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Anomalous dispersions of ‘hedgehog’ particles
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Hydrophobic particles in water and hydrophilic particles in oil aggreg-
ate, but can form colloidal dispersions if their surfaces are chemically
camouflaged with surfactants, organic tethers, adsorbed polymers or
other particles that impart affinity for the solvent and increase inter-
particle repulsion1,2. A different strategy for modulating the inter-
action between a solid and a liquid uses surface corrugation, which
gives rise to unique wetting behaviour3–5. Here we show that this topo-
graphical effect can also be used to disperse particles in a wide range
of solvents without recourse to chemicals to camouflage the particles’
surfaces: we produce micrometre-sized particles that are coated with
stiff, nanoscale spikes and exhibit long-term colloidal stability in both
hydrophilic and hydrophobic media. We find that these ‘hedgehog’
particles do not interpenetrate each other with their spikes, which
markedly decreases the contact area between the particles and, there-
fore, the attractive forces between them. The trapping of air in aque-
ous dispersions, solvent autoionization at highly developed interfaces,
and long-range electrostatic repulsion in organic media also contrib-
ute to the colloidal stability of our particles. The unusual dispersion
behaviour of our hedgehog particles, overturning the notion that

like dissolves like, might help to mitigate adverse environmental ef-
fects of the use of surfactants and volatile organic solvents, and dee-
pens our understanding of interparticle interactions and nanoscale
colloidal chemistry.

We imparted strong corrugation onto the surface of carboxylated
polystyrene microspheres (mPSs) by attaching rigid zinc oxide (ZnO)
nanoscale spikes (‘nanospikes’). This involves initial absorption of pos-
itively charged ZnO nanoparticles (NPs) onto the negatively charged
mPSs and subsequent growth of ZnO nanowires using established pro-
tocols6. The resultant hedgehog particles combine micro- and nanoscale
structural features (Fig. 1a), and their geometrical and topographical
specifications can be adjusted by changing the growth conditions to
modify the surface densities, lengths and diameters of nanospikes and
themPS diameters (Fig. 1b–e, Supplementary Information section 1 and
Supplementary Figs 2–5).

As-made hedgehog particles, with their polar ZnO surfaces, are highly
hydrophilic. They form excellent dispersions in water (Fig. 1f, l) and
other hydrophilic solvents. When rendering the hedgehog particles hy-
drophobic by silanization of the ZnO nanospikes with (7-octen-1-yl)
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Figure 1 | Hedgehog particles. a, Negatively
charged, carboxylate-terminated mPSs are used as
core templates (1) on which positively charged
ZnO NPs are adsorbed (2). ZnO nanospikes are
grown from ZnO nanoparticles (3) to a designed
length (4, 6). Hedgehog particles are rendered
hydrophobic by exposure to OTMS or PFTS (5).
b–e, SEM images of hedgehog particles with
different ZnO nanospike lengths: 0.19mm
(b), 0.27mm (c), 0.4mm (d), 0.6 mm (e). f, Confocal
microscopy of an aqueous dispersion of
hydrophilic hedgehog particles with fluorescently
labelled mPSs. Inset, SEM image for the same
hedgehog particles. g, h, SEM (g) and confocal
microscopy (h) of an aqueous dispersion of OTMS-
HPs. i, SEM image of particles from the bulk of an
aqueous OTMS-HP dispersion collected five
days after initial preparation. j, k, Confocal
microscopy images of fluorescent OTMS-HPs
(green, lmax 5 486 nm) with adsorbed
hydrophobic CdSe nanoparticles (red,
lmax 5 655 nm) in an aqueous dispersion (j) and in
the dried state (k). l, Photographs of aqueous
dispersions of (left to right) hydrophilic hedgehog
particles (HPs) with green-dyed mPSs, OTMS-HPs,
OTMS-mPSs and OTMS-ZnO nanowires (NWs).
m, Photographs of (left to right) ZnO nanoparticles
(NPs) in water, ZnO nanoparticles in 1 M NaCl,
and OTMS-HPs in 1 M NaCl. n, Photographs of
OTMS-HPs in (left to right) 0.1 M NaCl and
0.01 M NaCl.
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trimethoxysilane (OTMS) or 1H,1H,2H,2H-perfluorooctyltriethoxysilane
(PFTS) (Supplementary Methods; spectroscopic evidence of silaniza-
tion is shown in Supplementary Information section 2 and Supplemen-
tary Fig. 9c), they form stable dispersions in heptane and hexane
(Supplementary Information section 2 and Supplementary Fig. 6a, b).

