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Prefrontal gray matter volume mediates genetic risks for
obesity
N Opel1, R Redlich1, C Kaehler1,2, D Grotegerd1, K Dohm1, W Heindel3, H Kugel3, A Thalamuthu4, N Koutsouleris5, V Arolt1, A Teuber6,
H Wersching6, BT Baune7, K Berger6 and U Dannlowski1

Genetic and neuroimaging research has identified neurobiological correlates of obesity. However, evidence for an integrated model
of genetic risk and brain structural alterations in the pathophysiology of obesity is still absent. Here we investigated the relationship
between polygenic risk for obesity, gray matter structure and body mass index (BMI) by the use of univariate and multivariate
analyses in two large, independent cohorts (n= 330 and n= 347). Higher BMI and higher polygenic risk for obesity were significantly
associated with medial prefrontal gray matter decrease, and prefrontal gray matter was further shown to significantly mediate the
effect of polygenic risk for obesity on BMI in both samples. Building on this, the successful individualized prediction of BMI by
means of multivariate pattern classification algorithms trained on whole-brain imaging data and external validations in the second
cohort points to potential clinical applications of this imaging trait marker.
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INTRODUCTION
Obesity is a highly heritable condition that increases the risk for
multiple somatic as well as psychiatric disorders.1–3 Recent meta-
analyses of genome-wide association study (GWAS) data have
identified up to 97 loci that showed genome-wide significant
associations with body mass index (BMI).1 Analysis of tissue
enrichment in these GWAS studies revealed a high expression of
many genetic variants in the central nervous system,1,4 a finding
well in line with results from neuroimaging studies reporting
associations between BMI and alterations in brain structure and
function, both indicating a pivotal role of altered neural
processing in the pathophysiology of obesity.5–9 In particular,
gray matter deficits and neural processing bias in the medial
prefrontal cortex and the striatum, structures involved in reward-
related cognition and impulse inhibition, are among the most
frequently observed results of structural and functional imaging
studies in obesity.6,7,10–12 However, albeit genetic and neuroima-
ging studies independently report neurobiological correlates of
obesity, evidence for a mechanistic relationship between genetic
risk variants and imaging findings in obesity is sparse, hitherto.
Nonetheless, considering the high heritability of brain structure
and function, it seems plausible that genetic predisposition and
neuroimaging findings in obesity are related.13,14 This would shed
more light on the question whether neural alterations in obesity
reflect a—genetically shaped—trait marker that precedes weight
gain or must rather be considered as an adverse consequence in
terms of accelerated neurodegenerative processes in obese
subjects.
If the influence of genetic risk for obesity on brain structures

associated with increased weight was evidenced, the notion of
BMI-related brain structural aberrations as a predisposing
trait marker of obesity would be corroborated. Under this

assumption, brain morphometric information could be used as
an imaging trait marker to individually predict the risk of
developing obesity in future, which might lead to new preventive
strategies.
In this context, the combination of structural imaging data and

machine learning techniques has evoked great promises, for
example, by demonstrating successful application in the differ-
ential diagnosis of psychiatric disorders and in the detection of
subjects at risk for psychiatric disorders.15–18 Especially successful
identification of multivariate patterns of brain structure indicating
high risk would highlight the potential relevance of neuroimaging
in obesity.
Thus, the aims of the present study were (a) to replicate

previous findings of associations between BMI and gray matter
changes in two large independent studies, (b) to analyze possible
relationships between genetic risk for obesity, structural altera-
tions in obesity-related brain areas and BMI and (c) to predict
individual BMI through a machine learning approach.

