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Age and Alzheimer’s disease gene expression profiles reversed
by the glutamate modulator riluzole
AC Pereira1,4, JD Gray1,4, JF Kogan1, RL Davidson1, TG Rubin1, M Okamoto1,2, JH Morrison3 and BS McEwen1

Alzheimer’s disease (AD) and age-related cognitive decline represent a growing health burden and involve the hippocampus, a
vulnerable brain region implicated in learning and memory. To understand the molecular effects of aging on the hippocampus, this
study characterized the gene expression changes associated with aging in rodents using RNA-sequencing (RNA-seq). The glutamate
modulator, riluzole, which was recently shown to improve memory performance in aged rats, prevented many of the hippocampal
age-related gene expression changes. A comparison of the effects of riluzole in rats against human AD data sets revealed that many
of the gene changes in AD are reversed by riluzole. Expression changes identified by RNA-Seq were validated by qRT–PCR open
arrays. Riluzole is known to increase the glutamate transporter EAAT2’s ability to scavenge excess glutamate, regulating synaptic
transmission. RNA-seq and immunohistochemistry confirmed an increase in EAAT2 expression in hippocampus, identifying a
possible mechanism underlying the improved memory function after riluzole treatment.
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INTRODUCTION
Aging is associated with cognitive decline in humans, which
impairs quality of life and contributes significantly to health-care
costs.1 Similar declines are also observed in rodents and non-
human primates.2 Aging is the primary risk factor for the dementia
of Alzheimer’s disease (AD); and with significant increases in life
expectancy, the prevalence of AD and age-related cognitive
disorders is rising.3 The neural circuits affected in aging and
AD are similar, involving the glutamatergic connections between
cortical areas and with the hippocampal formation, a brain
region in the medial temporal lobe that is critical for memory
formation.4–6 The glutamatergic pyramidal neurons of the
hippocampus are highly vulnerable to damage in both age-
related cognitive decline and in AD.5,7 However, the effects
of glutamatergic modulation on aging remains unknown.
Riluzole is a glutamate modulator approved for treatment of

amyotrophic lateral sclerosis.8 Importantly, riluzole treatment for
4 months prevented age-related cognitive decline in rodents
through clustering of dendritic spines,9 which form the post-
synaptic component of most excitatory synapses.10 Clustering
of synaptic inputs is an important neuroplastic mechanism that
increases synaptic strength, empowering neural circuits.11,12

Riluzole’s ability to induce dendritic spines clustering,9 which is
dependent on glutamatergic neuronal activity13,14 and long-term
potentiation (LTP),15 suggests that it regulates synaptic glutama-
tergic activity and prevents glutamate overflow to the extra-
synaptic space. Synaptic N-methyl-D-aspartate (NMDA) activity is
critical for LTP and memory formation, whereas extrasynaptic
NMDA activation is associated with long-term depression (LTD)
and excitotoxicity.16–18

The excitatory amino acid transporter 2 (EAAT2 or GLT-1; Slc1a2)
is a high-affinity, Na+-dependent glutamate transporter and the

dominant glutamate transporter in the brain.19,20 Glutamate
transporters, including EAAT2, decrease in aging21,22 and AD,23,24

and are associated with neurodegeneration.24 They also have a
critical role in determining synaptic and extrasynaptic glutamate
levels,20,25 regulating physiological glutamatergic neurotransmis-
sion. Riluzole can act to stabilize the inactivated state of the
voltage-gated sodium channel and it can increase EAAT2
expression,22,26–28 potentiating glutamate uptake.28–30

Understanding the molecular vulnerabilities of glutamatergic
neural circuits can point to novel and more effective treatment
targets. In addition, molecular changes resulting from treatments
that prevent cognitive decline remain largely unexplored. This
study uses the combination of RNA-sequencing (RNA-seq) and
open arrays to detect and validate specific molecular pathways
that are changed by aging and with riluzole. Importantly, gene
expression changes associated with a rescue of cognitive decline
under a therapeutic intervention (riluzole) are identified. In
addition, genes modulated by riluzole in the rat hippocampus
are enriched in many of the same pathways, and in the
opposite direction, as those altered in human AD gene expression
data sets. These molecular transcriptional profiles in the aging
hippocampus and with glutamatergic modulation by riluzole
provide mechanistic insights into age-related cognitive
decline and provide support for future studies on the role of
glutamate transporters as potential therapeutic targets in the
aging brain.