Surprisingly, highly corrugated OTMS-modified hydrophobic hedge-
hog particles (OTMS-HPs) also form dispersions in water (Fig. 1g, h, l),
and hydrophilic hedgehog particles disperse in representative hydro-
phobic solvents such as heptane, hexane and toluene (Fig. 4a–h). This
illustrates that surface topography can be used to modulate the inter-
action between microscale particles and disperse them in phobic solvents.

Immediately on sonicating various hydrophobic OTMS-HP and PFTS-
modified hydrophobic hedgehog particle (PFTS-HP) formulations in
water (Supplementary Information section 2 and Supplementary Fig. 7),
we observed the formation of a precipitate on the bottom of the vial,
floating aggregates on top of the liquid, and a stable opalescent disper-
sion. Dispersions remain stable and free of aggregation for a subset
of particles for at least five days, as verified by scanning electron micro-
scopy (SEM) (Fig. 1i) and dynamic light scattering (Supplementary
Information section 2 and Supplementary Table 1). The percentage of
hydrophobic hedgehog particle aggregates floating on the surface of the
dispersions increased with elongation of the nanospikes (Supplementary
Information section 2 and Supplementary Fig. 7a–d), but the colloidal
stability of the particles dispersed in water was also enhanced (Fig. 2k–m).

To exclude the possibility that the observed behaviour arises because
our samples contain a subpopulation of hydrophilic OTMS-HPs or
PFTS-HPs or represent a special case of Janus colloids, that is, colloids

consisting of distinct hydrophobic and hydrophilic interfacial sectors7–9,
we directly probed the hydrophobic nature of the particles after proces-
sing them into dried thin films. The filtrate of suspended OTMS-HPs
exhibited high water repellency causing the droplets to roll off (the ‘lotus
effect’; Supplementary Information section 2, Supplementary Videos
1–3 and Supplementary Fig. 8). Further evidence is obtained by injecting
hydrophobic cadmium selenide (CdSe) nanoparticles into an aqueous
dispersion of OTMS-HPs: confocal and transmission electron micro-
scopy (TEM) images show the expected anchoring of hydrophobic
nanoparticles on the spikes (Fig. 1j, k, Supplementary Information sec-
tion 2 and Supplementary Fig. 9d), thus confirming their hydrophobi-
city and the uniformity of surface derivatization. The stability of the
hydrophobic hedgehog particles in aqueous dispersion did not change
on CdSe adsorption.

The wetting of corrugated surfaces4,10–12 is often attributed to a Cassie–
Baxter wetting mode13,14 and in our case could include formation of an
air shell in the vicinity of the mPS core. Such trapped air bubbles15 might
provide buoyancy to the hedgehog particles, but are known to be ther-
modynamically unstable16,17. The presence of trapped air is verified by
adding ethanol and observing gas evolving from the dispersion (Supple-
mentary Video 5), and by observing, in high-resolution confocal micro-
scopy images of the particles, concentric shells with markedly different
refractive indices as would be expected if an air shell is present (Fig. 2a, b,
Supplementary Information section 3 and Supplementary Fig. 10).
Hydrophilic hedgehog particles in water have no air shells, and they
appear under the same conditions as uniformly lit particles (Fig. 2c, d,
Supplementary Information section 3 and Supplementary Fig. 11).
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Figure 2 | Interface between hydrophobic
hedgehog particles and water. a–h, Confocal
microscopy images of hydrophobic hedgehog
particles labelled with hydrophobic CdSe NPs in
aqueous dispersions (a, b) and hydrophilic
hedgehog particles labelled with hydrophilic CdTe
NPs in aqueous dispersions (c, d); hydrophobic
hedgehog particles in an aqueous solution
containing hydrophilic TGA-stabilized CdTe
nanoparticles with green (lmax 5 540 nm)
emission (e); hydrophilic hedgehog particles in an
aqueous solution containing hydrophilic TGA-
stabilized CdTe nanoparticles (f); the same sample
from image e after five days of storage in dark (g);
and the same sample from image f after five days of
storage in dark (h). i, SEM image of a hydrophobic
hedgehog particle with a self-assembled film of
TGA-depleted CdTe nanoparticles between the
ZnO nanospikes, indicating the location of the air–
water interface. The hydrophobic hedgehog
particles were immersed in an aqueous solution of
CdTe nanoparticles for 72 h. j, Schematic diagram
of the air–water interface, showing the
experimental parameters (definitions in
Supplementary Information). k–m, SEM images of
aqueous dispersions of hydrophobic hedgehog
particles with ZnO nanospike lengths of
0.19mm (k), 0.40mm (l) and 0.57mm (m).
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When adding fluorescent cadmium telluride (CdTe) nanoparticles,
stabilized with hydrophilic thioglycolic acid (TGA), to an aqueous dis-
persion of the hydrophobic hedgehog particles, a dark zone devoid of
emission around the hedgehog particles confirms the presence of a layer
of air. The dimensions of the emission exclusion zones closely match the
diameter of hedgehog particles (Fig. 2e). The fact that similar images
were obtained after five days of storage in the dark without agitation
(Fig. 2g) attests to the long-term stability of dispersions of our hydro-
phobic hedgehog particles in water, consistent with long-term trapping
of air at macroscale corrugated surfaces18 (Supplementary Information
section 3 and Supplementary Fig. 13). Hydrophilic hedgehog particles in
identical luminescent media appear as bright spots with CdTe nanopar-
ticles localized on and between the nanospikes (Fig. 2f, h).

