior probabilities under the fineSTRUCTUREmodel. We
sampled values every 10,000 iterations for 1 million MCMC iterations following
either 1 million (analysis A) or 3 million (analysis C) ‘burn-in’ iterations. Starting
from theMCMCsample with the highest posterior probability among all samples,
fineSTRUCTURE performed 100,000 additional hill-climbing moves to reach its
final inferred state.
Nextwe undertook an additional step to improve fineSTRUCTURE’s inference

for cluster membership. This is an addition to the fineSTRUCTURE algorithm15.
While fineSTRUCTURE’s final inferred state has been shown to give reasonable
results in practice15, it relies heavily on a singleMCMCsample observation. Although
this single sample is the one withmaximum posterior probability among all MCMC
samples, the probability has been calculated assuming fixed (sampled) values for a
largenumberofparameters that include the totalnumberof clusters, each individual’s
final inferred cluster assignment, and othermodelling parameters. Therefore, a con-
cern is that the posterior distribution will be relatively flat across such an extensive
state space, such that fairly divergent parameter values may result in similar pos-
terior probabilities. In contrast, the marginal posterior distribution of each indi-
vidual’s cluster assignment across all MCMC runs should be substantially more
informative, improving the assignment of individuals to clusters. Informally, by
chance alone any given individual may not be in its own optimal (highest proba-
bility) cluster in the final inferred state, despite the overall posterior probability
being at its maximum.We thus seek to reassign any such individuals to their most
probable cluster. We therefore leverage the marginal information of each indivi-
dual’s cluster assignment from the values of the MCMC samples recorded every
10,000 iterations (see above) in order to re-assign individuals to clusters. Specifi-
cally, assuming we have N total individuals andMMCMC samples, and starting
from the K clusters in fineSTRUCTURE’s ‘final inferred state’, we performed the
following procedure:
1.We find the number xi

(m) of individuals that cluster with individual i (including
individual i itself) in MCMC sample m, for i5 1,...,N and m5 1,...,M.
2. We furthermore find the number yik

(m)# xi
(m) of individuals that both cluster

with individual i inMCMC samplem and that are in cluster k of the final inferred
state, for k5 1,...,K.
3. We re-assign each individual i to the cluster k with the maximum value ofP

m5 1,...M [yik
(m) / xi

(m)] across all k in 1,...,K. These re-assignments give a new final
inferred state; note these re-assignments can reduce the total number of clustersK.
4. We repeat steps 1–3 for 50 iterations.
This procedure gives the final cluster assignments for each individual.
One feature of this additional procedure used for reassigning individuals to

clusters is that we obtain measurements of the confidence in the assignment of
each individual i to each cluster k. For each individual i, the values of

P
m5 1,...M

[yik
(m) / xi

(m)] from the final iteration can be normalized across k to sum to one,
and stored in theK-vector PK,i. These quantities have a natural interpretation as a
measure of the confidence associated with the assignment of individual i to each
cluster k. Note that we assign individual i to the cluster k for which the value of the
measurement is maximal. Call this maximal value Pk_max,i. It is possible to apply a
threshold t, 0,t, 1, to the assignment of individuals to clusters so that an indi-
vidual is only assigned to a cluster if Pk_max,I. t. If not, then the individualmay be
removed from subsequent analyses. We investigated the effect of setting such a
threshold t. Themain observation is that applying a threshold has very little effect
on the make-up and distribution of clusters across the UK, nor on downstream
analyses (data not shown). For further discussion see Supplementary Note.
One possible consequence of this extra procedure is to reduce the final number

of clusters inferred from that of the so-called final inferred state. For analysis A,

the final number of UK clusters inferred, after the extra procedure, is 53 (the initial
final inferred state had 55). For analysis C the final number of European groups
inferred is 145 (no change to the initial final inferred state).
We assessed convergence of the fineSTRUCTURE MCMC runs in various

ways. This included running independent chains, and comparing aspects of the
assignments of individuals to clusters, and the results of downstream analyses,
between the two chains. Reassuringly, given the size of the state space being ex-
plored, these diagnostics confirmed mixing of the MCMC chains (Extended Data
Fig. 2).
Using the final assignments, we used fineSTRUCTURE to construct a ‘tree’ in

the default manner described in ref. 15 by successively merging pairs of clusters.
Starting at the final cluster assignments, fineSTRUCTUREmerged the pair of clus-
ters whose merging gave the smallest decrease to the posterior probability among
all possible pairwisemerges. This gives the next level up in the tree (with one fewer
cluster).We repeat thismerging process at the new level andcontinueuntil just two
clusters remain. Figure 1 shows the assignment of individuals to clusters for the
level of the tree when 17 clusters remain. The final cluster assignments and the
assignments of individuals to clusters at all levels of the tree are provided in Sup-
plementary Figs 1.1–1.24 for theUKclustering analyses (A). The tree so obtained is
a hierarchical clustering tree and should not be interpreted as a phylogeny. None-
theless there is information about the strength of the differentiation between clus-
ters in these trees.
It is possible to use the vectors ofmeasuresPK,i defined above, of the confidence

associatedwith the assignment of individual i to each cluster k in the final inferred
state, to reassign individuals to clusters at any level of the tree. Consider the fol-
lowing. Define the lowest or finest level of the tree, the level relating to the final
cluster assignments, to beLK, whereK is the number of clusters in the final inferred
state. Then define each level of the tree to beLJ, where J in (2, 3,…,K) is the number
of clusters at the level of interest. For a given level of the tree LJ, each clusterCJ,j, j in
(1, …, J), is made up of one or more clusters at the lowest level of the tree, merged
into a single cluster. For example, the large UK cluster in central and southern
England at the level containing 17 clusters (depicted in Fig. 1, red squares) is the
union of eleven smaller clusters from the final inferred state. For each individual i
it is possible to define a new J-vector of measures PJ,i, for level LJ, where for each
clusterCJ,jwe sum the values inPK,i for all clusters that aremerged to formCJ,j, and
store the result in component j of PJ,i. Thus, for our previous example of the large
cluster in central and southern England at the level containing 17 clusters, for each
individual iwe sum the values relating to the eleven constituent clusters at the final
inferred state that make up this larger cluster, and use this as the measure of con-
fidence that the individual i is assigned to the larger cluster. We can use the vector
of measures PJ,i so-defined to reassign individuals to the cluster for which PJ,i is
maximal. This will potentially result in some individuals being reassigned to a dif-
ferent cluster from the one to which they were assigned by the standard tree build-
ing method. For example, we see this has occurred for exactly one individual in
Extended Data Fig. 1, resulting in the different total numbers assigned to the red
square and purple cross clusters in Extended Data Fig. 1 when compared to Sup-
plementary InformationFig. 1.16 (bothdepicting 17 clusters).One advantage of this
process is thatwe can interpretPJ,i as ameasure of the confidence of the assignment
of an individual i to each cluster at the given level LJ. We can also set a threshold t
and examinewhich individuals have lower confidence assignments to their cluster,
where by ‘lower confidence’ we mean that the maximum value in the vector PJ,i is
less than t. We depict this for the UK clustering at the level of 17 clusters in Ex-
tended Data Fig. 1, when we set t5 0.7.
Other methods for detecting population structure.We implemented principal
components analysis (PCA) using the package MMM17. We applied PCA to the
intersection of the SNPs used for PCA in the WTCCC2 project23 and the SNPs
passing quality control filters in UK sample in this paper. This resulted in 188,329
SNPs with minor allele frequency .0.05 in the UK population. These SNPs are
distributed approximately evenlywith respect to the genetic distance across the 22
autosomes. We excluded all SNPs in regions with unusually high loadings based
on visual inspection of the first 20 axes of PCA applied to the UK control samples
of WTCCC2. The results are shown in Extended Data Fig. 3a.
We also applied the programADMIXTURE16 to these same data, using default