MATERIALS AND METHODS
Subjects
Our study initially comprised a sample of 345 healthy subjects from the
Münster Neuroimaging Cohort (MNC) and a sample of 367 healthy subjects
from the BiDirect (BD) study. After the exclusion of subjects with poor
image quality detected by visual inspection and by using the check
homogeneity using covariance function implemented in VBM8, final
samples of N= 330 for the MNC and N=347 for the BD study remained
(see Table 1). Further details on rational, design and inclusion criteria
of both studies have been described elsewhere19–22 (see also
Supplementary Methods).
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Image acquisition and VBM
T1-weighted high-resolution anatomical images were acquired and
preprocessed using the VBM8-toolbox (http://dbm.neuro.uni-jena.de/
vbm) in both cohorts following published protocols, as described in our
previous work6,18,21,23,24 (see also Supplementary Methods).

Polygenic risk score
The MNC sample was genotyped using the Infinium PsychArray-24 that
includes 265 000 proven tag single-nucleotide polymorphisms (SNPs)
found on the Infinium HumanCore-24 BeadChip, 245 000 markers from the
Infinium Exome-24 BeadChip and 50 000 additional markers associated
with common psychiatric disorders. These additional SNPs include genetic
variants associated with the research of common psychiatric conditions
such as schizophrenia, bipolar disorder, autism spectrum disorders,
attention deficit hyperactivity disorder, major depressive disorder,
obsessive compulsive disorder, anorexia and Tourette’s syndrome. The
BD participants were genotyped with the Illumina HumanCore Exome chip
va. 1.1 (Psych-chip, Illumina, San Diego, CA, USA).
Imputation of the two study cohorts was carried out using the ENIGMA

1000G reference panel (v.3.20101123), following the ENIGMA imputation
protocol using quality control filtered SNPs 257 573 (MNC) and 264 278
(BD). Following the imputation, only the autosomal SNPs that passed the
quality control criteria (minor allele frequency 40.01 and imputation
quality score 40.5) were used for the polygenic score analysis. Linkage
disequilibrium pruning was carried out using the clumping option in plink
with r240.25 and physical distance threshold of 250 kb.
A polygenic risk score (PRS) was generated using the sets of SNPs

selected based on a P-value threshold at 1.0 from the base GWAS data.1

The R program 'PRSice',25 which uses PLINK-1.926 in the background for
linkage disequilibrium pruning and the PRS, was used for this analysis.
Associations between the PRS and BMI values for each study were assessed
via analysis of covariances including age and sex as covariates of no
interest.

Mediation analyses
To test for possible mediation effects, a bootstrapping approach
implemented in the SPSS macro PROCESS was applied (http://www.
processmacro.org),27 which has been demonstrated to provide reliable
results in neuroimaging research.28,29 PROCESS estimates direct and
indirect effects between a defined set of variables by applying an ordinary
least-squares path analytic framework. For testing inference of an indirect
or mediation effect, bootstrap confidence intervals are calculated.
Significance of an observed indirect effect is assumed if the 95%
confidence interval (CI) does not include zero (see also Supplementary
Methods).

Pattern classification
Individualized prediction of BMI values was assessed by the use of support
vector regression as implemented in the Neurominer Software
Package (N. Koutsouleris, PRONIA Working Group, Department of
Psychiatry, University of Munich, Munich, Germany).16,30 For all multivariate
analyses, VBM8 whole-brain gray matter images were used as classifier
input. To reduce dimensionality by preserving maximal localized morpho-
metric differences, gray matter images were resliced to a voxel size of
2 mm×2 mm×2 mm and subsequently smoothed with a Gaussian kernel
of 8 mm full-width at half-maximum for multivariate analyses. To strictly
separate the training process from the evaluation of the classifier’s
generalizability, Neurominer uses a nested cross-validation (CV) framework
as described previously.16,31 A 5 × 5-fold CV cycle at the outer (CV2) and
1× 5-fold cycle at the inner (CV1) levels of repeated double CV were
generated including the subsequent analyses steps: the training subjects’
gray matter maps were initially corrected for age and sex effects using
partial correlations.16 Features were then scaled from 0 to 1. Soft feature
weighting was applied, which upweighted features highly predictive for
the target label (BMI) by means of a Pearson's correlation. Finally, to reduce
the maps’ dimensionality and discard noisy information, principal
component analysis projected correlated voxel sets to uncorrelated
eigenvariates, thus retaining 80% of the variance in each CV1 training
partition.32 Correction, scaling, upweighting and principal component
analysis parameters were applied to the CV1 test data. Then, in each
training partition, principal component analysis features entered a
recursive feature elimination algorithm that used a linear support vector
machine to remove those eigenvariates that impaired separability on the
respective CV1 test data (support vector machine penalty).33,34