MATERIALS AND METHODS
Animals
Young (3-month-old) and aged male Sprague–Dawley rats (retired
breeders, 10 months old, Harlan Laboratories (Harlan Sprague Dawley,
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Indianapolis, IN, USA) were housed at Rockefeller University for the
duration of the experiments. All rats were pair-housed in climate-
controlled conditions (30–50% humidity, 21 ± 2 °C, 12 h-light/-dark cycle).
Separate cohorts of animals were used for RNA extraction and
immunohistochemical experiments. For RNA-seq experiments, each group
had n=6: 3-month-old (young rats), 10-month-old (middle age rats), 14-
month-old riluzole-treated rats and 14-month-old riluzole untreated rats.
For immunohistochemistry, 3-month-old rats (n=10), 14-month-old
untreated rats (n= 9) and 14-month-old riluzole-treated rats (n= 10) were
used. All procedures were in agreement with the National Institutes of
Health and The Rockefeller University Institutional Animal Care and Use
Committee guidelines. Sample sizes were chosen to minimize the number
of animals used given previously published reports using these
methodologies.31–33

Riluzole treatment
Treated rats had ad libitum access to riluzole solution from 10 months to
14 months of age (17 weeks), and aged-control and young-control rats had
ad libitum access to tap water. All rats had ad libitum access to food. The
riluzole compound (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in tap
water at a concentration of 110 μg ml− 1, translating to ∼ 4.0 mg kg− 1

per day per os. To make the solution, riluzole was stirred in room
temperature tap water for 6 h. All containers with riluzole were covered
with foil to prevent light exposure. Fresh solutions were made every 2–
3 days for the duration of treatment.

Tissue processing and immunohistochemistry
One week after the end of riluzole treatment, rats were deeply
anesthetized with 100 mg kg− 1 sodium pentobarbital and transcardially
perfused with 1.0% paraformaldehyde in 0.1 M phosphate buffer (PB;
1 min) followed by 4.0% paraformaldehyde+0.125% glutaraldehyde in
0.1 M PB (12 min). Brains were removed and post-fixed for 6 h in 4.0%
paraformaldehyde+0.125% glutaraldehyde in 0.1 M PB (4°C) and trans-
ferred to 0.1% sodium azide in PB (4°C) until cutting the following day.
Brains were cut on a vibratome (Leica, VT1000S, Leica Biosystems, Buffalo
Grove, IL, USA) into 40 μm coronal for immunohistochemistry. Sections
were stored in 0.1% sodium azide in PB (4°C). Sections from each animal
were washed with phosphate-buffered saline, blocked with 1% bovine
serum albumin and incubated in primary antibody for GLT-1a (1:1000
dilution in phosphate-buffered saline; gift from J Rothstein’s Laboratory,
Johns Hopkins University) overnight at 4 °C. The tissue was then washed in
phosphate-buffered saline, and incubated with fluorescent secondary
antibody (AlexaFluor488) for 1 h. The intensity of the labeling was
quantified using Nikon Imaging software (Nikon Instruments, Melville,
NY, USA) in 50 μm intervals from the cellular layer in each region of
hippocampus. Electronic images were coded to blind the rater.

RNA extraction, sequencing and analysis
Wet dissected hippocampus from rapidly decapitated rats were flash
frozen on dry ice and stored at − 80°C. RNA was extracted using the
RNAeasy Lipid Kit (QIAGEN Sciences, Germantown, MD, USA) and Qiacube
as per the manufacturer’s instructions. Samples were pooled for
sequencing and final RNA integrity was checked using the Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) prior to library preparation.
All samples had RNA Integrity Numbers 48. Sequencing libraries
were prepared by the Rockefeller University Genomics Core Facility using
the TruSeq RNA Library Preparation Kit v2 (Illumina, San Diego, CA, USA)
and bar-coded for multiplexing so that all groups could be run in the
same flow cell. Single-stranded reads of 100 bp were collected on a
HiSeq 2500 (Illumina) at a sequencing depth of ~ 60 million reads per
sample.
Raw data files were uploaded to Galaxy34,35 and checked for integrity by

FastQC. To remove sequencing artifacts and residual adapter sequences,
reads were trimmed by 5–10 bp at the 5′ and 3′ ends and then filtered to
remove reads with quality scores o20. Reads were aligned to the rat
genome (rn5) using TopHat2 (ref. 36 and then loaded into Strand (Agilent)
for quantification of read density by DESeq. Differential expression
analyses were conducted in Strand using z-tests that were Benjamin–
Hochberg corrected for false discovery rates. Venn diagrams and scatter
plots based on significant gene lists were generated using Strand (STRand
Analysis Software developed at University of California, Davis' Veterinary
Genetics Lab, Davis, CA, USA) and Microsoft Excel (Redmond, WA, USA).