settings as recommended by the authors. The ADMIXTUREmodel effectively as-
sumes independenceof themarkers used across the genome.We ranADMIXTURE
three times, corresponding to three different choices for the number of clusters to
be used for classification (K). To understand the method in the simplest cases we
setK5 2 andK5 3, and for comparison to the results presented in ourmain ana-
lyses we set K5 17. The results are shown in Extended Data Fig. 3b.
Continuous or discrete frameworks for modelling and inferring population
structure. There is a general issue when modelling genetic variation from spa-
tially structured populations as to whether to use models which characterize the
populationas comprisedof distinct subpopulations, or at theother extreme tomodel
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the population in continuous space, without distinct subgroups,where isolation by
distance is the primary factor in giving rise to geographical substructure16,24,27,28.
Both are obviously oversimplifications for natural populations, and in particular
for humans, and aremore naturally thought of as caricatures and as endpoints of a
spectrum, with debate as to which might be closer to capturing the important fea-
tures of historical human demography.
One potential criticism of the fineSTRUCTURE approach is that it is embed-

ded in a framework of discrete subgroups. There is an obvious sense in which
fineSTRUCTURE is closer to this framework: it explicitly estimates a set of sub-
groups in the population, on the basis of patterns of shared ancestry. Although
this is a description of the population, rather than a model of it, it might well be
more natural or useful if there is, in reality, some underlying discreteness. On the
other hand, the hierarchical tree estimated by fineSTRUCTURE allows viewing of
the population atmultiple levels of clustering. This does not stipulate a fixed num-
ber of subgroups, and instead provides a complex description of the underlying
structure—in effect zooming in from the coarsest partition of the population as
two subgroups to examine finer and finer partitions. Taken together, we argue
that this approach is better suited to capturing the complexities of real popula-
tions than had it only described a single set of discrete subgroups. Our approach,
of probabilistically classifying individuals into groups at a particular level, rather
than forcing them to belong to exactly one cluster, also allows some flexibility in a
world where there is smoother variation with geography.
Clearly some, but not all, aspects of human demography will be influenced by

thedynamics of isolationbydistance.Conversely, cultural, linguistic, andgeograph-
ical barriers will all tend to encourage boundaries, and hence discreteness of sub-
groups. We are encouraged by the fact that the multi-level descriptive framework
of fineSTRUCTURE, as applied to the subtle levels of population structure within
theUK, is clearly capturing real effects, as evidenced for exampleby the concordance
with geography, largely non-overlapping clusters (comparedwithADMIXTURE),
confident assignment of individuals to clusters inmost cases (typically exceptwhere
clusters overlap geographically), and its ability todetect groupswhich reflect known
historical events.
Estimating ancestry profiles. To understand the genetic make-up of different ge-
netic clusters in theUKwith respect topotential ancestral populationswe performed
the following analyses. For analysis B (above) the CHROMOPAINTER algorithm
provides estimates of theproportionof eachUK individual’sDNAthat ismost closely
related ancestrally to each European individual, among all the sample members.
These proportions can thenbe summedacross groups. These proportions approx-
imate the fraction of an individual’s DNA that coalesces, back in time, most re-
cently with each particular sampled individual15. Because in humans these coales-
cence events can be far back in time relative to population separation times, we
expect them to often predate population splits (that is, we expect incomplete lin-
eage sorting). This leads to differences in the amount of DNA copied from differ-
ent European groups being subtle, in a sense adding noise. The amount of noise
depends on the number of individuals sampled—and thus potentially sharingDNA—
in the different groups, with larger sample sizes likely to reduce noise. In addition,
we rely on informative variation patterns to identify individuals fromwhomDNAis
copied, adding additional noise, whichmay systematically vary across the genome.
To account for this noise we follow ref. 22, so that at each level of the hierarchical
clustering tree of the UK samples, and for a fixed level (see main text) of the Euro-
pean samples’ hierarchical clustering tree, we perform multiple linear regression
as follows. For each level of the hierarchical clustering tree of the UK samples, and
for the set ofG (5 51) groups inferred for Europe we perform the following linear
regression. LetYPbeaG-vector describing the averageproportionofDNAgenome-
wide that a cluster P of UK individuals copies from each of G groups of European
individuals, as inferred by CHROMOPAINTER. That is, element g of YP consists
of CHROMOPAINTER’s total genome-wide length (in cM) of all haplotype seg-
ments inferred to bemost closely related ancestrally to any individual of European
group g, normalized to sum to unity across all g in 1,...,G within a UK individual
and thenaveraged across all individuals in theUKclusterP.Weuse copying lengths,
rather than counts (used in the clustering itself), for this analysis because all indivi-
duals have the same total genetic length, but this lengthmaybebroken intodiffering
numbers of copying segments in different individuals. Thus it is straightforward to
interpret coefficients in the below linear regression, in terms of the fraction of the ge-
nome contributed by different components in the mixture, using copying lengths,
but interpretation would bemore difficult using counts of sharedDNA segments.
Analogously, letXgbe aG-vector describing the averageproportionofDNAthat the
European individuals of group g copy fromeachof theGEuropeangroups as inferred
byCHROMOPAINTER, including their owngroup (thoughnote individuals arenot
allowed to copy from their own haplotypes in CHROMOPAINTER).We assume

YP~b1X1zb2X2z . . .zbGXG, ð1Þ

and solve simultaneously for the bg under the restriction that each bg$ 0 and
PG

g~1
bg~1, using a slight adaptation of thenon-negative-least-squares (nnls) func-

tion in the statistical software package R (see ref. 29).
We interpret the inferred value for bg as the average proportion of genome-

wideDNAof aUK individual from cluster P that ismost closely related ancestrally
to European group g. We refer to these vectors as ‘ancestry profiles’.
To assess statistical uncertainty in our estimates of the bg for eachUK cluster P,

we perform a bootstrap procedure where we re-sample the chromosomes of the
NP UK individuals in this group (constructing pseudo-individuals by sampling
pairs of chromosomes for each of the autosomes). In particular, for each boot-
strap iteration, we randomly sample theG-vector of CHROMOPAINTER output
across these UK individuals NP times with replacement for each chromosome
1–22. We then generate each of NP ‘pseudo-individuals’ by randomly summing
22 pairs of these samples (without replacement), one pair per chromosome, and
then summing across the first, respectively the second,member of each pair before
rescaling the resulting G-vectors to sum to unity. Averaging each element of the
G-vectors across these NP pseudo-individuals gives us a new re-sampled value of
YP, which we then substitute into (1) above to generate new inferred values of the
bg. We repeat this procedure 1,000 times, reporting the inner 95% quantiles of the
sampling distribution for a given European group g across these 1,000 bootstrap
re-samples (see Supplementary Table 4 and Extended Data Fig. 6a).
Assessing the strength and robustness of the inferred population structure—
FST, identity by descent (IBD) and total variation distance (TVD).Using the same
set of SNPs that were used for the PCA analyses (see above) we analysed pairwise
FSTbothbetween the sample collectiondistricts, andbetween the 17 inferredclusters
from our main analysis using the method implemented in the program Eigensoft30.
The completematrices of pairwise FST values are given in Supplementary Tables 1
and 2.
To investigate the effect that recent shared ancestry may have on our analyses

we calculated a measure of pairwise IBD and compared its distribution within
clusters to its distribution across the whole sample. This measure uses a hidden
Markovmodel (HMM) to estimate IBDacross the genome14. Themeasure is likely
to be useful when the shared relatedness is just a few generations in the past, allow-
ing the identification of pairs of individuals in our UK sample that are reasonably
closely related. The results are plotted in Extended Data Fig. 4. Reassuringly, these
confirm that levels of relatednesswithin clusters are typically similar to those between
clusters, andhence that our observed clusters arenot an artefact of a sampling scheme
which preferentially selected closely related individuals from regional localities.
To quantify the strength of differences between the inferred clusters we perform

the followinganalyses.Asnotedabovewe can summarize the copyingprofiles of all
the samples in a given clusterX to produce a characteristic ‘copying vector’ x5 (x1,
x2,…,xn); the average (across individuals in cluster X) proportion of each indi-
vidual in cluster X’s closest ancestry that is attributed to individuals from each of
the clusters, Y5 (Y1, Y2,…,Yn), where n is the number of inferred clusters. In fact,
this copying vector can be calculated for any group of samples (that is, not only
the inferred clusters). One can use these vectors to test if the clusters inferred by
fineSTRUCTURE are capturing significant differences in ancestry, and to give a
sense of the strength of thedifferences observed.Given a pair of inferred clusters (A
and B) and their copying vectors (a and b respectively) one can calculate the total
variation distance (TVDCV) between the pair:

TVDCV A,Bð Þ~0:5|
Pn

i~1
ai{bij jð Þ:

TVDCV can be interpreted as a measure of the difference between the two clusters.
(As the copying vectors are discrete probability distributions over the set of clus-
ters, total variation distance is a natural metric for quantifying the difference
between them.)
Furthermore, given a pair of clusters (A and B) one can randomly reassign the

individuals in the clusters, maintaining the cluster sizes, to obtain a new pair of
clusters (A’ and B’, of the same size as A and B, respectively). One can then cal-
culate the copying vectors (a’ and b’) for the new clusters A’ and B’, and the total
variation distance between them. Repeating this processm times one can obtain a
P value from a permutation test of the null hypothesis that, given the cluster sizes,
the individuals in the two clusters are assigned randomly to each cluster. Here the
Pvalue is theproportionof thempermutationswhereTVDCV A0,B0ð Þ§TVDCV A,Bð Þ.
Supplementary Table 3 shows the value of the TVDCV statistic for all pairs of the
17 clusters used in our main analyses.
Similarly, rather than using the copying vectors for a pair of clusters (A and B),

one can use the ancestry profiles of the clusters (a and b) to calculate the total var-
iation distance between the ancestry profiles of a pair of clusters (TVDAP):
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TVDAP A,Bð Þ~0:5|
Pn

i~1
ai{bij jð Þ

TVDAP can be interpreted as a measure of the difference between the ancestry
profiles of the two clusters. (Again, as ancestry profiles are discrete probability
distributions, total variation distance is a natural metric for quantifying the dif-
ference between them.)
As above, one can permute the individuals that are assigned to each cluster,

maintaining the cluster sizes, and calculate the ancestry profiles of the resulting
clusters (A9 andB9) and the total variationdistancebetween them.Asbefore, repeat-
ing this processm-times one can obtain a P value from a permutation test of the
null hypothesis that, given the cluster sizes, the individuals in the two clusters are
assigned randomly to each cluster with respect to their ancestry profile. Here the
P value is theproportionof thempermutationswhereTVDAP A0,B0ð Þ§TVDAP A,Bð Þ.
SupplementaryTable 5 gives TVDAP for all pairs of ancestry profiles for the 17UK
clusters used in ourmain analyses, and gives the associatedP values basedon1,000
permutations.
Assessing the accuracy and robustness of the ancestry profiles.Weundertook a
number of simulation studies, generating data with similar properties to the actual
data, to assess the accuracy of the estimated ancestry profiles. These suggested good
accuracy of the major components of our estimated ancestry profiles.
A major challenge for this kind of simulation study is in simulating data which

has similar properties to the real data. The subtle similarities and differenceswithin
and between our various UK clusters and European groups are generated by their
complicated shared and distinct demographic histories. This true demographic
history is unknownandmight not bewell approximated by simplemodels that can
be simulated from, and so it is not possible to simulate realistic data from the appro-
priate model31. Instead, we used subsamples of the real data for our simulation
studies. This has the advantage that it replicates patterns in the real data, but the
disadvantage that simulation studies must be based on smaller sample sizes than
the actual study. (Since some of the data are needed to simulate the scenario of
interest, and the rest of the data to analyse that scenario, so neither the simulated
data set, nor the data used for analysis, can be as large as the actual data set.)
For each simulation scenario described below, we generated N simulated indi-

viduals as mixtures of two populations A and B intermixing l generations ago in
proportionsa,b (512a) respectively, closely followingestablishedapproaches22,32,33.
Informally, to simulate an admixed haploid chromosome we did the following: a
genetic distance x (in centimorgans)was sampled froman exponential distribution
with rate l/100. The first x cM of the simulated chromosomewas composed of the
first x cM of a real data chromosome selected randomly from either population A
orB according to the proportions of admixture a andb (the specific values used are
given below). Then a newgenetic distancewas sampled from the same exponential
distribution (rate5 l/100), and the process repeated until an entire simulated
chromosome was generated. This was repeated for all 22 autosomes, resulting
in a single (haploid) set of chromosomes for one individual. We did this 2N times,
generating 2N full sets of haploid autosomes. (To limit the chance ofmultiple sim-
ulated individuals copying from the same real data individual at any location in the
genome, wherever possible the new piece of chromosome sampled was selected
from the pool of chromosomes in the selected population (A or B) for which no
other previously simulated chromosome had copied at the same location. When
thiswasnot possible, a chromosomewas selected at randomfrom the selectedpop-
ulation (A or B), see ref. 22. Diploid individuals were constructed by aggregating
two full sets of haploid chromosomes, making N simulated individuals in total.
We considered three scenarios of two populations admixing, and for each of

these scenarioswe considered three proportions of admixture for the second group
(b5 0.1, 0.25 and 0.5). This yielded the following nine sets of simulations:
(1) ‘Italy and northern Germany’: N5 25, l5 40, b5 0.1, 0.25 and 0.5, derived
bymixing 30 randomly sampled individuals from the ItalianGroup ITA36 (which
contains 284 individuals) with 10 randomly sampled individuals from GER3 (58
individuals).
(2) ‘North Wales and Norway’: N5 40, l5 29, b5 0.1, 0.25 and 0.5, derived by
mixing 75 individuals from the NWales cluster with 10 randomly sampled indi-
viduals from NOR72 (116 individuals) and 10 from NOR71 (148 individuals).
(3) ‘NorthWales and Denmark’:N5 25, l5 40, b5 0.1, 0.25 and 0.5, derived by
mixing 75 individuals from the NWales cluster with 20 randomly sampled indi-
viduals from DEN18 (319 individuals).
These simulations were chosen both to test our model’s ability to infer sources

of admixture and their proportions from distinct European groups (simulation 1);
as well as tomimic admixture events we infer in ourmain analyses, that is, relating
to the Norwegian Viking (simulation 2) and Anglo-Saxon (simulation 3) migra-
tions into the UK. Simulations (2) and (3) use samples from the NWales cluster,
which we infer has little evidence of DNA influx from the Norwegian Vikings and
Anglo-Saxons, andmixes themwithgroupscontainingprimarily individuals sampled

from Norway (2) or from Denmark (3). These simulations are used to model
admixture between the ‘ancient’ British population (that is, genetically constituted
as itwasbefore the Saxon invasion) andNorwegianVikingorAnglo-Saxon settlers,
respectively. Simulation (2) further assesses our model’s ability to distinguish two
distinct Norwegian sources of admixture from among 12 different groups prim-
arily containing samples from Norway.
For each simulated data set we estimated ancestry profiles as follows. We used