To obtain CV2 test predictions, the respective gray matter images were
first processed using the correction, scaling, feature weighting and
principal component analysis parameters of each CV1 training partition,
and then classified using the learned decision rules. Classification
produced decision scores measuring the neuroanatomical likeness of the
BMI value of each subject. Finally, a CV2 test case’s BMI value was
predicted by an ensemble classifier that averaged the decision scores of
those CV1 base learners in the repeated double CV, in which the subject
had not been involved in the training process. Permutation tests for each
classifier were conducted to estimate the likelihood of obtaining
classification performance by chance (at an αo0.05 for each mean-
squared error (MSE) value), by using 1000 random permutations of the
labels and applying CV to each permutation.

RESULTS
Univariate regression of BMI on gray matter
Univariate regression analyses were calculated using statistical
parametric mapping software (SPM12, http://www.fil.ion.ucl.ac.uk/
spm) in two large independent samples of healthy subjects
(MNC: n= 330; BD: n= 347).19,20,24

To investigate associations between BMI and whole-brain gray
matter, multiple regression models including age and sex as
nuisance covariates for the entire cerebrum with Po0.05 at a
rigorous family-wise error (FWE) correction on the voxel level and
an additional cluster threshold of k= 100 voxels were carried out
for both samples separately. The anatomical labeling was
performed by means of the AAL-Toolbox (N. Tzourio-Mazoyer,
Groupe d’Imagerie Neurofonctionnelle, UMR 6095 CNRS CEA,
Université de Caen, Université de Paris, France).35 BMI was
associated with significant gray matter decrease in medial
prefrontal brain areas in both samples (see Figure 1).
In the MNC sample, the strongest BMI-related gray matter

reductions emerged in the bilateral medial frontal gyrus and
medial and orbital parts of the bilateral superior frontal gyrus
(x=− 8, y= 69, z=− 6, t(1,326) = 6.26, k= 488, Cohen's d= 0.71;
x= 10, y= 69, z=− 8, t(1,326) = 5.89, k= 198, d= 0.67) as well as in
the temporal gyrus, the thalamus and the insula (for details see
Table 2). The same pattern of results with only marginal
differences could be observed when the analysis was repeated
using BMI values corrected for possible self-report bias (see
Supplementary Results and Supplementary Table 1).

Table 1. Sociodemographic and clinical characteristics of the MNC
study sample consisting of 330 healthy subjects and the BiDirect study
sample comprising 347 healthy subjects

Mean S.d. Min Max

MNC
Sex (m/f) 158/172
Age (years) 39.2 11.3 20 59
BMI 24.5 3.9 18.2 39.8
BDI 1.7 2.2 0 10.0

BiDirect
Sex (m/f) 192/155
Age (years) 51.6 8.2 35.3 65.6
BMI 26.3 4.1 17.2 42.5
CES-D 6.5 4.3 0 16.0

Abbreviations: BDI, Beck Depression Inventory; BMI, body mass index;
CES-D, Center for Epidemiologic Studies Depression Scale; f, female; m,
male; Max, maximal; Min, minimal; MNC, Münster Neuroimage Cohort.
Means, s.d., Min and Max values are presented.
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BMI-associated gray matter volume decrease was even more
pronounced in the BD sample, again involving large parts of the
bilateral superior frontal gyrus (orbital and medial parts) and the
bilateral medial frontal gyrus (x=− 8, y= 68, z=− 3, t(1,343) = 7.60,
k= 1963, d= 0.85; x= 8, y= 69, z=− 10, t(1,343) = 7.26, k= 1188,
d= 0.81)). Besides, volume decrease in medial prefrontal areas,
additional BMI-related gray matter reductions emerged in the

temporal cortex (x= 69, y=− 42, z= 8, t(1,343) = 7.62, k= 4771,
d= 0.85) and BMI was furthermore significantly associated with
volume reductions in the thalamus and the cingulate cortex (for
details see Table 3).
Additional analyses stratified for different age groups in both the

MNC and the BD study did not reveal a significant age-dependent
effect of BMI on prefrontal gray matter (see Supplementary Results).

