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Predicting clinical outcome from reward circuitry function
and white matter structure in behaviorally and emotionally
dysregulated youth
MA Bertocci1,14, G Bebko1,14, A Versace1, JC Fournier1, S Iyengar2, T Olino3, L Bonar1, JRC Almeida4, SB Perlman1, C Schirda1, MJ Travis1,
MK Gill1, VA Diwadkar5, EE Forbes1, JL Sunshine6, SK Holland7, RA Kowatch8, B Birmaher1, D Axelson8, SM Horwitz9, TW Frazier10,
LE Arnold11, MA Fristad11, EA Youngstrom12, RL Findling6,13 and ML Phillips1

Behavioral and emotional dysregulation in childhood may be understood as prodromal to adult psychopathology. Additionally,
there is a critical need to identify biomarkers reflecting underlying neuropathological processes that predict clinical/behavioral
outcomes in youth. We aimed to identify such biomarkers in youth with behavioral and emotional dysregulation in the Longitudinal
Assessment of Manic Symptoms (LAMS) study. We examined neuroimaging measures of function and white matter in the whole
brain using 80 youth aged 14.0 (s.d. = 2.0) from three clinical sites. Linear regression using the LASSO (Least Absolute Shrinkage and
Selection Operator) method for variable selection was used to predict severity of future behavioral and emotional dysregulation
measured by the Parent General Behavior Inventory-10 Item Mania Scale (PGBI-10M)) at a mean of 14.2 months follow-up after
neuroimaging assessment. Neuroimaging measures, together with near-scan PGBI-10M, a score of manic behaviors, depressive
behaviors and sex, explained 28% of the variance in follow-up PGBI-10M. Neuroimaging measures alone, after accounting for other
identified predictors, explained ~ 1/3 of the explained variance, in follow-up PGBI-10M. Specifically, greater bilateral cingulum
length predicted lower PGBI-10M at follow-up. Greater functional connectivity in parietal-subcortical reward circuitry predicted
greater PGBI-10M at follow-up. For the first time, data suggest that multimodal neuroimaging measures of underlying
neuropathologic processes account for over a third of the explained variance in clinical outcome in a large sample of behaviorally
and emotionally dysregulated youth. This may be an important first step toward identifying neurobiological measures with the
potential to act as novel targets for early detection and future therapeutic interventions.
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INTRODUCTION
Increasingly, neuroimaging studies are identifying biomarkers
reflecting underlying neuropathologic processes that are pre-
dictive of clinical outcomes in adults.1 Studies have shown, for
example, that measures of neural structure and function can
predict response to psychotherapy and psychotropic medications
in adults with major depressive disorder and anxiety disorder.2–4

In studies of youth with major depressive disorder, neural activity
predicted response to cognitive behavioral therapy5 as well as to a
magnitude of depressive symptoms 1–2 years after neuroimaging
assessment.6,7 In youth with anxiety disorder, neural activity
measured by functional magnetic resonance imaging (fMRI)8 and
evoked response potentials9 predicted improvement in anxiety
symptoms. Although still a nascent research field, the latter
studies indicate feasibility of neuroimaging to identify measures of
neural function reflecting the underlying neuropathologic pro-
cesses that, over and above clinical and demographic measures,

predict future behavioral outcomes in youth with psychiatric
disorders. Larger sample sizes, multimodal neuroimaging techni-
ques and sophisticated statistical analyses that allow testing of a
large number of potential predictor variables are needed to fully
examine the extent to which combinations of measures of neural
structure and function along with clinical, demographic, genetic
and environmental factors predict future outcomes in youth.
LASSO (Least Absolute Shrinkage and Selection Operator) regres-
sion is one such statistical technique that has been adopted for
use in genetic studies10–14 and is gaining favor in clinical research
including fMRI.15,16 This technique allows for testing of a large
number of potential predictor variables, relative to the number of
study participants, while minimizing model error and minimizing
the risk of overfitting (Figures 1 and 2).
The aim of the present study was to identify measures of neural

function and structure predicting future behavioral and emotional
dysregulation in a large group of youth in the Longitudinal
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Assessment of Manic Symptoms (LAMS) study. LAMS is an
ongoing multisite study examining the longitudinal relationships
among the course of symptoms, outcomes and neural
mechanisms associated with different clinical trajectories, in youth
with symptoms characterized by behavioral and emotional
dysregulation.17,18 It is ideally suited as a platform study in which
to identify neuroimaging measures predicting future levels of
behavioral and emotional dysregulation in youth.
A novel feature of LAMS is that it adopts both a conventional