CHROMOPAINTER (see above) to represent each of the 2N simulated haplotypes
as a mosaic of all the European haplotypes except those used for the relevant
simulations. Specifically, the 40 samples from ITA36 and GER3 used for the sim-
ulations in the ‘Italy and Northern Germany’ scenario (1) were removed from the
CHROMOPAINTER analysis for scenario (1). Similarly the European samples
used for the simulations in (2) and (3) were removed in their respective CHROM
OPAINTER analyses. This ensures that the actual admixing individuals are not
sampledwhen forming themosaics.Weused the estimated switch and emission rates
from the main analysis, described in ‘Inference of population structure’ above.
Recall the ancestry profiles are determined by fitting a linear mixture model

that utilizes both the CHROMOPAINTER copying profiles derived frommaking
up the ‘target group’ (here the simulated samples, in our main analysis the UK
samples within a cluster) haplotypes from the ‘source groups’ (here the European
samples except those used in the simulations, in our main analysis all the Euro-
pean samples) haplotypes, as well as the CHROMOPAINTER copying profiles
used for the clustering of the ‘source groups’. To obtain the latter we adapted the
results from the existing CHROMOPAINTER analysis C (see ‘Inference of popu-
lation structure’ above) as follows. (It would be computationally prohibitive to
rerun the full CHROMOPAINTER analysis for each of the nine simulated data
sets.) For each European individual’s copying profile the elements associated with
the European samples used in the simulations were removed. Then, for each of
the 51 European groups, we averaged these adjusted copying profiles across all
individuals assigned to the given group (excluding any individuals used in the rele-
vant simulations) as described in ‘Inference of population structure’, and used the
adjusted copying profiles for the 51 EU groups as covariates in our linear mixture
model as described in estimating ancestry profiles.
This post-hoc adjustment of the copying profiles for each of the 51 European

groups assumes that if we had repeated the CHROMOPAINTER analysis for the
relevant reduced set of European samples, the copying profile of the parts of the
chromosomes previously associated with the removed samples is redistributed
evenly across all the other European individuals. This is inherently conservative
as it is more likely that by excluding, for example, 10 of the 58GER3 samples from
the ‘new’ GER3 group would have resulted in an increase of copying from the
other 48 GER3 samples, relative to the increase in copying from individuals from
other European groups. Thus the performance of our approach for determining
ancestry profiles in our simulation study is likely to be an under-representation of
the performance of our approach in the main data analyses.
Furthermore, we only used a relatively small number of individuals from each

of ITA36, GER3, NOR71, NOR72 andDEN18 in the simulations, to ensure a suf-
ficient number of remaining individuals from each to use for inferring the ances-
try profiles. As a consequence, the number of simulated individuals we generated
is rather small, consisting of only 25 or 40 individuals per simulation, compared
to our main analysis (using the real data) where many of the clusters were signifi-
cantly larger.We expect the increased sample size for themajority of clusters used
in our main analyses to improve our inference of ancestry profiles relative to the
simulations, substantially so in some cases such asCent./S Englandwhich contains
1,044 individuals.
We also adopted an alternative simulation approach for the scenarios repre-

sented by (1)–(3) above using a forwards-in-time simulation method, initialised
from real data, as previously described22. In each case, we combined a subset of the
same randomly sampled individuals frompopulationsA andB above (for example,
for (1), the 30 individuals from ITA36 and the 10 individuals from GER3) into a
single pool population, which we then simulated forwards in time for the same l
generations as used above. To imitate the three simulations for scenario (1) above
this pool population contained respectively (20, 60, 60) haplotypes from ITA36
and (20, 20, 7) haplotypes from GER3 to approximate admixture contributions of
(0.5, 0.25, 0.1) fromGER3. Similarly for scenario (2) the pool population contained
(40, 120, 150) haplotypes fromNWales and (40, 40, 18) haplotypes fromNOR72/
NOR71 (half from each); and for scenario (3) (50, 150, 150) haplotypes from N
Wales and (50, 50, 18) haplotypes from DEN18.
To create the next generation of haplotypes following this admixture event, we

randomly sampled two distinct parental haplotypes (each comprising a full set of
22 single chromosomes from one individual) from the pool.We composed a new
set of haplotypes for an individual in the next generation as amosaic of chunks from
these two parent sets, with switches in the mosaic based on the HapMap Phase 2
genetic map (June 2008, build 36 genetic map, as above). More specifically, we
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determined the number of recombination breakpoints on each chromosome by
summing a randomsample fromaBernoulli distributionwithprobability 0.5 (which
models the expected obligate crossover per generation per chromosome) and a
randomsample fromaPoissondistributionwith rate equal to the total genetic length
of the chromosome inMorgansminus 0.5 (whichmodels the remaining crossovers).
We then sampled the physical location of each of the breakpoints independently
according to their relative genetic map value, copying segments on either side of a
breakpoint withoutmutation from the chromosome’s two different parents. In the
first generation after the admixture, we repeated this process to generate 500 full
(that is, chromosomes 1–22) sets of haplotypes. For the remaining l{1 genera-
tions, 500 new full sets of haplotypes were each simulated in the samemanner as a
mosaic of chunks from two distinct full sets of haplotypes randomly sampled with
replacement from the previous generation. After l generations, we randomly sam-
pled distinct haplotypes (that is, without replacement) to form N individuals for
subsequent analysis,whereN is the sameas in the relevant scenarioof (1)–(3) above.
We then inferred ancestry proportions in these N simulated individuals in the
same manner described above.
The resultingancestryprofiles fromall18 simulation studies (2 simulationmethods

times 3 scenarios times 3 admixture proportions (b)) are given in Supplementary
Table 6.
Dating admixture events in Orkney and southeast England. We ran GLOBE-
TROTTER22 to estimate the time of themajor admixture events contributing to the
make up of the Cent./S England cluster and the three clusters in Orkney (Westray,
Orkney 1 andOrkney 2) using the 51 European groups as surrogates for the puta-
tive admixing ‘source groups’ (that is, using analysis B from ‘Inference of popula-
tion structure’ above) and assuming a single ‘pulse’ of admixture when analysing
eachUKcluster.We closely follow the application ofGLOBETROTTERas described
by the authors. In short, CHROMOPAINTER identifies the segments ofDNAwithin
eachUK individual’s genome that aremost closely related ancestrally to eachEuro-
pean group, as described in ‘Inference of population structure’. GLOBETROTTER
measures the decay of association versus genetic distance between the segments
copied fromagivenpair of Europeangroups.Assuminga singlepulse of admixture
between two or more distinct admixing source groups, theoretical considerations
predict that this decay will be exponentially distributed with rate equal to the time
(in generations ago) that this admixture occurred34. GLOBETROTTER jointly fits
an exponential distribution to the decay curves for all pairwise combinations of
European groups and determines the single best fitting rate, hence determining
the most likely single admixture event and estimating the date it occurred. Instead
of requiring specific genetic surrogates to represent each admixing source group
involved in the admixture, as in other dating approaches such as ROLLOFF35,
GLOBETROTTER aims to infer the haplotype composition of each source group
for the admixture as a linear combination of those carried by sampled groups (that
is, a linear combination of the 51 European groups). This results in the admixed
group themselves automatically being represented in the same form—as amixture
of mixtures—consistent with the linear estimation procedure we applied for each
UK group, before estimating admixture dates for each group.
The following providesmore details on our approach for dating and estimating

admixtureproportionswithina singleUKcluster; full details of theGLOBETROTTER
method are provided in ref. 22. For each haploid set of chromosomes of each indi-
vidual from a given UK cluster, we consider the genome-wide mosaic inferred by
CHROMOPAINTER in the UK on Europe analysis (analysis B from ‘Inference of
population structure’ above). In thismanner eachUK sample’s haploid genome is
pieced together as a series of ‘chunks’, with each chunk a contiguous segment of
DNA best matching a European sample inferred to be most closely related ances-
trally to that segment.We note that CHROMOPAINTER infers thesemosaics for
each individual many times in a probabilistic manner, so we can sample from the
set ofmosaics for a given individual.We sampled 10 suchmosaics for eachhaploid
genome of each UK individual in the cluster we are focusing on, giving 20 total
mosaics for each UK individual.
Consider twoof these 20mosaics (these two could be the same sampledmosaic).