Figure 1. Overlapping results of the univariate regression analysis of body mass index (BMI) values on whole-brain gray matter in blue color
for the Münster Neuroimaging Cohort (MNC) and in red color for the BiDirect (BD) sample (Montreal Neurologic Institute (MNI) coordinates:
x=− 9, z=− 14/x=− 6, z=− 12/x=− 4, z=− 10) at a voxel-threshold pFWEo0.05, minimum cluster volume threshold k⩾ 100. FWE, family-
wise error.

Table 2. Results of the regression analysis of BMI values on gray matter in the MNC sample including age and sex as covariates of no interesta

Cluster size (k) MNI (at peak) Side T-value

x y z

Superior frontal gyrus, medial part/medial frontal gyrus, oribital part/rectus 488 − 8 69 − 6 L 6.26
Superior frontal gyrus, medial part/medial frontal gyrus, orbital part/superior
frontal gyrus, orbital part

198 10 69 − 8 R 5.89

Superior frontal gyrus, medial part/ superior frontal gyrus 100 − 12 58 28 L 5.68
Thalamus 164 10 − 10 15 R 5.60
Middle frontal gyrus 136 54 − 9 46 R 5.40
Middle temporal gyrus/superior temporal gyrus 171 − 52 − 30 3 L 5.21
Postcentral gyrus 205 − 46 − 15 38 L 5.03
Superior temporal gyrus/middle temporal gyrus/insula 166 − 46 − 2 − 15 L 5.00

Abbreviations: BMI, body mass index; FWE, family-wise error; L, left; MNC, Münster Neuroimage Cohort; MNI, Montreal Neurologic Institute; R, right. aAll
reported whole-brain analyses with voxel-threshold pFWEo0.05 and minimum cluster volume threshold k⩾ 100. Coordinates were based on MNI atlas.
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No positive association between BMI and gray matter could be
detected at the applied thresholds in both samples. Even at an
exploratory threshold of Po0.001, uncorrected and k=250 voxels,
no significant positive associations emerged.

Polygenic risk score and mediation analysis
To evaluate a potential effect of genetic risks for obesity on brain
structural alterations associated with increased BMI, a PRS for
obesity was calculated for all subjects of the MNC (n= 328) and
the BD (n= 327) study for which GWAS data were available. The
PRS was calculated using public available GWAS data as discovery
sample, thus including a total of 169 167 SNPs for the MNC and
172 030 SNPs for the BD cohort (p-threshold of P= 1.0) (https://
www.broadinstitute.org).1 The polygenic risk scores calculated for
the MNC and the BD study were significantly positively associated
with BMI controlling for age and sex as nuisance regressors (MNC:
F(1,327) = 14.34, Po0.001, ηp

2 = 0.042; BD: F(1,326) = 6.52, P= 0.011,
ηp

2 = 0.020).
Multiple regression of PRS scores on gray matter volumes was

performed, again including age and sex as covariates. For this
step, following our aim to investigate the genetic influence on
BMI-related gray matter reductions, for each study an region of
interest based on a mask including the two peak clusters (MNC:
k= 488, x=− 8, y= 69, z=− 6; k= 198, x= 10, y= 69, z=− 8/BD:
k= 1963, x=− 8, y= 68, z=− 3; k= 4771, x= 69, y=− 42, z= 8) of
the respective preceding regression analyses of BMI on whole-
brain gray matter was used, applying a rigorous FWE correction
within this ROI at Po0.05 on the voxel level.
In both the MNC and the BD study, regression analysis of the

