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Predictive analytics in mental health: applications, guidelines,
challenges and perspectives
T Hahn1, AA Nierenberg2,3 and S Whitfield-Gabrieli4

The emerging field of 'predictive analytics in mental health' has recently generated tremendous interest with the bold promise to
revolutionize clinical practice in psychiatry paralleling similar developments in personalized and precision medicine. Here, we
provide an overview of the key questions and challenges in the field, aiming to (1) propose general guidelines for predictive
analytics projects in psychiatry, (2) provide a conceptual introduction to core aspects of predictive modeling technology, and (3)
foster a broad and informed discussion involving all stakeholders including researchers, clinicians, patients, funding bodies and
policymakers.
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Mental disorders are among the most debilitating diseases in
industrialized nations today.1,2 The immense economic loss3–5

mirrors the enormous suffering of patients and their friends and
relatives.6–12 In addition, health-care costs as well as the number
of individuals diagnosed with psychiatric disorders are projected
to disproportionately rise within the next 20 years.13 With an ever-
growing number of patients, the future quality of health care in
psychiatry will crucially depend on the timely translation of
research findings into more effective and efficient patient care.
Despite the certainly impressive contributions of psychiatric
research to our understanding of the etiology and pathogenesis
of mental disorders, the ways in which we diagnose and treat
psychiatric patients have largely remained unchanged for
decades.14

Recognizing this translational roadblock, we currently witness
an explosion of interest in the emerging field of predictive
analytics in mental health, paralleling similar developments in
personalized or precision medicine.15–19 In contrast to the vast
majority of investigations employing group-level statistics, pre-
dictive analytics aims to build models which allow for individual
(that is, single subject) predictions, thereby moving from the
description of patients (hindsight) and the investigation of
statistical group differences or associations (insight) toward
models capable of predicting current or future characteristics for
individual patients (‘foresight’), thus allowing for a direct assess-
ment of a model’s clinical utility (Figure 1).
Within this framework, we can differentiate three main areas of

clinical application of predictive analytics models in mental health:

1. The prediction of therapeutic response can support the
selection of optimized interventions, through comparative
effectiveness research, thereby improving the trial-and-error-
based approach common in psychiatry. For example, genetic
variants have been linked to the outcome of psychotherapy
as well as to therapeutic response to pharmacological

interventions.20,21 These individualized treatment optimization
might maximizes adherence and minimizes undesired side-
effects. Importantly, it also allows clinicians to focus resources
on patients who will most likely benefit from the first-line
treatment and allocate other resources to those who will
require second-line or other treatments. Finally, identifying
treatment-resistant individuals with high accuracy would also
simplify the development and evaluation of novel drugs and
interventions as research efforts could be more focused.

2. Supporting differential diagnoses is crucial, whenever the
clinical picture alone is ambiguous. Providing additional
model-based information to clinicians thus enables a timely
administration of disease-specific interventions. Similar to the
prediction of therapeutic response, this increases adherence
and minimizes undesired side-effects. The differentiation of
patients suffering major depression from patients with bipolar
disorder before the first manic episode is but one example
illustrating clinical utility in this area.

3. Models predicting individual risks are important in two
respects. On the one hand, short-term predictions of risk can
greatly improve outpatient management—for example with
regard to prodrome detection in schizophrenia. On the other
hand, long-term risk prediction would allow for a targeted
application of preventive measures in early stages of a disorder
or even before disease onset. Equally important, individual risk
prediction could greatly increase the efficiency of the devel-
opment and evaluation of preventive interventions as research
efforts could be focused specifically on at-risk individuals.

In summary, valid models in this area would be instrumental,
both, for minimizing patient suffering and for maximizing the
efficient allocation of resources for research. For example, children
and adults are diagnosed with attention deficit hyperactivity
disorder every day and prescribed medications with little or no
scientific evidence as to which patient will be likely to benefit from
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one or the other of the two major classes of medications
(methylphenidate or amphetamine) or unlikely to benefit from
either medication. In the same vein, the STAR*D study—a large
evaluation of depression treatment including 4041 outpatients—
showed that approximately 50% of patients respond.22 In both
cases, patients would greatly benefit from Predictive Analytics
models predicting which treatment would be most effective (for a
wide range of predictions possible based on neuroimaging data
today, see Gabrieli et al.17).
Against this background, predictive analytics in general and its

potential applications in (mental) health have simultaneously
been met with exuberant enthusiasm as well as with substantial
skepticism. On the one hand, some see ‘previously unimaginable
opportunities to apply machine learning to the care of individual
patients’,15 prompting others to even propose ‘a shift from a
search for elusive mechanisms to implementing studies that focus
on predictions to help patients now’.23 On the other hand, critics
have pointed out problems of an all too care-free view of
predictive analytics in general and big data in particular.24