Open-array analysis
cDNA was synthesized using the VILO kit (Life Technologies, Carlsbad, CA,
USA) using 2 μg of the same RNA submitted for sequencing for each reaction.
Open-array plates were loaded from a 384-well plate as described in the
standard Open Array protocol (Life Technologies) and run on a Quantstudio
12 k Flex thermocycler (Thermo Fisher Scientific, Waltham, MA, USA). Counts
were exported to Microsoft Excel and used to calculate fold change using the
ΔΔCt method.37 All values were normalized to pgk1 expression. Open-array
fold change values were plotted against RNA-seq results to generate scatter
plots and calculate the r2 values (Prism Software, Irvine, CA, USA).

Pathway analysis
Gene lists from RNA-Seq results were uploaded to the DAVID bioinfor-
matics database (http://david.abcc.ncifcrf.gov/home.jsp). The functional
clusters, enrichment scores and gene ontology terms for these categories
were obtained from the functional annotation clustering tool. In all of the
analysis, enrichment scores above 1.3 were considered significant
(Po0.05; http://www.nature.com/nprot/journal/v4/n1/full/nprot.2008.211.
html).
The enrichment scores from clusters with similar gene ontology terms

were used to compare pathways that were altered in both riluzole and
control conditions. Histograms were generated in Microsoft Excel.

Comparisons with previous human AD expression studies
AD expression data were analyzed from the GEO and AMP-AD databases
and lists of significantly changed genes (Po0.05) were generated for each
study. Some studies examined whole hippocampus,38–42 whereas others
used laser capture microdissection to examine specific subregions of
hippocampus, such CA1 and CA3 regions43 or CA1 alone,44 or dentate
gyrus and entorhinal cortex.45 Therefore, to control for gene differences
that arise from using different regions of the hippocampus and identify the
most robust findings that were replicated across studies, only genes
identified as significant in at least two studies were used for analysis. There
were 2024 genes that were upregulated and 1870 genes that were
downregulated with AD and met these criteria. These gene lists were
analyzed with the DAVID functional annotation clustering tool as described
above. The enrichment scores from these clusters were used to compare
genes altered with AD to genes altered with riluzole treatment and the
pathways with the highest combined enrichment scores are presented.
Genes significantly changed in aging studies in rats (Po0.05) were also

analyzed using the GEO database. One study examined gene expression in
the CA1 subregion at different points across the life span.46 Gene lists
showing differential expression between 3-month- and 23-month-old rats,
and between 3-month- and 12-month-old rats were obtained. A second
study compared the genes from the whole hippocampus of 4–6-month-40

and 24–26-month-old rats.47 To control for the differences between
regions of the hippocampus, only genes that were significant in both
studies were used for analysis. There were 508 genes upregulated and 270
genes that were downregulated in aged rats. These gene lists were
analyzed with DAVID functional annotation clustering tool as described
above. The enrichment scores from these clusters were compared with the
enrichment scores of similar clusters obtained from the 443 genes that
were downregulated and the 674 genes that were upregulated with age in
our RNA-seq data.

RESULTS
Riluzole rescues age-related expression changes in rats
Hippocampal transcriptional profiles change markedly across
the life span. In this study, rats between 3 months (young)
and 10 months of age (middle-aged) showed 268 genes increased
and 254 genes decreased. There were nearly twice as many
changes from the 10-month- to 14-month-old (aged) rats, with
674 genes increased and 443 genes decreased, demonstrating
that transcriptional changes are stable across adulthood, but
accelerate from middle age onwards (Figure 1a; Supplementary
Table 1).
Animals treated with the glutamate modulator, riluzole, from 10

until 14 months had 908 genes increased and 927 genes
decreased (Figure 1a). Importantly, there is a large overlap of
genes (435) that were changed with aging and were also altered
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by riluzole treatment (Figure 1b). The overlapping genes were
plotted to show fold change by age against fold change by
riluzole treatment (Figure 1c). The lower right quadrant shows 240
genes that increased with age and were decreased with riluzole
treatment. In the upper left quadrant, 96 genes that were
decreased with age were increased with riluzole treatment. This
profile suggests that riluzole treatment rescues many age-related
gene expression changes in the hippocampus.
Differentially expressed genes were organized into functional

pathways using the DAVID pathway tools. The pathway classes
that were reversed by riluzole are ranked by significance and
divided into those that were upregulated with age and down-
regulated by riluzole (Figure 1d) and pathways that were
downregulated with age and upregulated by riluzole (Figure 1e).
Many pathways reversed by riluzole treatment were related to

synaptic transmission and plasticity. Examples of genes altered by
aging that were reversed by riluzole are provided in Table 1. The
NMDA receptor subunit NR2b (GRIN2b), a voltage-gated sodium
channel subunit (Scn2a1), a calcium/calmodulin protein kinase II
alpha (CAMK2A), the microtubule-associated protein 1B (MAP1B),
the synaptic scaffolding protein enriched in the postsynaptic
density of excitatory synapses SHANK3 and the matrix metallo-
proteinase 9 (MMP9), each decrease with aging and are increased
by riluzole treatment, and have been implicated in learning and
neuroplasticity.48–54 In contrast, isoforms of the GABA receptor
(GABRA6) are found to increase with aging and are decreased by
riluzole treatment and their blockage may improve memory
consolidation.50,55