PRS on BMI-associated gray matter yielded a significant volume
decrease in the orbitofrontal cortex. Again, the observed gray
matter reductions were more pronounced in the BD study (BD:
x=− 14, y= 60, z=− 4, t(1,323) = 4.40, k= 325, pFWE= 0.003, d= 0.49;
MNC: x= 9, y= 57, z=− 6, t(1,324) = 3.46, k= 9, pFWE= 0.016,
d= 0.39). Mean gray matter values of the entire resulting clusters
were extracted for further mediation analyses for each study using
a bootstrapping approach as implemented in the PROCESS macro
for SPSS. Age and sex were included as nuisance regressors of no
interest in each model (number of bootstrap samples: n= 5000).
Unstandardized regression coefficients are presented for each

effect (coeff). In both studies, significant total effects of polygenic
risk for obesity on BMI could be observed (MNC: coeff = 98944.25,
s.e. = 26 125.14, t(3,324) = 3.79, Po0.001, 95% CI = 47 547.93–
150 340.57; BD: coeff = 57 488.70, s.e. = 22 519.67, t(3,323) = 2.55,
P= 0.011, 95% CI = 13 184.94–10 1792.45; see Figure 2, path c),
which decreased if mean prefrontal gray matter was included in
the model (MNC: coeff = 79 151.56, s.e. = 25 900.06, t(3,324) = 3.06,
P= 0.002, 95% CI = 28 197.44–130 105.68; BD: coeff = 26 992.92,
s.e. = 22080.49, t(3,323) = 1.22, P= 0.222, 95% CI =− 16 447.33–
70 433.17; path c′). Moreover, in both studies a significant positive
mediation effect of polygenic risk for obesity on BMI through
medial prefrontal gray matter could be observed (MNC:
coeff = 19 792.69, s.e. = 7886.24, 95% CI = 7223.55–38 293.78; BD:
coeff = 30 495.77, s.e. = 7934.50, 95% CI = 17 071.99–47 941.82)
(see also Supplementary Results).
Additional exploratory regression analyses of PRS values on

whole-brain gray matter in both the MNC and the BD sample
revealed no significant effect of polygenic risk scores outside the
prefrontal cortex (see Supplementary Results).

Individualized prediction of BMI by the use of pattern classification
To investigate a possible utilization of pattern recognition in the
individualized prediction of BMI values, classifiers were trained on
whole-brain gray matter images in each sample separately and
subsequently tested in the respective sample including age and
sex as nuisance covariates. Robust individualized prediction of BMI
levels by using whole-brain gray matter data was demonstrated in
both samples separately. In both the MNC and the BD sample,
significant individualized prediction of BMI was achieved with
comparable classifier performance (MNC: r= 0.38 (correlation
between predicted and true BMI), mean absolute error (MAE) =
2.8, rMSE (root mean-squared error) = 3.7, MSE = 13.5, Po0.05; BD:
r= 0.45, Po0.001, MAE= 2.9, rMSE = 3.7, MSE = 14.0, Po0.05).
Second, to demonstrate external validation, we aimed to

transfer the classifiers between both samples. We therefore tested
the performance of the above-described classifier trained on
whole-brain data of the MNC sample on structural data of the BD
sample. Conversely, the performance of the classifier trained on
the BD data was subsequently tested on data of the MNC sample.
As could be expected, classifier performance decreased but was

Table 3. Results of the regression analysis of BMI values on gray matter in the BiDirect sample including age and sex as covariates of no interesta

Cluster size (k) MNI (at peak) Side T-value

x y z

Middle temporal gyrus/superior temporal gyrus 4771 69 − 42 8 R 7.62
Superior frontal gyrus, orbital part/medial frontal gyrus, orbital part/rectus/middle frontal gyrus 1963 − 8 68 − 3 L 7.60
Medial frontal gyrus, orbital part/rectus/middle frontal gyrus, orbital part/superior frontal gyrus,
medial part