We compare each chunk on mosaic 1 to each chunk onmosaic 2. For each pair of
chunks,we record the twoEuropean groups (perhaps the same) copied at each chunk
(or more precisely, the group of the European individual inferred to be closest to
the UK individual’s chunk) in the pair and the genetic distance between the two
chunks’ midpoints.We remove any chunk pairs where this genetic distance is less
than 1 cM (to avoid the effects of within population linkage disequilibrium con-
founding signals of admixture) or greater than 50 cM (as linkage disequilibrium
attributable to admixturewill have decayed to zero by this distance). Otherwisewe
round this genetic distance to the nearest 0.1 cM and assign the chunk pair a score
SCP equal to the product of the two chunks’ sizes in centimorgans,with chunk sizes
larger than 1 cM fixed to 1 cM. This scoring protocol weights chunks’ contribu-
tions by their relative size, so that larger chunks contribute more to the score, but
caps the contribution of any chunk to prevent inference from being dominated by

a small number of chunks.We repeat this for all chunk pairs across all 20C25 190
combinations of mosaics. After doing so, for each pair of European groups, say A
and B, and for each 0.1 cM bin d in [1, 1.1, ..., 50 cM] we sum the SCP values across
all chunkpairswhere (i) the genetic distancebetween the two chunks’midpoints is
in d and (ii) one chunk in the pair copiesA and the other copies B. We refer to this
as the ‘coancestry vector’ for pair (A, B), which contains one element for each d.
We repeat this tabulation for all pairs (A, B) of the 51 European groups, giving

513 51 such coancestry vectors. After a re-scaling and then a re-weighting of these
coancestry vectors using the inferred ancestry profiles from ‘Estimating ancestry
profiles’ above (that is, the bg), this gives a set of reweighted coancestry vectors
(referred to as ‘observed coancestry curves’ in ref. 22), that efficiently capture the
decay of linkagedisequilibriumattributable to admixture (see ref. 22 for details). In
the course of this re-weighting, we remove European groupswhose inferred ances-
try contribution (bg) to the given UK cluster is less than 0.1%, thus reducing the
number of European groups remaining for consideration in our analysis. For each
pair of European groups (M, N), now a subset of the 513 51 total pairwise com-
binations,we label the reweighted coancestry vector vMN.We fit a coancestry curve,
YMN dð Þ, to the values in vMN as follows: for each fixed pair (M, N) of Euro-
pean groups we fit the parametric model

vMN dð Þ~YMN dð ÞzE,

where E§0 is an error term and

YMN dð Þ~tMNzdMN|e{ld :

Here l is interpreted as the date of admixture in generations from present.
GLOBETROTTER jointly estimates the values of tMN , dMN and l that minimize
the sum of the mean squared error across the curves, that is, that minimize

P

M,Nð Þ

P

d
vMN dð Þ{YMN dð Þð Þ2:

The values of dMN carry information about which European group best repre-
sents each admixing source group (if any)—for example, positive values of dMN

suggest that groupsM and N often carry haplotypes representing the same true,
unsampled admixing source, while negative values of dMN suggest thatM and N
represent different admixing sources. We use principal components and linear
modelling to jointly analyse alldMN , both describing the haplotypes carried by each
admixing source group as a linear combination of those carried by each of the 51
Europeangroups, and inferring the proportionof admixture contributed fromeach
source (see ref. 22 for details). The inferred mixing coefficients from this linear
modelling, alongwith the inferred admixture proportions for each source, allows a
new estimate of the ancestry proportions describing the given UK cluster (that is,
analogous to those described in estimating ancestry profiles). We can therefore
re-scale our coancestry vectors using these new ancestry proportions, giving new
values ofYMN dð Þ, from which we can re-infer the date(s) of admixture, offering
improved accuracy of estimation provided the fitting procedure results in improve-
ments in characterizing the true source groups. When analysing each UK cluster,
we repeated this iterative process of ancestry proportion and date inference five
times. Once these five iterations were completed, we then fixed the inferred ances-
try proportions, and within each UK cluster performed 100 bootstrap re-samples
of individuals’ chromosomes to infer 95%confidence intervals for the actual admix-
ture date.
Estimating the proportion of Saxon ancestry in central and southern England.
It is of interest to estimate the proportion of Saxon ancestry in ourCent./S England
cluster.We have undertaken two separate analyses which bear on this, namely our
estimated ancestry profiles and the GLOBETROTTER analysis. One challenge is
that various distinct modern European groups may carry DNA which descends
from the Saxons (or their ancestors), and hence be informative about the contribu-
tion of Saxon DNA to the UK.
The pattern of contributions to UK clusters from GER3, and its location in

Europe in northern Germany, make it very likely to capture ancestry brought to
the UK by Saxon migrants (see main text Discussion). As noted in the discussion
in the Supplementary Note, some of the ancestry shared with the group DEN18
frommodernDenmark could also reflect ancestry brought to the UK by the Saxon
migrants. Ancestry shared with DEN18 could also have reached the UK in early
migrations by landor sea, or in latermigrations of theDanishVikings.The fact that
this group contributes some ancestry to allUKclusters is evidence that some of this
ancestry sharing may indeed result from early migrations. The increased contri-
bution of this group to the ancestry profiles of all the English clusters further sug-
gests that some part also came to the UK with the Saxons.
The contribution to the ancestry of the UK clusters from FRA17, now spread

throughout France, is also correlated with the contribution of GER3 and DEN18.
One possible explanation for this pattern is that FRA17 also captures Saxon ances-
try. Another explanation is that it represents ancestry that spread into the UK at a
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different time, but intomany of the sameparts of theUKas theDNA from the later
Saxonmigrations. The Saxonmigrations did not directly involve people fromwhat
is now France. There were movements of Germanic peoples, notably the Franks,
into France around the time of the Saxon migration into England. The Germanic
ancestry thesemigrations brought towhat is nowFrancewould have been Frankish
rather than Saxon, and it would have been diluted throughmixing with the already
substantial local populations. It thus seems unlikely that ancestry in theUKarising
from the Saxonmigrationswould be better captured byFRA17 than bypeople now
living near the homeland of the Saxons (represented by GER3)—the contribution
of FRA17 is about threefold that of GER3. Further, the geographic pattern of
FRA17 contributions differs from that of GER3 (which we see as very likely Saxon),
in being relativelymuch higher in the Scottish andOrkney clusters. This is difficult
to reconcile with ancestry from both groups arriving as part of the samemigration
event, and the substantial contribution of FRA17 in Scotland and Orkney, relative
toGER3, ismore likely to reflect an earlier influx into theUK, and increased time to
spread geographically. Also, FRA17 did not figure as one of the source populations
for the admixture event in Cent./S England estimated by the GLOBETROTTER
analysis.We thus conclude that the contribution to the UK clusters from FRA17 is
unlikely to reflect the Saxon migrations.
In the ancestry profile approach, we thus argue that the proportion of DNA in

modern Cent./S England inherited from the Saxons is best captured by GER3 and
some of DEN18, which would suggest a range of ,10% (assuming only GER3
reflected the Saxonmigrations) to,20% (assumingGER3andall ofDEN18 reflected
the Saxonmigrations). If we were wrong in concluding that the FRA17 contribu-
tion does not result from DNA which arrived with the Saxon migrations, so that
some or all of it did reflect Saxon DNA, then the proportion of Saxon ancestry
could be substantially higher (up to,50%).
TheGLOBETROTTERanalysis ofCent./S England detected an admixture event,

with a contribution of,35%ofDNA fromGER3, with estimated dates for admix-
ture somewhat after, but consistent with (see Discussion above), the known his-
torical dates of the Saxon migrations (Extended Data Fig. 9).
There are inevitable uncertainties in both analyses due to the nature of the data