Notably, several neuroprotective genes were increased with
riluzole treatment, including tropomyosin receptor kinase B (TrkB;

Figure 1. Riluzole treatment of aged rats rescues age-related gene expression changes in the hippocampus. (a) Differential expression analysis
revealed gene expression changes across age and with riluzole treatment. Between 10-month-old and 14-month-old rats (blue circle), 674
genes were upregulated and 443 genes downregulated. In all, 1480 genes were changed between age-matched riluzole-treated rats and
controls (red circle), with 555 genes increased and 925 genes decreased. (b) Venn diagram illustrating the overlap of 435 genes that were
changed by both aging (10–14 months; blue) and by riluzole treatment (red). (c) Scatter plot illustrating the 435 overlapping genes showing
fold change by age (10–14 months; x-axis) against fold change with riluzole (y-axis). The upper left quadrant represent 96 genes that had
decreased expression with age and increased expression after riluzole treatment. Conversely, the lower right quadrant illustrates 240 genes
that were increased with age and decreased by riluzole. (d and e) Histograms illustrating significantly enriched pathways based on genes
differentially expressed by either aging or riluzole treatment (enrichment score41.3 reflects Po0.05). Similar pathways and enrichment
scores were observed when comparing genes decreased by aging (yellow bars) and increased by riluzole (orange bars), as well as for genes
increased with age (blue bars) and decreased by riluzole (green bars).
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NTRK2), which is a receptor for brain-derived neurotrophic factor
(Supplementary Table2).56 An example of a gene that was
significantly decreased with treatment that is implicated in
glutamate signaling is the cysteine/glutamate antiporter
(xCT;Slc7a11; Supplementary Table 2). xCT exchanges extracellular
cysteine for intracellular glutamate which contributes to the
regulation of extrasynaptic glutamate levels57 and could be
another potential mechanism for the action of riluzole.

Gene pathways implicated in AD are altered by riluzole
Hippocampal data from nine studies characterizing gene
expression changes in post-mortem hippocampal tissue from

AD patients,38–45,87 were obtained from the GEO (Gene
Expression Omnibus, NCBI) and AMP-AD (Accelerating Medicines
Partnership-Alzheimer’s Disease) databases. Differentially
expressed genes identified in at least two of the nine studies
were analyzed in DAVID for comparison with the present pathway
results (Figure 2a; Supplementary Tables 3). Many of the path-
ways altered across studies in AD are also changed with riluzole
treatment, including ones related to transmission of nerve impulse
and synaptic plasticity (Figure 2b). Examples of genes altered in
both AD tissue and by riluzole treatment in rats can be found
in Table 2. Importantly, the glutamate transporter EAAT2 is
significantly decreased in AD, as well as in aging rats, and was
rescued by riluzole treatment. Several genes previously implicated

Table 1. Pathway groups of genes that are changed with age and reversed by riluzole

Pathways Genes that are downregulated with age and
upregulated with riluzole

Pathways Genes that are upregulated with age and
downregulated with riluzole

Transmission of
nerve impulse

ank2, Clstn3, EIF2B2, GPI, GRIN2B, Nsf, PRKCG,
Scn2a1, SV2B, Syn2, SYNJ1, Syt1, Uchl1, vamp2

Transmission of
nerve impulse

abca4, ALS2, CACNB4, camk4, Gabra6, GJC3, Grid2,
MBP, PDE4D, PLP1, scd, Scn1a, SLC12A2, Syt2, thbs2,
TRPV4, Unc13c, wfs1

Synapse Ap2a2, BSN, CACNA1E, CADM3, CaIY, Camk2a,
cdk5r1, Clstn3, Gabra2, GNG2, GRIN2B, MAP1B, mras,
Nsf, Scn2a1, SHANK3, SNAP91, SV2B, Syn2, Syt1,
vamp2

Neuron projection ALS2, aqp1, CALD1, Canx, Car2, Cst3, Gabra6, MBP,
MCAM, PEX5L, Plcb4, Pvalb, Scn1a, TPH1, wfs1