1188 8 69 − 10 R 7.26

Fusiform gyrus/inferior temporal gyrus 225 − 34 − 2 − 50 L 7.12
Middle frontal gyrus, orbital part/inferior frontal gyrus, orbital part 543 − 54 38 − 4 L 6.17
Angular gyrus/inferior parietal gyrus/superior temporal gyrus 854 − 64 − 50 30 L 6.05
Middle frontal gyrus, orbital part/superior frontal gyrus, orbital part 245 40 58 − 12 R 6.04
Gyrus rectus 113 6 27 − 27 R 6.01
Superior temporal gyrus/rolandic operculum 748 − 63 − 3 3 L 5.95
Inferior frontal gyrus pars triangularis/middle frontal gyrus 133 − 52 33 16 L 5.76
Inferior frontal gyrus, orbital part/rectus/superior frontal gyrus, orbital part 219 − 14 22 − 24 L 5.48
Middle occipital gyrus 115 − 52 − 81 0 L 5.38
Inferior frontal gyrus pars triangularis 103 60 22 10 R 5.37
Middle cingulate gyrus/posterior cingulate gyrus 214 − 2 − 33 22 L 5.32
Thalamus 208 − 2 − 3 8 L 5.28
Middle temporal gyrus 109 − 66 − 44 0 L 5.27

Abbreviations: BMI, body mass index; FWE, family-wise error; L, left; MNI, Montreal Neurologic Institute; R, right. aAll reported whole-brain analyses with voxel-
threshold pFWEo0.05, minimum cluster volume threshold k⩾100. Coordinates based on MNI atlas.
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maintained at robust and comparable level in both cohorts if the
trained classifiers were transferred and applied to the imaging
data of the respective other sample. The classifier trained on the
BD sample was demonstrated to significantly predict BMI in the
MNC sample (r = 0.42, MAE= 3.8, rMSE = 4.5, MSE = 20.1,Po0.05),
whereas the classifier trained on the MNC sample and subse-
quently tested on the BD sample achieved individualized
prediction of BMI values at a comparable error rate, which
however failed to maintain significance in the permutation test
(r= 0.40, MAE = 3.6, rMSE = 4.5, MSE = 20.4) (see also Suppl-
ementary Figures 1 and 2).

DISCUSSION
Based on the results of two independently conducted large studies,
we believe we provide first evidence for a relationship between
genetic and neuroimaging correlates of obesity. The significant
impact of polygenic risk for obesity on medial prefrontal gray
matter suggests that alterations in prefrontal brain structures are
an intermediate phenotype in the development of obesity. This
relationship was further delineated by a significant mediation of
polygenic risk for obesity on BMI through medial prefrontal gray
matter. The clinical potential of this neuroimaging-derived trait

marker in obesity was demonstrated through an individualized
prediction of BMI by the use of structural brain scans and its
external validation in an independent study.
Obesity has been linked to altered neural structure and function

in several previous studies. Most reports suggest a primordial role
of brain structures closely connected to the reward system in
obesity.36–38 Among these findings, the medial prefrontal cortex
as well as tightly connected subcortical structures such as the
striatum, the insula and midbrain regions have repeatedly been
evidenced to be associated with obesity in both functional and
structural magnetic resonance imaging (MRI) studies.7,12,38,39 In
accordance with previous results,6,7,12 we found that increasing
BMI was related to a volume decrease in the medial prefrontal
cortex. The involvement of partially overlapping brain structures in
structural and resting state fMRI studies in obesity40,41 might
furthermore be considered as supportive for the present results,
especially considering reports that link prefrontal brain structure
to altered connectivity in resting state fMRI studies.42

Given the pivotal role of the medial prefrontal cortex in reward
processing, executive control and impulse inhibition its associa-
tion with obesity does not surprise. Yet, it should be noted that
the importance of this brain region has also been highlighted in
affective disorders. Thus, the present findings might also confirm a