diagnostic (categorical) and a symptom (dimensional) approach to
characterize severity of psychiatric symptoms and the underlying
neural mechanisms in youth. The latter approach supports the
NIMH’s Research Domain Criteria19 and expectations,20 aiming to
elucidate neuropathologic processes associated with dimensions
of psychopathology that cut across different diagnostic categories,
which in turn may help identify neurobiological markers that
predict future outcome. One-dimensional measure of behavior
used in LAMS is the Parent General Behavior Inventory-10
Item Mania Scale (PGBI-10M), a parental report of behavioral
and emotional dysregulation in youth that specifically cap-
tures behaviors associated with difficulty regulating mood and
energy.21,22 In LAMS youth, PGBI-10M scores were elevated
across multiple diagnostic categories17,18 and predicted clinical
outcome.23 Furthermore, we previously reported in LAMS youth
relationships between functional and white matter structural
abnormalities in neural circuitry supporting reward processing and
emotional regulation with dimensional and categorical measures
of affective pathology.24,25 This neural circuitry comprises
prefrontal cortical, striatal and insula regions,25 and white matter
tracts connecting these prefrontal cortical and subcortical regions,
including uncinate fasciculus, cingulum and forceps minor.26

Given the above cross-sectional associations among these
neuroimaging measures, PGBI-10M, affective pathology and
outcome,23 these neuroimaging measures are promising candi-
date neural predictors of future levels of behavioral and emotional
dysregulation, and the present longitudinal study sought to test
these predictive associations, 14.2 months later.
We hypothesized that in LAMS youth, future behavioral and

emotional dysregulation, measured by follow-up PGBI-10M, would
be predicted by: (1) neural function, measured by the magnitude of
both activity and functional connectivity (FC), in prefrontal–cortical–
striatal reward circuitry; and (2) diffusion imaging (DI) measures of
white matter structure in tracts across the whole brain, but

especially in the tracts supporting emotion processing noted above.
Given that outcome has been consistently predicted by stability of
psychopathology and by demographic factors such as age,23,27,28

we also aimed to determine the relative proportion of future
behavioral and emotional dysregulation predicted by neuroima-
ging, over and above clinical and demographic measures.

MATERIALS AND METHODS
Participants
We recruited 130 youth (9–18 years; Table 1) with a variety of symptoms
and diagnoses from three LAMS sites (Case Western Reserve University,
Cleveland, OH, USA (n=32); Cincinnati Children’s Hospital (Cincinnati, OH,
USA) (n= 48); University of Pittsburgh Medical Center (Pittsburgh, PA, USA)
(n=50)) to participate in the neuroimaging component of the LAMS
second 5-year period (LAMS-2). Participants from the first 5-year period
(LAMS-1) were selected to include approximately equal numbers from
each site: (1) with high (⩾12) versus low (o12) PGBI-10M scores; (2) who
were older (⩾13 years) versus younger (⩽12 years) on scan day; (3) who
were male versus female. Institutional Review Boards approved the study
at each site. Parent/guardian consent and child assent were obtained.

Clinical assessments
Assessments used in this analysis included parent/guardian’s reported PGBI-
10M,21,22 which has shown good reliability and diagnostic discrimination,21,22

and the Depression Rating Scale (KDRS)29 and Mania Rating Scale (KMRS)30

supplements from the Schedule for Affective Disorders and Schizophrenia
for School-Age Children, Present and Lifetime Version with supplemental
questions from Washington University (K-SADS-PL-W), a well-validated
clinician interview with good psychometric properties.29 Psychiatric diag-
noses were confirmed by a licensed psychiatrist or psychologist and
included bipolar spectrum disorder, major depressive disorder, anxiety
disorder, ADHD and disruptive behavior disorder; frequency of diagnoses are
reported in Table 1.
PGBI-10M scores were obtained on or near the day of scan (TIME1) and

at follow-up interviews ((mean= 14.2 months (range: 4.8–23.7)) after
neuroimaging scans (TIME2). TIME1:PGBI-10M and TIME2:PGBI-10M scores
differed significantly (t(79) = 2.13, P= 0.036) (TIME1:PGBI-10M: mean(s.
d.) = 5.96 (5.95); TIME2:PGBI-10M= 4.59 (5.2)) and were only moderately
correlated r= 0.47.