Neuron projection Camk2a, Cdk5r1, GRIN2B, HTR1A, MAP1B, Nsf,
PRKCG, Scn2a1, Syt1, Uchl1

Cellular homeostasis ADIPOQ, CACNB4, Car2, GJC3, Grid2, HFE, ID2, ITPR1,
PLP1, PTPN11, SCARA5, scd, Scn1a, SLC12A2, SLC4A5,
MBP, PEX5L, srprb, TEX15, TF, tgm2, TRPV4, VEGF4,
wfs1

Regulation of
synaptic plasticity

Camk2a, GRIN2B, MAP1B, Mmp9, nisch, Syn2,
YWHAG

Cell fraction abcc9, ACE, ADAM10, ALS2, BCAS1, CALD1, CTSB,
CTSD, GFAP, Grid2, ITPR1, PDE4D, PEX5L, Plcb4,
PON1, PTPN11, scd, Scn1a, SLC12A2, Slco1a5, Steap2,
stk39, Syt2, sytl3

Neuron
development

ank2, Cdk5r1, CELSR2, Dgkg, MAP1B, Nnat, slit1,
Uchl1, Unc5a, WNT7B

Synaptic vesicle Ap2a2, atp6v1b2, calY, Camk2a, Clstn3, COX8A, CPE,
GRIN2B, mdh2, PI4KA, SNAP91, SV2B, Syn2, Syt1, trh,
Uqcrh, vamp2, YWHAB

Ion transport abcc9, aqp1, ATP2A3, CACNB4, Clic6, Gabra6,
GABRB2, Grid2, GULP1, ITPR1, KCNE2, Kcnj13, ptgds,
RAB11FIP1, SCARA5, Scn1a, SCN4B, SFT2D2,
SLC12A2, Slc12a4, Slc13a4, SLC31A1, SLC4A2,
SLC4A5, Slc5a5, Slco1a5, srprb, TF, TRPV4, TTR

Memory GPI, GRIN2B, PRKCG, SYNJ1, trh, Uchl1 Neuron
development

ALS2, BARHL2, bmp7, Chn2, clu, DAB2, En2, etv1,
EZR, LMX1A, Mmp2, Nrep, OLFM3, Otx2, PTPN11,
VEGFA

Cell membrane ank2, Ap2a2, atp6v1b2, BSN, CACNA1E, CADM3,
calY, Camk2a, cbx6, Cdk5r1, CELSR2, Clstn3, COX8A,
CTXN1, Gabra2, GNG2, GRIN2B, HTR1A, LPPR2,
Isamp, MAP1B, mras, nisch, nptxr, PTPRN, Ptprs,
Scn2a1, SHANK3, SNAP91, SV2B, Syn2, Syt1, trh,
Unc5a, Uqcrh, vamp2, WNT7B

Synapse ACE, ADAM10, ALS2, CACNB4, cadps2, CALD1, cbln1,
CDH3, cgnl1, CLDN2, Clic6, CTSC, Gabra6, GABRB2,
GJC3, Grid2, htr2c, ITPR1, Kcnj13, Ocln, Plcb4, PRLR,
Scn1a, sdc1, SLC12A2, Slc12a4, SLC4A2, SLC4A5,
Slc5a5, Slco1a5, Syt2, Unc13c

Cell–cell adhesion CADM3, Cdk5r1, CELSR2, Clstn3, Isamp, PCDH1,
PCDHGA10, Ptprs, WNT7B

Cell fraction ank2, BSN, CPE, GPI, GRIN2B, MAP1B, nisch,
PCDHGA10, PRKCG, PTPRN, Scn2a1, SYNJ1, vamp2

Ion transport Ap2a2, atp6v1b2, CACNA1E, Camk2a, Gabra2,
GRIN2B, Nsf, Scn2a1, SV2B, Uqcrh

Cellular homeostasis ank2, atp6v1b2, CACNA1E, EIF2B2, GRIN2B, Scn2a1
Phosphatase activity LPPR2, PTPRG, PTPRN, PTPRO, Ptprs, SYNJ1

Regulation of
apoptosis

Cdk5r1, GPI, Mmp9, UBB, UBC, YWHAB

Long-term
potentiation

Camk2a, GRIN2B, PRKCG, tcf3, WNT7B

Regulation of
neurogenesis

calY, MAP1B, SYNJ1, WNT7B, YWHAG
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in neural transmission and plasticity are diminished in AD and
recovered by riluzole treatment, including: ANK3, an integral
membrane protein to the underlying spectrin-actin cytoskeleton
that mediates synaptic morphology and transmission;58 CAMK2,
a calcium/calmodulin kinase protein and major component of
the postsynaptic density that is critically involved in induction
of synaptic potentiation and memory,51,59 and Rab3A, a vesicular
trafficking protein that is crucial for synaptic plasticity, learning
and memory.60,61