Figure 2. (a) Plots depicting correlations between the polygenic risk score, body mass index (BMI) values and orbitofrontal cortex (OFC) gray
matter volume for the Münster Neuroimaging Cohort (MNC) study (orbital part of the medial frontal gyrus at x= 9, y= 57, z=− 6). (b) Results
of the regression analysis of the polygenic risk score on prefrontal gray matter volumes, in blue for the MNC and in red for the BiDirect (BD)
study projected on a standard brain template (for display reasons unthresholded values at Po0.05 uncorrected are presented). (c) Models of
the mediation analysis of polygenic risk score on BMI through OFC gray matter volume for the MNC and the BD study, unstandardized
regression coefficients and s.e. are presented. *Significance at Po0.05.
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possible neurobiological connection between obesity and psy-
chiatric disorders.43,44 It furthermore appears important to
consider the evidence for structural alterations in reward-related
brain areas in eating disorders such as anorexia nervosa,45,46

which might point to the primordial role of altered reward
processing in different forms of adverse eating behavior.
Regarding the ongoing discussion on state and trait character-

istics of obesity-related brain changes, it seems important to
emphasize that all of our findings have been corrected for age and
sex. Furthermore, analyses stratified for different age groups did
not yield any age-dependent effect of BMI on gray matter. Taken
together, strong age-related effects, such as pronounced neuro-
degeneration in older subjects, should not have influenced the
present results, strengthening the idea of gray matter decrease as
a trait marker for obesity. This notion is further supported by
previous findings of brain abnormalities associated with BMI in
adolescent and early adulthood subjects.8,9,12,47 We are further-
more aware of two longitudinal studies that investigated BMI-
related brain structural changes in healthy individuals, which did
not find significant changes in prefrontal brain volume during
follow-up, thus supporting the hypothesis of a trait characteristic
of medial prefrontal gray matter atrophy in obese individuals.10,48

Building on this, our finding of a significant association between
polygenic risk for obesity and medial prefrontal cortex gray matter
volume gives further support to the notion of brain structural
alterations as a genetically influenced predisposing trait marker in
obesity. Furthermore, the significant mediation effect of medial
prefrontal brain structure provides a first insight into the interplay
of genetic and brain structural alterations in the development of
obesity, even though results of this mediation analyses should be
treated with caution considering the non-experimental design of
the present study. A genetic influence on BMI-related brain
structure is supported by previous reports on the heritability of
brain structural correlates.13,49 In our studies, we focused on the
genetic impact on prefrontal brain structure, which was the core
finding in our univariate whole-brain regression analyses and
which is also one of the most frequently reported brain areas
associated with obesity in the literature.6,7,10–12 The specificity of
medial prefrontal gray matter as a correlate of genetic risks for
obesity is further highlighted by the fact that associations
between polygenic risk scores and gray matter were restricted
to prefrontal brain areas in exploratory whole-brain analyses.
However, we would like to emphasize that the observed effect

size in the PRS analyses makes it highly probable that other factors
are contributing to the genesis of gray matter volume decrease in
obesity. Different environmental and lifestyle factors, such as
fitness level and cardiac function, have also been shown to
influence the individual brain structural development. Thus,
they are likely to contribute to BMI-related neurostructural
alterations.50,51 Other important factors, such as medication intake
and history of psychiatric disorders that have the potential to bias
brain structural findings, were controlled in the present study and
did not contribute to the observed obesity-related effects.6,52,53