Exclusion criteria
Exclusion criteria were as follows: systemic medical illnesses, neurological
disorders, history of trauma with loss of consciousness, use of central

Figure 1. LASSO (Least Absolute Shrinkage and Selection Operator) plots generated in GLMNET. (a) Plot of variable fit. Each curve corresponds
to an independent variable in the full model before optimization. Curves indicate the path of each variable coefficient as λ varies. Lambda.min
corresponds to the λ that minimizes the mean-squared error in the model and was used for the selection of the seven predictor variables.
(b) Plot of non-zero variable fit after cross-validation. Representation of the 10-fold cross-validation performed in LASSO that chooses the
optimal λ. Lambda.min corresponds to the λ that minimizes the mean-squared error and was used for variable selection. Lambda.1se
corresponds to the λ that is 1 s.e. from the lambda.min.
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nervous system effecting non-psychotropic medications, IQo70 assessed
by the Wechsler Abbreviated Scale of Intelligence, positive drug and/or
alcohol screen on the day of magnetic resonance scan, alcohol/substance
abuse in the past 3 months (determined by the K-SADS-PL-W), significant
visual disturbance, non-English speaker, autistic spectrum disorders/
developmental delays, pregnancy, claustrophobia and metal in the body.
Participants were excluded for excessive head movement,31 data acquisi-
tion artifact, incomplete data acquisition and follow-up non-attendance
(n=50), leaving 80 LAMS youth (age= 9.89–17.7). Excluded youth were
younger, had lower IQ, were more likely to have a disruptive behavior
disorder and had lower maternal education (Table 1).

Reward task description
Measures of reward-related neural activity were acquired using a validated,
~ 6-min, block-design card guessing reward task.31 For each guessing trial,
participants guessed via button press whether the value of a card shown
on the screen would be higher or lower than 5 (3000 ms) (possible value of
1 to 9, but whose value was not yet revealed). Next, the card’s actual value
was presented (500 ms) and outcome feedback was presented (Win: green
upward-facing arrow; Loss: red downward-facing arrow, 500 ms). After
each trial, a fixation cross was presented (3000 ms intertrial interval).
Control trials consisted of participants pressing a button to the letter ‘X’
(3000 ms). They then viewed an asterisk (500 ms), yellow circle (500 ms)
and fixation cross (3000 ms intertrial interval).
The paradigm included 9 blocks: 3 win (80% win, 20% loss trials), 3 loss

(80% loss, 20% win trials) and 3 control (constant in earnings) blocks.
Control blocks had six control trials, whereas guessing blocks (Win and
Loss) had five trials in an oddball format with preset outcome order (Win

block: win, win, win, loss, win; Loss block: loss, loss, win, loss, loss).
Participants practiced the task and practiced minimizing head movement
in an fMRI simulator before scanning. Outcome probabilities were fixed;
however, the experimenter led participants to believe that performance
determined outcomes. Participants were encouraged to both perform well
and to stay as still as possible.

Neuroimaging data acquisition and processing
fMRI data were collected on a (1) 3T Siemens Verio MRI scanner at CWRU,
(2) 3T Philips Achieva X-series MRI scanner at CCH and (3) 3T Siemens Trio
MRI scanner at UPMC. An axial three-dimensional magnetization prepared
rapid gradient echo sequence (192 axial slices 1 mm thick; flip angle = 9°;
field of view= 256 mmx192 mm; TR= 2300 ms; TE = 3.93 ms; matrix = 256
x192) acquired T1-weighted volumetric anatomical images covering the
whole brain. A reverse interleaved gradient echo planar imaging sequence
(38 axial slices 3.1 mm thick; flip angle = 90°; field of view= 205 mm;
TR= 2000 ms; TE = 28 ms; matrix = 64x64) acquired T2-weighted blood-
oxygen-level-dependent images covering the whole cerebrum and most of
the cerebellum.
Preprocessing involved realignment, coregistration, segmentation and

normalization into a standard stereotactic space (Montreal Neurologic
Institute; http://www.bic.mni.mcgill.ca), and spatially smoothing using a
Gaussian kernel (full-width at half-maximum: 8 mm). The detailed pre-
processing stream is described in Supplementary Materials. A two-level
random-effects procedure was then used to conduct whole-brain analyses.
At the first-level individual whole-brain statistical maps were constructed
to evaluate the main condition contrasts of interest: Win versus Control.