Strong scattering of photons and electrons by ZnO nanospikes pre-
vents successful optical or cryogenic TEM imaging of the air–water
interface within hedgehog particles, but we can locate it by taking advant-
age of the fact that CdTe nanoparticles can self-assemble into nanowires19

and nanosheets20 at interfaces21: a thin layer of CdTe nanoparticles
that assembles more than 200 nm in from the ends of the ZnO nanos-
pikes (Fig. 2i, Supplementary Information section 3 and Supplementary
Fig. 14) pinpoints the water meniscus (Fig. 2j). This allows us to calculate
an average hedgehog particle density of 0.92 g cm23 (Supplementary
Information section 3), which closely matches the density of water and
explains the buoyancy of the particles.

We must also explain why two individual hydrophobic hedgehog
particles do not coalesce on collision. To do so, we refer to the extended
Derjaguin–Landau–Verwey–Overbeek (E_DLVO) theory, according to
which the sum of potentials associated with van der Waals (VvdW),
electrical double layer (VDL) and hydrophobic (VHB) interactions appro-
ximate the total interaction potential (VE_DLVO) between the hydro-
phobic hedgehog particles: VE_DLVO 5 VvdW 1 VDL 1 VHB. Evaluating
interparticle interactions in different configurations (Fig. 3a–c, Supple-
mentary Information section 4 and Supplementary Fig. 19), we find that
hedgehog-particle/hedgehog-particle pair potentials display high repul-
sive energy barriers of at least 14kBT (kB, Boltzmann’s constant) for the
outer contour of spikes (x 5 0; Fig. 3d). Penetration of the nanospikes
into the interstitial spaces of another hedgehog particle (x , 0) is ener-
getically unfavourable (Fig. 3d).

Comparison of the VE_DLVO for hydrophobic hedgehog particles with
that for hydrophobic mPSs (Supplementary Information section 4 and
Supplementary Fig. 24d) shows that the interfacial corrugations trans-
form the overall attractive potential into a repulsive one. For hedgehog
particles with short nanospikes, VE_DLVO reverses such that the inter-
action becomes attractive (Fig. 3e), matching the experimental results
in Fig. 2k. The key reason for the anomalous stability of hedgehog par-
ticle dispersions is that VvdW and VHB are greatly decreased for cor-
rugated particles compared with the smooth spheres (Fig. 3f, g), owing
to the drastic reduction in the contact area in the former case. The total
contour area of tapered spikes represents ,3% of the surface area of the
smooth particles (Fig. 1a).

The colloidal stability of hydrophobic hedgehog particles in water is
also enhanced by the presence of the double electric layer at the air–water
interface, increasing VDL. The zeta-potential (f) of air bubbles, which
affects their electrostatic repulsion, is known to be between 235 mV
(ref. 22) and 265 mV (ref. 23). Such high f is attributed to autoionization
of water24 that may also occur at the hydrophobic interfaces24,25. However,
the fact that the hedgehog particle dispersion remains stable in the pre-
sence of 0.01–1.0 M NaCl, which leads to screening of electrostatic inter-
actions and coagulation of ‘normal’ dispersions (Fig. 1m, n), shows that
any increased electrostatic repulsion has a secondary role and that the
anomalous colloidal behaviour of hedgehog particles is dominated by the
reduction of attractive interactions between the particles. But limitations
of Derjaguin–Landau–Verwey–Overbeek theory for high ionic strengths
and nanoscale corrugated surfaces26 may need to be considered for a
more complete mechanistic explanation.