Yet, the notion of an environmental and genetic interplay in
obesity does not necessarily contradict or weaken our results.
Following the food addiction model, increased vulnerability
predisposes to adverse behavior (food seeking and taking), which
in turn aggravates neural control function followed by develop-
ment of tolerance.54 Hence, findings of the present study refer to
this model by pointing to decreased medial prefrontal gray matter
as a vulnerability factor in the development of obesity.
The possible use of this vulnerability marker was demonstrated by

robust individualized predictions of BMI by means of whole-brain
gray matter in two independently conducted studies. We thus
demonstrate that structural MRI-based machine learning techniques
are applicable to the prediction of BMI. The idea to apply imaging
techniques in obesity prevention is supported by studies demon-
strating successful prediction of BMI development as well as

successful weight loss during longitudinal follow-up by means of
group-level analyses.8,55 Our results provide an important first step
to bridge the gap between research and clinical routine by
successfully transferring imaging-derived biomarkers from the group
level to individual prediction. This notion heavily relies on previous
findings from psychiatric research indicating different applications of
structural imaging-based machine learning, such as the differential
diagnosis of psychiatric disorders, classification of high-risk subjects
and prediction of therapy response.16–18,56 From a method point of
view, the predictive power of a classifier requires external replication
in different, independent test studies to better allow generalizability.
Thus, the replication of results with the successful transfer of trained
classifiers between our two cohorts strongly supports the feasibility
of machine learning approaches in future obesity research and
prevention. Nonetheless, considering the classification performance
with individually predicted BMI values at an error ranging between
3.7 to 4.5 BMI points, the presented classifiers of course do not allow
immediate clinical application, but might indicate that a relatively
small gain in classification performance would be sufficient to justify
its implementation as an add-on tool, for example, in clinical studies
on obesity prevention and outcome prediction following interven-
tion. We thus emphasize that the present findings only provide a
perspective for imaging applications in obesity. Further research,
especially longitudinal studies applying structural MRI-based pattern
recognition are required to analyze outcome prediction in obesity.
Strengths of our study include the combination of univariate

and multivariate neuroimaging techniques, two completely
different, complementary approaches, the replication of all findi-
ngs in an independently conducted, robustly powered cohort and
the transfer of trained classifiers between both samples.
A possible limitation in the interpretation of our findings might

arise from differences between both study cohorts. Mean age was
higher in the BD study and weight and height was directly
measured, while in the MNC study BMI scores were calculated
from self-reported weight and height. Besides ruling out possible
age-related effects, we attempted to control for differences in BMI
assessment by carrying out additional analyses (a) for the MNC
sample based on BMI values corrected for self-report bias and (b)
for the BD sample based on self-reported weight and height. Yet,
only marginal differences between different types of BMI
assessment occurred in these analyses, suggesting that different
BMI assessment might not have been a major confounder in the
present study. However, it still appears important to state that we
cannot fully suspend an error between assessed, corrected and
real BMI in the MNC sample. Finally, the assessment of the medical
history of each participant was more extensive in the BD study
compared with the MNC study, which might have resulted in a
higher prevalence of subclinical or undiscovered medical comor-
bidities in the MNC study. Especially the two latter mentioned
issues (assessment of BMI and medical comorbidities) might have
biased our brain structural findings and are thus susceptible to
explain the observed pattern of results with stronger associations
in the BD sample in all imaging analyses.
Moreover, considering the cross-sectional design of the present

study, the time of onset of the observed BMI-related brain
structural alterations cannot be settled. Interpretation of our
findings regarding the chronology of neurostructural alterations in
obesity should thus be treated with caution. It should furthermore
be noted that application of mediation analysis in non-
experimental settings in general is highly problematic because
of its strict assumptions, including among other causalities,
temporal precedence and the assumption that no further
variables exist that could affect the relations in the mediation
model. While we aimed to address the majority of these issues in
the present study, we clearly state that given the non-
experimental design of the present study, we cannot suspend
that further undiscovered factors might have biased the presented
relationships in the mediation analysis; interpretations of this
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analysis should thus be drawn with great caution; we especially
underline that causality cannot be deduced from these results.
In summary, this study provides first evidence for a relationship

of genetic and imaging correlates in obesity. The successful
prediction of BMI by multivariate classifiers trained on whole-brain
imaging data indicate the potential of imaging techniques in the
future prevention of obesity. Longitudinal studies are required to
further investigate possible utilizations of imaging applications
and pattern recognition before the development and during the
course of obesity.
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