Figure 2. Representation of neural variables showing non-zero relationships with TIME2:PGBI-10M after LASSO (Least Absolute Shrinkage and
Selection Operator) regression and scatter plots of the linear relationships of these variables. All statistical analyses assumed an underlying
Poisson distribution. (a) Representation of bilateral cingulum tracts in a standard brain. Blue diamonds and trend line represent the
relationship between left cingulum length and TIME2:PGBI-10M scores. Red squares and trend line represent the relationship between right
cingulum length and TIME2:PGBI-10M scores. (b) Representation of ventral striatum (VS)-right parietal functional connectivity (right parietal
target region: Montreal Neurologic Institute (MNI): 48, − 46, 52, k= 314) in a standard brain. Scatter plot and trend line represent the
relationship between VS-right parietal functional connectivity and TIME2:PGBI-10M scores. FC, functional connectivity; PGBI-10M, Parent
General Behavior Inventory-10 Item Mania Scale.
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Movement parameters obtained from the realignment stage of preproces-
sing served as covariates of no interest.

Psychophysiological interaction methodology
Given the key role of the ventral striatum (VS) in reward processing, we
used a VS (bilateral spheres ± 9, 9, − 8; radius = 8 mm; Di Martino et al.32

and Postuma and Dagher33) seed region to examine FC between VS and
reward-related whole-brain activity during the Win4Control contrast,
using psychophysiological interaction (PPI) analysis. After processing the
Reward task as above, we extracted associated VS suprathreshold clusters
as the seed region and created a PPI vector by multiplying the mean time
series from the seed region by task condition vectors. Next, we ran single
subject first-level analyses for each task condition using three primary
regressors: PPI vector, time course vector and task condition vector were
created, controlling for movement parameters.

DI methodology
DI data were collected in the same scanning session as fMRI data at the
above three sites, and were processed using ExploreDTI, Freesurfer
and Tracts Constrained by the Underlying Anatomy (Tracula)
software (Charlestown, MA, USA).34 White matter tracts were automatically
reconstructed using probabilistic tractography accounting for anatomy
(see Supplementary Materials). DI analysis is sensitive to diffusivity of water
in white matter tracts in the brain. In white matter tracts with axons that
have densely packed collinear fibers, water diffuses along the principal/
longitudinal axon, but in non-collinear axons (crossing fibers), water moves
along two or more directions. Measures include axial diffusivity; Lambda1

(longitudinal diffusivity (L1); diffusivity along the principal axis); radial
diffusivity (RD; diffusivity along directions perpendicular to the longitudinal
axis); length and volume of tracts. Tracts with densely packed collinear
axons are characterized by high L1 and tracts with non-collinear axons are
characterized by high RD, whereas white matter damage is characterized
by high RD. Measures of fractional anisotropy were not included, as these
were not independent of L1 and RD measures for a given tract, as
fractional anisotropy is computed as the ratio between L1 and RD.

Combining data across sites
Merging neuroimaging data from multiple sites is feasible given the use of
appropriate measures.35,36 To control for intersite scanner variability and to
combine neuroimaging data across our three sites we performed the
following. First, we implemented global normalization to improve the
degree to which first-level models met model assumptions at each site.37

Second, the Biomedical Informatics Research Network (http://www.nbirn.
net) standards for data acquisition and information sharing were
implemented. Scanner signal-to-noise-ratio was collected using a Biome-
dical Informatics Research Network phantom and monitored for stability
monthly at each scanner site.36,38 Third, we used scanning site as a
predictor variable in all relevant statistical models.

Neuroimaging IVs
Functional measures. Significant whole-brain mean blood-oxygen-level-
dependent activity to the Win4Control contrast was extracted (voxelwise
P⩽ 0.001, clusterwise 3DClusterSim P⩽ 0.05 corrected; Table 2, minimum
k=38) as recommended.39–43 Full-width at half-maximum x, y and z

Table 1. Comparison of participants used in the analyses (n= 80) and those who were removed because of movement, incomplete fMRI/DTI
acquisition or incomplete follow-up data (n= 50)

Participants included
in data analysis

Participants not included
in data analysis

Statistic P-value

n= 80 n=50

Demographic information
Age 14.0 (2) 12.82 (1.9) t(128)=− 3.32 0.001
Sex (females) 33 15 χ2= 1.67 0.196
IQ 104.38 (17.02) 94.46 (13.22) t(121.9)=− 3.72 o0.001
SES (primary caregiver education) χ2= 9.54 0.049
No/some HS 3 5
HS diploma 16 19
Some post-HS 19 10
Associate's degree 23 11
Bachelor’s degree or higher 19 5