If the drastic reduction in attractive components of the pair potential is
the reason for the unusual stability of hedgehog particle dispersions, the
same effect should occur in dispersions of hydrophilic colloids in hydro-
phobic solvents. Stable dispersions of hydrophilic hedgehog particles
were obtained in heptane, hexane and toluene (Fig. 4a, Supplementary
Information section 5 and Supplementary Fig. 26). SEM and confocal
microscopy images (Fig. 4b–e) demonstrated non-agglomerated part-
icles in the bulk of these dispersions and physical integrity of hedgehog
particles (Fig. 4f–h). The mPS core of the hedgehog particles was dis-
solved in toluene, thus yielding a dispersion of hydrophilic hedgehog
particle shells. As expected, ZnO nanoparticles and ZnO nanowires
(Supplementary Information section 5 and Supplementary Fig. 27) do
not disperse in the same solvents.

Calculations show that VvdW for this type of dispersion is much
reduced compared with smooth spheres, and that the overall pair poten-
tial of hydrophilic hedgehog particles in heptane is indeed repulsive with
VDLVO,HPs 5 1.4kBT at x 5 0 nm (Fig. 4i, j, Supplementary Information
section 5 and Supplementary Fig. 28). Notably, dispersion in organic
solvents lack the air layer between the spikes, and electrostatic interac-
tions in organic solvents are not screened as in aqueous solutions and are
therefore longer ranged.

The stability of our surfactant-free hedgehog particles in ‘phobic’ sol-
vents offers a different perspective on scientific and technological problems
related to colloidal interactions and might even enable new strategies
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Figure 3 | Interaction potentials of hydrophobic hedgehog particles in
aqueous media. a–c, Two general configurations, spike-to-spike (S–S; a) and
spike-to-gap (S–G; b), are considered, along with the intermediate case in
which the ZnO nanospikes face the side walls of opposing particles (ZS–G; c).
d–g, Interaction potentials between hydrophobic hedgehog particles. d, Pair
potentials for hydrophobic hedgehog particles in S–S (VE_DLVO,S–S, black), S–G
(VE_DLVO,S–G, orange) and ZS–G (VE_DLVO,ZS–G, green) configurations. The
negative values of x correspond to the penetration of ZnO nanospikes into the
interstitial spaces of another hedgehog particle; x 5 0 corresponds to the outer
contour around the spike tips. e, Pair potentials (VE_DLVO,HP) of hydrophobic
hedgehog particles in an aqueous dispersion calculated according to the
E_DLVO theory for the zeta-potentials at the air–water interface with
f 5 265 mV (black line) and f 5 235 mV (red line), and for hydrophobic
hedgehog particles with short nanospikes from Fig. 2k (green line).
f, Hydrophobic interaction potentials of OTMS-HPs (VHB,HP, green) and
OTMS-mPSs (VHB,PS, dotted green). g, Van der Waals interaction potentials of
OTMS-HPs (VvdW,HP, blue) and OTMS-mPSs (VvdW,PS, dotted blue) and total
attractive potentials of OTMS-HPs (VvdW1HB,HP, red) and hydrophobic
OTMS-mPS (VvdW1HB,PS, dotted red) in water.
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for processing and dealing with colloids, for developing new drug deliv-
ery systems27, and for colloidal self-assembly9,28,29. We also believe that
the unusual solvation behaviour of hedgehog particles (contrary to the
traditional expectations of particle dispersion stability in hydrophobic/
hydrophilic solvents) could be used to develop efficient adsorbers, ab-
sorbers, scatterers or catalysts that need to function in both organic and
aqueous media.
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Figure 4 | Dispersion of hydrophilic hedgehog particles in hydrophobic
organic solvents. a, Dispersions of hydrophilic hedgehog particles in (left to
right) heptane, hexane and toluene. As in the case of dispersion of hydrophobic
hedgehog particles in water, after sonication of hydrophilic hedgehog particles
in organic solvent there was always a small amount of precipitate in the bottom
of the vial. b, Confocal microscopy image of hydrophilic hedgehog particles in
heptane. c–e, SEM images of hydrophilic hedgehog particles from dispersions
in heptane (c), hexane (d) and toluene (e). f–h, SEM images of individual
hedgehog particles in heptane (f), hexane (g) and toluene (h). Toluene dissolves
the mPS core in the hedgehog particles, rendering dispersions of hydrophilic
spiky shells. i, Van der Waals interaction potentials VvdW of hydrophilic
hedgehog particles (blue) and mPS (red) in heptane. j, Total pair potential
VE_DLVO of hydrophilic hedgehog particles in heptane.
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