Validation of RNA-seq results
Custom open-array technology allows for high-throughput
qRT–PCR analysis of gene expression. Fifty-three genes of interest
were selected to assay, given their known roles in neuroplasticity,
glutamate signaling, learning and memory. Thirty-nine of these 53
genes were significant between at least one RNA-seq condition
(Supplementary Table 5). A strong correlation in fold change was
observed between genes identified as significant by RNA-seq and
the open-array measurements, with three of the comparisons
exhibiting r2 values 40.80 (Figure 3a–d). Conversely, no
significant differences in gene expression were observed in the
open-array analysis that were not already identified as significant
by RNA-seq. This concordance, of both the positive and negative

data for these genes, demonstrates that our sequencing analysis
reflects reliable changes in gene expression.
To further validate the RNA-seq findings, results were compared

against previous reports using microarray technology to study
gene expression changes with aging in rat hippocampus.46,47

Differentially expressed gene lists from rat studies were obtained
using the GEO database and analyzed for pathway enrichment
using DAVID. Many of the same gene pathways were changed in
both the RNA-seq data and previously published reports of aged
rats (Supplementary Figure 1). This is despite differences in the
exact age of the animals, tissue collection techniques and the
different array technologies used across these studies. Together,
the bioinformatics and open-array results suggest that the RNA-
seq data are representative of age- and riluzole-induced gene
expression changes.

Riluzole rescues EAAT2 levels after aging
Riluzole is known to increase EAAT2 expression,22,26–28 which
helps maintain the correct amount of glutamate in the synaptic
cleft.20 Failure of EAAT2 leads to glutamate spillover to the
extrasynaptic space, which can cause decreased synaptic effi-
ciency, LTD and excitotoxicity.17,62 EAAT2 is expressed in neurons,
axon terminals and glial cells.63–67 Previous studies have shown

Figure 2. Gene pathways changed by riluzole in aged rats are similar and in the opposite direction to those changed in post-mortem AD
brains. (a) Schematic representation of the bioinformatics strategy used to generate pathway lists. Only genes significantly differentially
expressed in at least two studies were included. (b) Significantly enriched pathways derived from genes upregulated by riluzole (light green
bars) were similar to gene pathways downregulated in AD brains (dark green bars). Gene pathways downregulated by riluzole (light blue bars)
also showed similarity to pathways that are increased in AD (dark blue bars). Differentially expressed gene lists from AD brains were derived
from publically available data posted in GEO and AMP-AD and subjected to pathway analysis using DAVID (enrichment score41.3 reflects
Po0.05).
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that EAAT2 is decreased with aging and AD.21,24,23 RNA-seq results
from our rodent experiments confirm that EAAT2 is down-
regulated with age, but importantly, levels of this gene are
rescued by riluzole treatment (Figure 4a). Further, we identified
increased immunohistochemical labeling for EAAT2 in the distal
portion of CA1 (Figures 4b,c), which confirms the RNA-seq
findings, and suggests a potential mechanism by which riluzole
may rescue cognitive function to be further validated in future
studies. Importantly, this region corresponds to the area in which
increased dendritic spine clustering occurred in response to
riluzole treatment.9

DISCUSSION
This study reveals gene expression changes that occur with aging
and glutamatergic modulation by riluzole in the rat hippocampus.
The majority of transcriptional changes identified occurred from
middle-aged to aged rats, rather than from young to middle-aged
animals, suggesting that a loss of the transcriptional stability
during adulthood occurs with aging (Figure 1a). Importantly,
riluzole treatment reversed many of the age-related expression
changes in the rat hippocampus (Figures 1b,c), which primarily
occurred in pathways associated with synaptic function
(Figures 1d,e). A similar inverse comparison of the pathways
changed by riluzole with those identified in the hippocampus of
AD patients demonstrated extensive commonality of affected
genes (Figure 2 and Table 2), establishing riluzole’s potential as a
therapeutic agent for AD. The expression changes identified by
sequencing were highly correlated with qRT–PCR results using

open-array technology, which validated over 50 genes of interest
(Figure 3). Finally, changes in the levels of EAAT2, a gene known to
be increased by riluzole treatment,22,26,27 were validated by
immunohistochemical labeling in hippocampus (Figure 4). This
finding raises the possibility that modulation of glutamate trans-
porters is one mechanism by which riluzole can improve cognitive
performance in aging. In addition, these high-throughput studies
offer an essential library of new targets that warrant further
investigation into their role in glutamatergic transmission in the
hippocampus and age-related cognitive decline.
The identification of pathways associated with the maintenance

of synaptic health as changed by riluzole (Figures 1d,e; Table 1) is
consistent with previous work that demonstrated riluzole pre-
vented age-related cognitive decline through clustering of
dendritic spines,9 an important neuroplastic mechanism that has
been shown by electrophysiological studies and computational
models to allow non-linear summation of synaptic inputs.11,68