Clinical measures
Semiannual assessment closest to scan
PGBI-10M 6.04 (5.95) 6.47 (6.60) t(126)= 0.38 0.705

Scan day assessments
KDRS 4.13 (4.8) 3.40 (4.5) t(126)=− 0.85 0.395
KMRS 4.60 (7.0) 4.10 (6.4) t(126)=− 0.40 0.69
SCARED 10.63 (10.2) 13.18 (13.2) t(83.0)= 1.16 0.251

Diagnosis
Major depressive disorder 23 15 χ2= 0.023 0.879
Bipolar spectrum disorder 30 13 χ2= 1.84 0.175
ADHD 61 43 χ2= 1.84 0.176
Anxiety disorder 28 11 χ2= 2.48 0.116
Disruptive behavior disorder 47 38 χ2= 4.05 0.044
Psychotropic medication use 48 27 χ2= 0.45 0.501

Site χ2= 3.20 0.202
University of Pittsburgh Medical Center 26 24
Case Western Reserve University 21 11
Cincinnati Children's Hospital 33 15

Abbreviations: ADHD, attention deficit hyperactivity disorder; DTI, diffusion tensor imaging; fMRI, functional magnetic resonance imaging; HS, high school; IQ,
intelligent quotient; KDRS, Schedule for Affective Disorders and Schizophrenia for School-Age Children Depression Rating Scale; KMRS, Schedule for Affective
Disorders and Schizophrenia for School-Age Children Mania Rating Scale; PGBI-10M, Parental General Behavior Inventory-10 Item Mania scale; SCARED, Screen
for Child Anxiety-Related Emotional Disorders; SES, socieconomic status. Data are mean (s.d.) for age, IQ and clinical measures. For all other variables data are
total n. P-values are= unless specified.

Neural predictors of dysregulation
MA Bertocci et al

1197

© 2016 Macmillan Publishers Limited, part of Springer Nature. Molecular Psychiatry (2016), 1194 – 1201

http://www.nbirn.net
http://www.nbirn.net


smoothing parameters used in 3DClusterSim were acquired from the SPM
second-level output. Similarly for PPI, significant whole-brain parameter
estimates were extracted from regions showing significant positive
modulation of functional connectivity with the VS seed to the
Win4Control contrast (voxelwise P⩽ 0.05, clusterwise 3DClusterSim
P⩽ 0.05 corrected, minimum k=134) as in the previous studies.44–46 These
mean activity and functional connectivity measures were included as
predictor variables.

Structural measures. We chose two orthogonal measures of white matter
structure: L1, RD, plus volume and length. These measures were extracted
from all major tracts connecting prefrontal, parietal, temporal and
subcortical regions in the whole brain, including bilateral tracts of the
anterior thalamic radiation, cingulate angular bundle, cingulum, inferior
longitudinal fasciculus, parietal superior longitudinal fasciculus, temporal
superior longitudinal fasciculus, uncinate fasciculus, forceps major and
forceps minor. We additionally included the corticospinal tract as a control
reference tract.

Data analytic plan
The TIME2:PGBI-10M was not distributed normally (range= 0–23, mean=
4.59 (5.2), median= 3.0), and residuals calculated from initial ordinary
least-squares models were likewise non-normal. Residuals appeared to
follow a Poisson distribution; therefore, to model TIME2:PGBI-10M data we
used methods assuming a Poisson distribution. Because we had data with
more variables than observations, we used a LASSO regression analysis for
data selection and reduction using the freely available GLMNET package in
R47. LASSO is a modified form of least-squares regression that penalizes
complex models with a regularization parameter (λ).48 This penalization
method shrinks coefficients toward zero, and eliminates unimportant
terms entirely,47–49 thereby minimizing prediction error, reducing the
chances of overfitting and enforcing recommended sparsity in the
solution.48

GLMNET uses a quadratic approximation to the log-likelihood (an outer
Newton loop) and then cyclical coordinate descent algorithm50,51 that is
computed along a regularization path (an inner-weighted least-squares
loop) to optimize the penalized log-likelihood; this is programmed in
FORTRAN. Cyclical coordinate descent refers to optimization of each
parameter separately, holding all others fixed until coefficients stabilize.
Regularization is the process of adding constraints to a problem to avoid

overfitting. Regularization in GLMNET for a Poisson regression is performed
by producing the path of tuning parameters (λ) and solving the following
equation over the range of λ, thereby identifying the optimal λ:

min
βoβ

-
1
N
lðβ X; Yj Þ þ λ 1 - αð Þ

XN
i¼1

β2i =2þ α
XN
i¼1

βij j
 !