– we are trying to estimate admixture proportions for events,1,200–1,500 years
ago on the basis of DNA frommodern populations. Nonetheless we feel it is safe
to conclude from our analyses that the proportion of Saxon ancestry in Cent./S
England is very likely to be under 50%, and most likely in the range 10–40%.
Treatment of Eire. We explicitly excluded samples from Eire (the Republic of
Ireland) from our European analyses, and as possible contributors to the ancestry
profiles of theUK clusters, principally to allow assessment of themajormigrations
fromcontinental Europe into theUK.Detailed early analyses,which included sam-
ples from Eire with the other European samples, provided evidence of shared Irish
ancestry with our UK samples, presumably reflecting in part migrations from
Great Britain intoEire and vice versa. Eire thus acts as a source and a sink for ancestry
from theUK,which severely complicates interpretationof estimated ancestry pro-
files, since sharing of ancestry with Eire could reflect British migration into Eire
rather than the converse. Also, the UK and Eire could share ancestry because both
descend from some similar ancestral populations.
While there is historical evidence of migration after the collapse of Roman rule

from Devon and Cornwall into what is now Brittany in north-west France, this
does not leave a signal in, and hence does not confound, our ancestry analyses,
either because we do not have appropriate samples from Brittany or because the
amount ofDNAtransferred fromBritain to France via this route is relatively small.
(Had this been an effect wewould have expected to see either or both of our Devon
and Cornwall clusters sharing substantially more ancestry from one of the groups
in France, but this was not the case.)
Maps and visualization. For the UK map boundaries we used a map of the UK
sourced from the Office for National Statistics (England and Wales); National
Records of Scotland; and theNorthern Ireland Statistics andResearchAgency. The
Europeanmaps were sourced fromEurostat. For context we added the boundaries
of the Republic of Ireland and the Isle of Man to the UK maps, taken from the
European maps. Map boundaries were obtained in digitised form36–39 and were
drawn using various packages in the statistical software language R.
The latitude and longitude for each UK sample’s grandparents’ birthplaces was

assigned (geocoded) automatically13 usingaplacenamegazetteer fromEdina (http://
www.edina.ac.uk). All locations were checked for consistency between project
records and the automatic geocoding, and any discrepancy resolved in favour of
the project records. For the UK cluster analyses shown in Fig. 1, each sample was
assigned, and plotted at, the average of the latitudes and longitudes of its grand-
parents’ birthplaces. For clarity of display a small, random, amount of noise was
added topoint’s latitude and longitude to avoid over-plotting. Independently across
points, a random value was drawn from a uniform distribution on (220a, 20a),
where a is the smallest non-zero difference in latitude observed between the loca-
tions of any pair of points, and the resulting valuewas then added to the latitude of

the point. An analogous procedure was then performed, independently, for the
longitude of each point.
For the tree depicting the order of the hierarchical merging of clusters in Fig. 1,

the lengthsof thebranches relate to changes in theposterior of the fineSTRUCTURE
model. They do not relate directly to time or othermeasures of genetic distance so
caution is needed in their interpretation. Some additional length was added to the
tips of the tree for clarity.
The ellipses displayed in Fig. 1, Extended Data Figs 1, 3 and 4 and Supplemen-

tary Fig. 1 were obtained by fitting a two dimensional t-distribution with five de-
grees of freedom to the plotted spatial locations associated with each cluster. Each
ellipse depicts the 90% probability region of the fitted distribution.
Only limited geographic information was known about the European samples:

often this was just the city or region fromwhich the sampleswere taken, but some-
times only a country was known. To visualize the spatial patterns of the European
genetic groups obtained from the fineSTRUCTURE analyses we plotted the Euro-
pean samples on a map of Europe, with colours reflecting the groups assigned by
fineSTRUCTURE. We did this in two ways, plotting individual points for Fig. 2
(depicting the ancestry profiles) and using pie charts in Extended Data Fig. 5b.
For Fig. 2 we restricted ourselves to plotting only those European samples that

have some fine-scale location information (that is, more precise than just country
of sampling), as these sampleswill be informative for assessing regional fine struc-
ture (althoughall samples in the group areused for generating the ancestry profile).
As all the samples from a given region/city have exactly the same location assigned
to them, we added some random noise to each sample’s assigned latitude and lon-
gitude to enable visualization on a map. To do this for each sample we drew two
samples froma uniformdistribution on (20.5, 0.5), in units degrees of latitude and
longitude, and added the results to the sample’s latitude and longitude respectively.
Weplot each sample as a point on themap, coloured to indicate theEuropeangroup
towhich they are assigned. Figure 2 shows the locations of the samples assigned to
each European group that contribute at least 2.5% to at least one of the UK clus-
ters. As several inferred European groups are represented in the French sampling
locations, and would thus be difficult to discern, the points for groups FRA12,
FRA14 and FRA17 have been shifted by one degree of both latitude and longitude
(for FRA12, 21 degree of longitude and 21 degree of latitude; FRA14, 11 and
11; FRA17,21 and11). In Fig. 2 the lines to each group (or set of groups) end at
the centre of mass of the groups. This was calculated before any samples had their
locations shifted (as for the French groups, and/or by adding random noise). For
theNorwegian groups and the Swedish groups the line ends at the average position
of the centres of mass of the constituent groups. For the groups GER3 and GER6
the centre of mass is calculated using only those samples from Germany. This is
because several samples from these groups are assigned toStockholm,Copenhagen
andOslo, all of which aremajor cities.We assume these samples aremigrants from
Germany, and thus including themwould skew the centre ofmass position thatwe
interpret as the approximate historical locus for the group. This potential problem
caused less of an issue for the other groups depicted in Fig. 2.
For Extended Data Fig. 5b, the spatial patterns of the European genetic groups

obtained from the fineSTRUCTURE analyses are displayed in pie charts. All of the
samples from the same location are displayed together in a single pie chart, with the
sectors of the pie chart coloured to reflect the proportion of samples from that loca-
tion that are assigned by fineSTRUCTURE to a given group. The pie charts are
centred at suitable locations on the map of Europe, depending on the geographic
information known (see relevant figure captions). The size of the pie chart indicates
the number of samples represented by the chart. The number of samples repre-
sented by a chart is proportional to the area of the chart. For the larger sampling
locations, if a European group accounts for at least 20%of a location’s samples then
the European group number is also displayed on the edge of the appropriate sector
of the associated pie chart.
For the ancestry profile analyses we also display pie charts, this time on amap of

theUK (Extended Data Fig. 6). Here each pie chart relates to one of the inferredUK
clusters and is displayed at the centre of the cluster’s associated ellipse (as described
above). Each sector of the pie chart is coloured (and sometimes numbered) by the
relevant colour (and number) of the European group it relates to. The subtended
angle of each sector represents the proportion of the UK cluster’s ancestry that is
most similar to that of samples from the relevant European group as described in
the estimating ancestry profiles section above.
Consent and study protocol. Informed consentwas obtained fromall subjects. For
the UK subjects, ethics approval was granted by the NRES Committee, Yorkshire
and the Humber – LeedsWest, UK (Reference 05/Q1205/35) in March 2005. For
the European subjects, informed consent and ethics approval was obtained as part
of the WTCCC2 multiple sclerosis study14.
Code availability. The software CHROMOPAINTER, fineSTRUCTURE and
GLOBETROTTERare available fordownloadat (http://www.paintmychromosomes.
com/).
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ExtendedData Figure 1 | The effect of setting a threshold on the confidence
of cluster assignment for the genetic clusters in the UK inferred by the
fineSTRUCTURE analysis. The UK map depicts the clustering of the 2,039
UK individuals into 17 clusters on the basis of genetics alone. See Fig. 1 for
further details. Here a threshold is set on the measurement of confidence used
for assigning individuals to clusters (see Methods). This measure is defined
on the interval [0, 1], where the value 1 is interpreted as meaning complete
certainty of cluster assignment and 0 as being complete lack of certainty. The
plot illustrates the effect of setting a threshold of 0.7 so that a UK individual is
only assigned to a cluster if the measure of assignment for that individual is
greater than 0.7. All of the samples that have small, faded symbols are assigned

to their clusters with confidence greater than 0.7. Those samples for which
the assignment is less confident (that is, themeasure is less than or equal to 0.7)
are plotted with large, bold symbols. The table shows the number of individuals
with confidence measure above and below the 0.7 threshold together with
the total for each UK cluster. The slight discrepancy between the totals in this
figure and Supplementary Information Fig. 1.16 is due to differences in the
method for assigning individuals to clusters (seeMethods). The threshold of 0.7
was chosen for illustrative purposes only. Similar patterns relate to other
thresholds. Contains OS data E Crown copyright and database right 2012.