Some examples of genes implicated in learning and plasticity that
are reduced in aging and increased by riluzole treatment include:
MMP9, which induces structural spine modifications;54 NR2B,
which is important for LTP;31 MAP1B, which helps maintainaince of
structural plasticity in the adult brain52 and SHANK3, which has an
important role in synaptic regulation.53

Many of riluzole’s effects on the aging rat hippocampus were
opposite to the changes observed in human hippocampus from
AD patients (Figure 2b). This indicates that many of the key
pathways altered by glutamate modulation with riluzole are
implicated in the development of AD pathology, suggesting
riluzole may have therapeutic potential. Notably, as in aging, the

Table 2. Pathway groups of genes that are implicated in Alzheimer’s disease and riluzole treatment

Selected genes

Pathways Genes downregulated with Alzheimer's and
upregulated with riluzole

Pathways Genes upregulated with Alzheimer's downregulated
with riluzole

Neuron projection ANK3, APC, Cdk5r1, CLSTN1, DLGAP2, DLGAP3,
EVL, Gabbr2, Gad1, GAD2, gas7, GRIN2B, Nsf,
PARK7, ptprf, Slc1a2, SLC6A1, Syt1, Uchl1

Cytoplasmic vesicle A2M, abcc4, ADAM10, AP1AR, APP, bmp7, clu, CTSB,
CTSD, DAB2

Transmission of
nerve impulse

atp1a3, CHST10, DLGAP2, DLGAP3, DLGAP4,
Egr1,Epas1, Gad1, GAD2, GRIN2B, kcnip3, NCAN,
PARK7, ptprf, RAB3A, SLC6A1, Syt1, Uchl1

Membrane fraction abcc4, ALS2, APP, ASAM, CALD1, MPDZ

ATP binding abcc4, abcc9, ACSM5, ATAD1, ATAD2, Atp11a, Atrx,
DDX17, EIF4A1, Kif1c, KIF27, Rragd, SYNCRIP

Synapse ANK3, APC, BSN, CADM3, Camk2a, Cdk5r1,
CLSTN1, Dlg2, DLGAP2, DLGAP3, DLGAP4, EVL,
Gabbr2, Gad1 GAD2, GRIN2B, ptprf, RAB3A,
Slc1a2, SNAP91, SV2B, Syt1

ATPase activity abcc4, abcc9, Atp11a, BHMT2, EIF4A1

Actin binding baiap2l1, CALD1, CALM1, CALM2, CALM3,
CDK5RAP2, cgnl1, nrcam

Regulation of
synaptic plasticity

Camk2a, Egr1, Epas1, GNAO1, GRIN2B, RAB3A,
SLC6A1, YWHAG

Response to
hormone stimulus

A2M, ADAM10, aqp1, bmp7, CDKN1A, CTSC, IGF2

Membrane fraction Amfr, ANK3, BSN, DLGAP3, DLGAP4, GNAO1,
GRIN2B, ptprf, PTPRN, RAB3A, Slc1a2, SLC6A1

Cytoskeleton ADAM10, Adarb1, AKAP12, ALS2, APP, Atrx, baz1b,
CALD1, CALM1, CALM2, CALM3, CDK5RAP2, CDYL,
cgnl1, EML5, GFAP, Kif1c, KIF27, MPDZ, PDS5A,
STAG2

Synaptic vesicle Ap2a2, atp6v1b2, calY, Camk2a, CAMK2D,
Gad1, GAD2, GRIN2B, pam, RAB3A, SV2B, Syt1

Axonogenesis ALS2, APP, baiap2l1, bmp7, clu, DAB2, nrcam

Neuron
differentiation

ANK3, APC, Cdk5r1, CELSR2, DCLK1, dlx1,
gas7, GNAO1, RAB3A, Uchl1

GTPase binding ALS2

Cell projection part APC, Cdk5r1, DLGAP3, GRIN2B, Nsf, Slc1a2
Learning and
memory

atp1a3, CHST10, Cx3cl1, Egr1, Epas1, GNAO1,
GRIN2B, kcnip3, PARK7, RAB3A, SLC1A2,
SLC6A1, Uchl1

Regulation of
synaptic plasticity

GRIN2B
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Figure 3. Expression differences determined by qRT–PCR are highly correlated with RNA-seq results. Scatter plots illustrating fold change
levels determined by qRT–PCR open arrays (x-axis) plotted against fold change level calculated from RNA-seq analysis (y-axis) for each
comparison group (a) 3m vs 10m, (b) 10m vs 14m, (c) 10m vs 14m riluzole, (d) 14m control vs riluzole. Only genes that reached significance
between each condition in the RNA-seq analyses are represented in the scatter plots (Benjamin–Hochberg corrected Po0.05). Several genes
of interest and r2 values for each comparison are highlighted.