GLMNET uses cross-validation to identify the optimal penalty term (λ) that
would minimize the mean cross-validated error for our model and guard
against Type III errors (testing hypotheses already suggested by the data).
We used a k= 10-fold cross-validation approach.
A test statistic or P-value for LASSO that has a simple and exact

asymptotic null distribution was proposed by Lockhart et al.,52 but has not
yet been rigorously tested for conventional use or implemented in
standard statistical packages. We thus report non-zero coefficients
identified in the model, the rate ratio (exponentiated coefficients) and
pseudo-r2 computed from Akaike Information Criteria of standard leave-
one-out Poisson regression model analyses. The leave-one-out procedure
involves comparing the full model (all appropriate predictor variables) with
the model containing fewer predictor variables (removing the predictor
variables of interest). The difference in these models is the explained
variance of the left-out variables.
For our analysis, TIME2:PGBI-10M scores served as the outcome variable,

and TIME1:PGBI-10M, in addition to other TIME1 clinical and demographic
variables acquired on or near scan day (TIME1), were predictor variables.
TIME1 measures included the above blood-oxygen-level-dependent,
functional connectivity and DI neuroimaging measures, TIME1:PGBI-10M,
KMRS, KDRS scores and diagnoses (ADHD, bipolar spectrum disorder,
major depressive disorder, disruptive behavior disorder, anxiety disorder),
age, IQ, sex, medication status (taking versus not taking each psychotropic
medication class: stimulant, non-stimulant ADHD, mood stabilizer,
antipsychotic and antidepressant psychotropic medications), scan site
and days between TIME1:PGBI-10M and TIME2:PGBI-10M.

RESULTS
Seven predictors together optimized model fit using the minimum
λ identified by cross-validation. This minimum λ corresponds to
the penalty at which minimal mean-squared error is achieved.47 Of
these, three were clinical variables (TIME1:PGBI-10M, KMRS and
KDRS scores), one was sex and three were neuroimaging variables

Table 2. Reward-related neural activity and functional connectivity in LAMS youth at TIME1

Region MNI coordinates Statistic

BA k x y z Test statistic (d.f.) Puncorrected

Win4control activity
Right parietal cortex 40 399 48 − 52 43 t(79)= 6.24 o0.001
Left parietal cortex 40 443 − 39 − 58 46 t(79)= 5.95 o0.001
Right prefrontal cortex 8 532 6 32 46 t(79)= 6.00 o0.001
Corpus callosum 125 6 − 25 25 t(79)= 5.46 o0.001
Right insula 186 30 23 − 5 t(79)= 5.99 o0.001
Left motor cortex 6 372 − 39 5 49 t(79)= 5.60 o0.001
Right middle temporal gyrus 21 105 60 − 31 − 11 t(79)= 5.03 o0.001
Right DLPFC 9 419 45 32 31 t(79)= 4.89 o0.001
Left mPFC 10 234 − 36 50 16 t(79)= 5.34 o0.001
Left inferior frontal gyrus 45 180 − 48 17 4 t(79)= 5.03 o0.001
Right primary visual area 17 39 12 − 76 10 t(79)= 3.93 o0.001
Left caudate 52 − 9 8 4 t(79)= 3.91 o0.001

Win4control connectivity
Right parietal cortex 40 314 48 − 46 52 t(79)= 4.59 o0.001
Left parietal cortex 7 365 − 36 − 52 55 t(79)= 4.06 o0.001
Right middle frontal gyrus 9 289 42 38 22 t(79)= 3.64 o0.001
Right prefrontal cortex 8 185 3 26 58 t(79)= 3.17 o0.001