E EuroGeographics for some administrative boundaries.
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Extended Data Figure 2 | Convergence of the algorithm implemented in
fineSTRUCTURE. The fineSTRUCTURE clustering algorithm was run twice
on the UK samples (a) and twice on the European samples (b) to assess
convergence. The displayed heatmap depicts the proportion of sampled
MCMC iterations for which each pair of UK individuals is assigned to the same
cluster. The values above and below the diagonal represent twodifferent runs of
fineSTRUCTURE. Individuals are ordered along each axis according to the

inferred tree from the fineSTRUCTURE run above the diagonal, with tick
marks on the axes at the middle of each cluster. Comparison between runs is
made by comparing the plot above the diagonal (run two) with that below the
diagonal (run one). The high degree of symmetry in the plot confirms the
similarity between the runs and hence that each MCMC run has converged to
very similar clusters.
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Extended Data Figure 3 | Application of standard methods for detecting
population structure to the UK data. a, Genome-wide principal component
analysis of the UK samples. The UK samples plotted against all pairs of
principal component axes, for the first five axes, as determined in the
genome-wide principal components analysis. Each individual is depicted by a
symbol representing the district from which it was collected. The labels of the
sample collection districts are interpreted as follows: CUM, Cumbria; LIN,
Lincolnshire; NEA, north east England; OXF, Oxfordshire; YOR, Yorkshire;
CHE, Cheshire; NTH, Northamptonshire; NOT, Nottinghamshire; DOR,
Dorset; SUS, Sussex; NOR, Norfolk; WOR,Worcestershire; DEV, Devon; SPE,
south Pembrokeshire; COR, Cornwall; NWA, north Wales; ARG, Argyle and
Bute; NPE, North Pembrokeshire; BAN, Banff and Buchan; NIR, Northern
Ireland; ORK, Orkney; SUF, Suffolk; LEI, Leicestershire; FOD, Forest of Dean;
HER, Herefordshire; HAM, Hampshire; DER, Derbyshire; LAN, Lancashire;

KEN, Kent; GLO, Gloucestershire. b, Clustering the UK samples using the
program ADMIXTURE. ADMIXTURE was applied in three scenarios,
corresponding to different preset values for K, the number of clusters into
which the UK samples are divided. HereK5 2, 3 and 17 (seeMethods). Amap
is shown for each value ofK. Each symbol on themap corresponds to one of the
sampled individuals and is plotted at the centroid of their grandparents’
birthplace. Each cluster is represented by a unique combination of colour and
plotting symbol, with individuals depicted with the symbol of the cluster to
which they are assigned. The ellipses centred on each cluster give a sense of
the extent of the cluster by showing the 90% probability region of the
two-dimensional t-distribution (5 degrees of freedom) which best fits the
locations of the individuals in the cluster. Contains OS dataE Crown
copyright and database right 2012. E EuroGeographics for some
administrative boundaries.
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Extended Data Figure 4 | Potential recent shared ancestry in the genetic
clusters in theUK inferred by the fineSTRUCTURE analysis. a, TheUKmap
on the left depicts the clustering of the 2,039 UK individuals into 17 clusters on
the basis of genetics alone. See Fig. 1 for further details. Pairwise identity by
descent (IBD) within clusters and across the whole UK sample for all of the
2,039 UK individuals is shown to the right. For each of the inferred UK clusters
a box and whisker plot shows the distribution of the pairwise IBD statistic
(see Methods). Each box is filled by the colour of the cluster to which it relates,
and the outlier points have the same shape as the cluster to which they relate.
For comparison the distribution of the pairwise IBD statistic across the whole

UK sample is shown on the far right, with the box coloured grey. The light grey
horizontal lines indicate the upper and lower quartiles of the IBD statistic’s
distribution for the whole UK sample. Along the x axis the number of
samples in the associated cluster is shown. The y axis gives the value of
the pairwise IBD statistic. b, The same information as a but with 53
clusters of UK individuals. Note that only clusters of size 4 or less depart
substantially from the average relatedness. Contains OS data E Crown
copyright and database right 2012. E EuroGeographics for some
administrative boundaries.
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Extended Data Figure 5 | Population structure in the European samples.
a, Number of samples derived from each European sampling region. The 6,209
European samples used for the analyses were sampled from ten countries and
various locations within each country. Each sample has a specific sampling
location (often a city, but in some cases only a whole country). The numbers
shown give the number of samples derived from a particular location.
Some numbers are depicted out of position for clarity. In these cases a line leads
from the number to the actual location. Where the sample locations
are well-localized (for example, the city of sampling is known) the box
surrounding the number is white.When only information about the country of
sampling is known the box is coloured yellow. The numbers are overlain on a
faded version of the pie charts from panel b for easy reference. b, European
population structure inferred by fineSTRUCTURE. The 6,209 European
samples divided into 51 genetic groups (represented by colours and labelled
with a subset of the numbers between 1 and 145) using fineSTRUCTURE. For

clarity the colour space has been skewed to emphasize the differences
between groups 1 to 18 as these groups are the major contributors to the
ancestry profiles of the UK clusters. Each sample has a specific sampling
location (often a city, but in some cases only a country, see panel a). The pie
charts are located at these sampling locations, and depict the proportion of the
samples from that location assigned to each of the 51 genetic groups.
Each genetic group also has a label number, which is displayed for the larger
sectors of each of the pie charts. The area of the pie chart is proportional to
the number of samples from that location. Pie charts with black borders
correspond to well-localized samples. In contrast, for samples where only
the country of sampling is known, they are combined in a single pie chart for
the country, which is shown with white borders. Some pie charts are
depicted out of position for clarity; in these cases a line leads from
the chart to the actual location.E EuroGeographics for the
administrative boundaries.
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Extended Data Figure 6 | European ancestry profiles of the UK clusters.
a, The map of the UK shown relates to the map with 17 UK clusters shown
in Fig. 1. Ellipses indicate the extent of theUKclusters as in Fig. 1. The pie charts
represent the ancestry profile of the UK clusters from Fig. 1. Each pie chart
is plotted at the centroid of the corresponding cluster, although some pie charts
have beenmoved for clarity; in the cases where the relocation is substantial a red
line leads from the pie chart to the centroid. The sectors of the pie charts are
coloured with the colours of the European genetic groups (for the larger sectors
the number of the European group is also given). They indicate the ancestry
profiles of eachUK cluster, namely the proportion of the cluster ancestry that is
best represented by each of the European groups. Themagnitude of the angle of
a sector is proportional to the contribution of that European group to the
ancestry profile of the associated UK cluster. The symbols in the grey bar to the
left of the map represent the UK clusters as in Fig. 1. The bar chart in the left
part of the plot depicts the same ancestry profiles of the UK clusters in a
different way. Each row represents a UK cluster (arranged roughly north to
south) with the symbols for the clusters from Fig. 1 indicated at each end of the

row. Each column represents a European group, with group numbers listed
with a three letter prefix that, for clarity, relates to the country or countries
where the cluster is most represented. The colour of each bar also indicates the
European group to which the bar relates. Confidence intervals (95%) obtained
from 1,000 bootstraps of the ancestry profile analysis (see Methods) are
indicated on each bar. b, Renormalized ancestry profiles of the UK clusters
illustrating possible early European contributions to the UK population. A
representation of the relative contributions to the UK clusters from the three
European groups (GER6-W. Germany, BEL11- Belgium, and FRA14-NW
France) hypothesized to be the major contributors to the earliest migrations
into the UK after the last ice age from which DNA survives to the present in
substantial proportions (see Supplementary Note). Interpretation of the
map, pie charts and bar chart is as for a. In this case, however, the proportions
were renormalized to sum to 1 for the contributions from GER6, BEL11
and FRA14. Contains OS data E Crown copyright and database right 2012.

E EuroGeographics for some administrative boundaries.