Figure 4. Riluzole increases EAAT2 expression. (a) Normalized expression values from RNA-seq data for EAAT2 (y-axis) show that gene
expression decreases with age (x-axis) but is restored by riluzole treatment. (b) Quantification of fluorescent intensity (y-axis) of CA1
hippocampal sections labeled for EAAT2. Riluzole significantly increased labeling in the region 150–200 μm from the pyramidal cell bodies in
aged rats (Po0.05). (c) Example images from 14-month-old controls and treated with riluzole. Red arrows indicate regions of difference.
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top AD pathways identified also involved synaptic transmission
and plasticity and were reversed by riluzole. Some examples of
genes recovered by riluzole treatment include: ANK3, which
mediates synaptic morphology and transmission;58 CAMK2,
involved in induction of synaptic potentiation and memory51,59

and Rab3A, which is crucial for synaptic plasticity, learning and
memory.60,61 Genes that are consistently altered in AD brains and
are reversed by riluzole provide potential future therapeutic
targets.
Synaptic dysfunction is a critical pathophysiological mechanism

in AD that highly correlates with cognitive decline.69,70 Amyloid-β
(Aβ) and phosphorylated tau toxicities, the hallmarks of the
neuropathology of AD, are intimately related to glutamatergic
dysregulation, whereby oligomers of Aβ disrupt glutamate uptake,
inhibiting LTP through excessive activation of extrasynaptic
NMDA receptors.71,72 Oligomers of Aβ also facilitate LTD71,73 and
decrease surface expression of synaptic NMDA receptors.74 In
addition, dysregulated glutamate increases release of Aβ75 and
tau76,77 and enhances tau phosphorylation78 and expression,79

forming a vicious cycle of neurotoxicity. Importantly, previous
work has shown that EAAT2 haploinsufficiency accelerates
cognitive deficits in an AD mouse model (AβPPswe/PS1ΔE9)80

and EAAT2 overexpression improves cognitive and pathological
markers in APPSw,Ind AD mouse model.81 These studies support the
hypothesis that improved regulation of glutamatergic signaling
via enhanced EAAT2 uptake could potentially mitigate toxicities in
AD brains.
Finally, increased immunoreactivity for EAAT2 was observed in

the same region as increased spine clustering was previously
identified in riluzole-treated rats,9 suggesting a potential mechan-
ism by which riluzole can increase cognitive performance.
Glutamate transporters have the key role of regulating synaptic
transmission, and thereby learning and memory.20,25 They prevent
glutamate spillover to the extrasynaptic space and minimize cross-
talk between neighboring synapses.20,62 Importantly, they also
control the time course of synaptic glutamate.82,83 More recent
work suggests that EAAT2 surface trafficking also shapes synaptic
transmission.84 Previous studies have suggested that riluzole
increases glutamate uptake through both increased EAAT2
expression and stabilization of the inactivated state of voltage-
gated sodium channels.22,29,30,26,28 A recent in vivo study using
microelectrode arrays coupled with amperometry has shown that
riluzole reduces extrasynaptic glutamate levels and enhances
cognitive performance which correlated with the increased
glutamate uptake measures.27 These mechanisms of riluzole have
been hypothesized to facilitate synaptic glutamatergic activity and
to increase glutamate–glutamine cycling while preventing gluta-
mate overflow to the extrasynaptic space.26,85,86 Activation of
extrasynaptic NMDA receptors has been associated with LTD and
excitotoxicity, and it is a likely important mechanism in many
neurodegenerative diseases, including AD.17,18

In conclusion, these findings identify molecular pathways
implicated in aging that are rescued by administration of a known
glutamate modulator, riluzole. Modeling the expression differ-
ences in response to riluzole establishes a framework of changes
associated with improved learning and memory, against which
other treatments can be compared. Further, many of the pathways
changed by riluzole have been implicated across multiple studies
in the pathophysiology of AD, suggesting glutamate modulators
may represent novel treatments for both age-related cognitive
decline and AD. Future studies will seek to conclusively
demonstrate whether increased expression and activity of
glutamate transporters are the essential mechanism underlying
riluzole’s ability to improve cognitive performance.
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