Abbreviations: BA, Brodmann area; d.f., degrees of freedom; DLPFC, dorsolateral prefrontal cortex; k, cluster size in voxels; MNI, Montreal Neurological Institute
coordinates; mPFC, medial prefrontal cortex; Puncorrected, uncorrected voxelwise P-value; t, t-test statistical value. Win4Control activity resulted from whole-
brain analyses using voxelwise Po0.001 and Po0.05, 3DClusterSim corrected. Win4Control functional connectivity resulted from whole-brain analyses using
a bilateral ventral striatum seed region, voxelwise Po0.05 and Po0.05, 3DClusterSim corrected. Each row in the table represents the peak voxel within the
specified region.
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(right and left cingulum length, and VS-right parietal connectivity;
Table 3).
Exponentiated parameters indicated that greater values of right

and left cingulum length predicted lower TIME2:PGBI-10M (i.e.,
better behavioral and emotional regulation). By contrast, greater
VS-parietal functional connectivity, higher TIME1:PGBI-10M, being
female, higher TIME1:KMRS and TIME1:KDRS predicted higher
TIME2:PGBI-10M scores (i.e., worse behavioral and emotional
dysregulation).
A pseudo-r2 of 0.28 was calculated for the standard Poisson

model containing seven non-zero predictors identified from
the LASSO regression model versus an intercept only model,
indicating that 28% of the TIME2:PGBI-10M variance was
explained by the model. Leave-one-out analysis showed that
three neuroimaging variables (right and left cingulum length and
VS-right parietal functional connectivity) explained 10% of the
TIME2:PGBI-10M variance, and four clinical and demographic
variables (TIME1:PGBI-10M, TIME1:KMRS, TIME1:KDRS and sex)
explained 15% of the TIME2:PGBI-10M variance.

DISCUSSION
Our aim was to assess the ability of multimodal neuroimaging
measures to predict future levels of behavioral and emotional
dysregulation in psychiatrically unwell youth. We used a LASSO
regression model, along with cross-validation, an approach that
penalizes complex models with a regularization parameter and
identifies the parameter that minimizes the mean-squared error,
sending unimportant coefficients to zero. Findings indicated
that 28% of the variance in a key measure of behavioral and
emotional dysregulation, PGBI-10M score, measured at a mean of
14.2 months after neuroimaging assessment was predicted by
bilateral cingulum length and VS-right parietal functional con-
nectivity, together with TIME1:PGBI-10M score, TIME1:KMRS score,
TIME1:KDRS score and sex. Our conservative analytic approach
revealed that neuroimaging measures alone, even after account-
ing for other significant predictors, predicted 10% of the variance,
that is, ~ 1/3 of the explained variance, in this outcome measure.
We show here that greater FC between VS and parietal cortex,

components of neural circuitry supporting reward processing,53–56

predicted worse future behavioral and emotional dysregulation.
Greater activity in this VS-parietal neural circuitry to reward cues
and outcomes has been reported in individuals with substance-
use disorders, and greater severity of behavioral and emotional
dysregulation.53,55 These findings suggest that neuroimaging
measures of a key underlying neuropathologic process in bipolar
disorder, heightened reward sensitivity,57 may predict worse
future behavioral and emotional dysregulation in psychiatrically
unwell youth. Our findings further indicate that the magnitude of
functional connections among different reward circuitry regions,

reflecting more global measures of functioning in this circuitry,
rather than activity within specific regions of this circuitry,
contribute to future outcome.
By contrast, better future behavioral and emotional regulation

was predicted by greater bilateral cingulum length. Most DI studies
of adults and youth with bipolar spectrum disorder or subthreshold
symptoms reported altered fractional anisotropy and RD in key WM
tracts implicated in emotion regulation, including the cingulum.58,59

Our findings are the first to our knowledge, however, to suggest
that greater cingulum length may be associated with capacity for
better future behavioral and emotional regulation in youth. Given
that the cingulum has projections within subcortical regions and
sends long association projections between prefrontal cortex
and other cortical areas,60 including, along with the superior
longitudinal fasciculus, connections to key prefrontal and parietal
cortical regions implicated in attentional control,61,62 longer
cingulum tract length may increase capacity for attentional control
that, in turn, may confer protection against future worsening of
behavioral and emotional dysregulation.
Non-neuroimaging measures also predicted future behavioral

and emotional dysregulation. Greater TIME1:PGBI-10M predicted
worse future behavioral and emotional dysregulation. Given that
this is a repeated measure, this is likely an indication of the
measure’s consistency over time. It was thus necessary to adjust
for the baseline score to clarify effects of other predictor variables.
Additionally, TIME1:KMRS and TIME1:KDRS scores predicted worse
future behavior and emotional dysregulation. These scores,
although not highly correlated with TIME1:PGBI-10M (ro0.48
and 0.19, respectively), are measures of mood dysregulation, and
would thus also be likely to predict future mood dysregulation, as
measured by TIME2:PGBI-10M. They also incorporate the youth’s
perspective and clinical observations of youth behavior, in
addition to the parent perspective captured in the PGBI-10M.
Finally, sex showed a non-zero coefficient in the LASSO model,
with being female associated with worse future behavioral and
emotional regulation, consistent with the well-established
increase in risk for depression among females in adolescence
and early adulthood.
Diagnoses did not predict TIME2:PGBI-10M, suggesting that, in