RESEARCH ARTICLE

Macmillan Publishers Limited. All rights reserved©2015



a

b

Extended Data Figure 7 | More major events in the peopling of the British Isles. See Supplementary Note for further details. a, The arrival of agriculture and
subsequent migrations from 4000–2500 BC. b, The major iron age tribes of Britain around the year 40.E EuroGeographics for the administrative boundaries
(coastlines).
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Extended Data Figure 8 | Application of GLOBETROTTER to infer
simulation of ancestry 40 generations ago between groups from Northern
Germany (GER3, 25%) and Italy (ITA36, 75%). Twenty-five admixed
individuals were simulated, and the individuals used to construct these
simulated individuals were then removed from the list of potential donors
(see Methods). Left barplot, and map: the barplot shows the true population
and proportion contributed for each of the two admixing groups. The map
shows, for each of the European sampling locations, the true proportion of
individuals sampled from that location assigned to each of the admixing
groups, coloured according to the barplot. Central three plots: example curves
constructed byGLOBETROTTER to infer admixture times, and infer details of
admixing groups (see Methods and Supplementary Note). For each pair of
populations A and B (A can be the same as or different from B) the points show
the empirical probability, relative to under independence, as a function of
genetic distance x, that two positions separated by distance x correspond to
ancestry donated by populationA, and by population B, respectively. The green
line shows GLOBETROTTER fitted exponential decay curves for the
underlying (that is, expected) value of this relative probability estimate. Under
a model of a single admixture event occurring g generations ago, this
probability decays at a rate g according to theory, providing an estimate of
the admixture time (and 95% CI) shown overlaying the curve ITA36 versus
GER3. If ancestries A and B associate with the same admixing group, for
example, whenever A5B the fitted curve will have a negative slope, as seen for

the GER3 versus GER3 plot. If a positive slope is seen, as for the ITA36 versus
GER3 plot, this implies these populations contribute to the two different
respective admixing groups. Right bar-plot, and map: GLOBETROTTER
produces an inference of the genetic composition of (haplotypes carried by) the
two admixing groups, as a mixture of (haplotypes carried by) populations
actually sampled. This mixture inference jointly uses curves for pairs of
sampled populations, and the overall haplotypic makeup of different sampled
populations, including the admixed group. The bar-plot shows the inferred
mixture representation (dominated in each case by the true admixing groups)
and estimated admixture proportion (24%, close to the truth of 25%), with
more red/blue populations respectively giving a larger contribution. The map
shows populations inferred as contributing to the first (pink/red shades) or
second (blue shades) admixing group, respectively, as for the left map, with
populations coloured according to the bar-plot. This shows populations falsely
inferred as contributing material to the admixing groups were still sampled,
mainly, from locations close to those of the true admixing groups. We
caution that in this setting of admixture between genetically similar
European groups, estimation of admixture fraction is very uncertain (see
Methods) (for example, contributing populations are often impossible to
definitively assign to a ‘side’ of the event). For further details of the analysis,
for example, tests for admixture presence in this simulation, see
Methods and Supplementary Note. E EuroGeographics for the
administrative boundaries.
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Extended Data Figure 9 | Application of GLOBETROTTER to infer details
of admixture in the UK clusters. a, Inferring admixture in a population of
1,044 UK individuals from central and southern England. Left hand plot: the
bold red squares show mean grandparental birthplace for each individual
in this cluster. Central three plots: example curves constructed by
GLOBETROTTER to infer admixture times, and infer details of admixing
groups (see Methods and Supplementary Note). For each pair of populations
A and B (A can be the same as or different from B) the points show the
empirical probability, relative to under independence, as a function of genetic
distance x, that two positions separated by distance x correspond to ancestry
donated by population A, and by population B, respectively. The green line
shows GLOBETROTTER fitted exponential decay curves for the underlying
(that is, expected) value of this relative probability estimate. Under a model
of a single admixture event occurring g generations ago, this probability decays
at a rate g according to theory, providing an estimate of the admixture time
(and 95% CI) shown overlaying curves SFS31 versus GER3 and SFS31 versus
SFS31. If ancestries A and B associate with the same admixing group, for
example, whenever A5B the fitted curve will have negative slope, as seen for
the GER3 versus GER3 plot. If a positive slope is seen, as for the SFS31 versus
GER3 plot, this implies these populations contribute to the two different
respective admixing groups. Right bar-plot, and map: GLOBETROTTER
inference shows one possibility for the genetic composition of (haplotypes
carried by) the two unsampled historical admixing groups, as a mixture of
(haplotypes carried by) populations actually sampled. This mixture inference
jointly uses curves for pairs of sampled populations, and the overall haplotypic
makeup of different sampled populations, including the admixed group. The
bar-plot shows the inferred mixture representation (with largest contributions
in each case by GER3/DEN18, sampled most frequently from northern
Germany and Denmark, and SFS31/ITA52, sampled mainly from southern
France and Spain and northern Italy) and estimated admixture proportion
(34%), with more intense red/blue populations respectively implying a larger
contribution. The map shows populations inferred as contributing to the first
(pink/red shades) or second (blue shades) admixing group respectively, with
populations coloured according to the bar-plot. We caution that in this setting
of admixture between genetically similar European groups, estimation of
admixture fraction is very uncertain (see Methods and Supplementary Note)
(for example, contributing populations are often impossible to definitively
assign to a side of the event), so that other closely related scenarios, for example,
a somewhat lower admixture fraction from a more completely ‘GER3’-like
group than that inferred, are likely consistent with the GLOBETROTTER
results seen. b, Inferring admixture in a population of 51 UK individuals from
Orkney. Left hand plot: the bold purple squares show mean grandparental

birthplace for each individual in this cluster. Central three plots: example curves
constructed byGLOBETROTTER to infer admixture times, and infer details of
admixing groups (see Methods and Supplementary Note). For each pair of
populations A and B (A can be the same as or different from B) the points show
the empirical probability, relative to under independence, as a function of
genetic distance x, that two positions separated by distance x correspond to
ancestry donated by populationA, and by population B, respectively. The green
line shows GLOBETROTTER fitted exponential decay curves for the
underlying (that is, expected) value of this relative probability estimate.
Under a model of a single admixture event occurring g generations ago, this
probability decays at a rate g according to theory, providing an estimate of the
admixture time (and 95% CI) shown overlaying curves NOR90 versus FRA12
and NOR90 versus NOR90. If ancestries A and B associate with the same
admixing group, for example, whenever A5B the fitted curve will have
negative slope, as seen for the NOR90 versus NOR90 plot. If a positive slope is
seen, as for the NOR90 versus FRA12 plot, this implies these populations
contribute to the two different respective admixing groups. Right bar-plot, and
map: GLOBETROTTER inference shows one possibility for the genetic
composition of (haplotypes carried by) the two unsampled historical admixing
groups, as a mixture of (haplotypes carried by) populations actually sampled.
This mixture inference jointly uses curves for pairs of sampled populations,
and the overall haplotypic makeup of different sampled populations, including
the admixed group. The bar-plot shows the inferred mixture representation
(with largest contribution in each case by GER3/NOR90, sampled most
frequently from northern Germany and Norway, and FRA12/FRA14, both
sampledmainly fromFrance) and estimated admixture proportion (42%), with
more intense red/blue populations respectively implying a larger contribution.
The map shows populations inferred as contributing to the first (pink/red
shades) or second (blue shades) admixing group respectively, with populations
coloured according to the bar-plot.We caution that in this setting of admixture
between genetically similar European groups, estimation of admixture
fraction is very uncertain (seeMethods and SupplementaryNote) (for example,
contributing populations are often impossible to definitively assign to a ‘side’
of the event). In particular, inspection of curves involving GER3 does not
yield a clear ‘side’ of the event for this population, unlike the NOR90 versus
FRA12 case that implies French-like and Norwegian-like haplotype presence
must occur mainly in distinct admixing groups. Therefore the GER3
componentmight in fact capture haplotypes for either (or both) the French-like
or Norwegian-like admixing groups, and the inferred scenario shows only
one possibility. Contains OS dataE Crown copyright and database right 2012.

E EuroGeographics for some administrative boundaries.
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