support of the Research Domain Criteria approach, measures of
symptom dimensions, rather than diagnostic categories, may
better reflect underlying neuropathologic processes in psychiatric
illness. This was despite the use of standardization in the LASSO
regression model, which assigns the same scale to all variables,
thereby consistently penalizing each variable.63 Overall, our
findings are aligned with one of the few neuroimaging predictor
studies in youth (10–16 years) with anxiety disorders,8 in which
36% of variance in outcome Clinical Global Impressions-Severity
score, was predicted using a combination of near-scan:Clinical
Global Impressions-Severity and left amygdala activity. This

Table 3. Non-zero coefficients generated from GLMNET using a LASSO regression with Poisson family model

Variable LASSO-derived coefficient Exponentiated coefficient Percent deviance explained by the addition
of variable to model

TIME1:PGBI-10M 0.255 1.29 0.136
VS-right parietal functional connectivity 0.153 1.17 0.082
Left cingulum length − 0.097 0.91 0.061
Sex 0.146 1.16 0.024
KMRS 0.034 1.03 0.008
Right cingulum length −0.008 0.99 0.005
KDRS 0.001 1.00 0.002

Abbreviations: KDRS, Schedule for Affective Disorders and Schizophrenia for School-Age Children Depression Rating Scale; KMRS, Schedule for Affective
Disorders and Schizophrenia for School-Age Children Mania Rating Scale; LASSO, Least Absolute Shrinkage and Selection Operator; TIME1:PGBI-10M, Time 1
Parental General Behavioral Inventory-10 Item mania scale; VS, ventral striatum. Exponentiated coefficient is the rate ratio change in the dependent variable
(TIME2:PGBI-10M) corresponding to one unit change in the predictor variable.
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amount of explained outcome variance in this study was similar to
that predicted by the combination of neuroimaging and clinical
measures in the present study. The explained variance in outcome
predicted by neuroimaging alone was not reported in this
previous study, however.
There were limitations. We focused on whole-brain reward

neural circuitry and white matter tracts. Including other neuroima-
ging measures, such as gray matter volumes or cortical thickness,
may improve future outcome predictions. (We report findings in
Supplementary Materials from an additional LASSO model that
included measures of cortical thickness, along with the neuroima-
ging, clinical and demographic measures included in the present
LASSO model, as predictors.) We assumed a linear model with a
Poisson distribution because of evidence of linear growth in white
matter volume among youth in this age group.64 Nonlinear
models may also be considered in future studies. We used
standard PPI in our analyses, as in previous studies in youth.65

Other methods of functional connectivity analyses may yield
different findings. In addition, while other outcome measures
could have been included, the PGBI-10M is the key LAMS-2
measure of behavioral and emotional dysregulation, and, as such,
was the preferred outcome measure. Additionally, the contribu-
tion of pubertal development could not be considered as it was
not measured during TIME1 assessments. Many of the LAMS youth
were medicated, although no class of psychotropic medication
was a non-zero predictor of future TIME2:PGBI-10M. Finally, there
has been recent debate about inflation of predictions in
neuroimaging studies in individuals with psychiatric disorders.66

We used a well-validated approach that penalizes complex models
using regularization, cross-validation, and enforces sparsity in
model fit. As in any study, magnitudes of parameter estimates that
we observed for each predictor need to be examined and refined
in future replications and meta-analyses.
This is the first study, to our knowledge, to use a multimodal

neuroimaging approach to predict future behavioral and emotional
dysregulation in youth. Specifically, we show that after accounting for
prior severity of behavioral and emotional dysregulation, ~ 1/3 of the
explained variance of the severity of these symptoms in the future
was predicted by a combination of neuroimaging measures of
reward circuitry function and white matter structure in tracts in the
whole brain. This study demonstrates for the first time that
neuroimaging measures reflecting underlying neuropathological
processes are significant predictors of a substantial proportion of
variance in future behavioral and emotional dysregulation in youth.
This is an important step toward identifying neurobiological measures
characterizing youth at greatest risk of poor outcome, and provides
promising neural targets for future therapeutic interventions.
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