Considering the tremendous investment into big data infrastruc-
ture and predictive analytics capabilities in all areas of science and
in the private sector,16 most will agree, however, that this
technology—to quote a recent New York Times article24—‘is here
to stay’, but that we ought to see it as ‘an important resource for
anyone analyzing data, not a silver bullet’. From this, the question
arises: How can we best steer the development and implementa-
tion of predictive analytics technology to effect the clinical
innovations demanded by researchers and practitioners alike?
Now that evidence from initial proof-of-concept studies is

accumulating in all areas—from genetics to neuroimaging, from
blood-based markers to ambulatory assessments—and the
approach is gaining momentum (for reviews, see refs 17,19,25–
31), this question is particularly pressing. As the field of predictive
analytics in mental health is faced with strategic choices which will
have formative influence on research and clinical practice for the
decades to come, we seek to move beyond the numerous
descriptions and reviews of this beginning transformation of
psychiatry by (1) proposing general guidelines for predictive
analytics projects in psychiatry, (2) providing a conceptual
introduction to the core aspects of predictive modeling technol-
ogy, which distinguish predictive analytics in mental health from
other areas of medicine or predictive analytics applications and (3)

fostering a broad and informed discussion involving all stake-
holders including researchers, clinicians, patients, funding bodies
and policymakers. To this end, we will, first, provide an overview of
the steps of a predictive analytics project. Secondly, we will
consider the challenges that arise from the unique, multivariate
and multimodal nature of mental disorders and argue that the
combination of expert domain-knowledge and data integration
technology is the key for overcoming, both, the conceptual and
practical obstacles ahead. Finally, we will briefly discuss perspec-
tives for the field.

PREDICTIVE ANALYTICS PROJECTS IN MENTAL HEALTH
Every predictive analytics project can be described as a series of
steps aimed at ensuring the utility (that is, the validity and
applicability) of the resulting model. Although this process is
similar for all predictive analytics projects, numerous questions,
problems and opportunities are unique to the area of mental
health. The guiding questions in Box 1 are intended primarily as a
means to support explicit reflection of the essential steps of a
project—from defining objectives to deploying the model.
Thereby, we hope to foster a broad discussion leading to common
standards and procedures in the field.
Predictive analytics efforts in psychiatry parallel developments

in other fields of medicine. Generally, we have witnessed a trend
towards ever more precise specification of the genetic, molecular
and cellular aspects of disease. This so-called precision medicine
approach (for an overview, see for example, the US National
Academy of Sciences report on the topic32), in many cases, led to
the realization that disease entities which appear to be a single
disorder actually have distinct genetic precursors and pathophy-
siology. For example, cancer diagnosis is—for many forms of
cancer—defined by analysis of genetic variants based on which
the optimal treatment can be predicted.33 While communalities
are particularly obvious with regard to technology, researchers in
psychiatry are also faced with rather unique challenges.
Apart from the massively multivariate and multimodal nature of

mental disorders which we will discuss in detail below, a
traditionally much discussed issue arises from the often-times
fuzzy and relatively unreliable labels of disease entities in
psychiatry. As predictive models learn from examples, training a
model aiming to support the differentiation between patients
suffering from major depressive disorder and individuals with
bipolar disorder before conversion (that is, before any (hypo)
manic symptoms have become apparent), for instance, might
proof difficult simply because it may be very hard to reliably
categorize patients with certainty. In practice, most studies either
mitigate this problem by employing resource-intensive, state-of-
the-art diagnostic procedures in combination with multiple clinical
expert ratings or circumvent it by acquiring data first and then
waiting for the quantity of interest to become more easily
accessible (for example, until the end of a therapeutic intervention
or until a disorder actually manifests in at-risk individuals screened
years ago). Complementing these efforts to render labels more
accurate, fuzzy and unreliable labels can also be handled directly
using machine learning algorithms specifically designed for this
purpose (for a straightforward introduction, see ref. 34,35).
Although currently, it seems as if researchers in psychiatry almost
exclusively rely on the optimization of data acquisition rather than
trying to inherently model label uncertainty, combining the two
approaches might be highly beneficial.
In addition, current disease entities as defined by DSM-5 or

ICD-10 are very heterogeneous regarding, both, (neuro)physiology
as well as clinical endophenotypes.36 On the one hand, this will
make the classification of disease entities difficult as each entity is
in fact a conglomerate of different (neuro)physiological and
behavioral deviations. On the other hand, the underlying causes
or correlates of therapeutic response or disease trajectory may

Figure 1. Predictive analytics in mental health is moving from the
description of patients (hindsight) and the investigation of statistical
group differences or associations (insight) toward models capable of
predicting current or future characteristics for individual patients
(foresight), thereby allowing for a direct assessment of a model’s
clinical utility.
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qualitatively as well as quantitatively vary for different, more
homogeneous sub-samples of the data. Although this makes
training predictive models more difficult (that is, either more
training data or more prior information will be needed), machine
learning algorithms are generally well equipped to handle such
cases. In fact, learning multiple rules mapping features to labels
are quite common (model averaging, stacking and voting are but
three ways outlined in the next section to handle this). That said,
homogeneous disease entities would not only make discovering
rules easier (especially on small data sets), but definitely lead to
more interpretable models which—though not technically the
goal of predictive analytics—is still desirable from a scientific point
of view. Most importantly, however, discovering homogeneous
disease entities would enable us to move beyond merely
reproducing the presently established diagnostic classification
using considerably more expensive and complicated procedures.
While this has thus far been a seemingly unattainable goal not
only for DSM-5, the recent success of so-called unsupervised
machine learning approaches might reinvigorate this line of
research (for an introduction to unsupervised machine learning,
see ref. 37).

CHALLENGES ARISING FROM THE UNIQUE MULTIVARIATE
AND MULTIMODAL NATURE OF MENTAL DISORDERS
Although the guidelines outlined above provide a straightforward
framework for predictive analytics projects in psychiatry, the main
challenge for the field arises from the unique, multivariate and
multimodal nature of mental disorders. In the following, we will
outline the conceptual and practical problems in more detail and
argue that the combination of expert domain-knowledge and
data integration technology is the key when aiming to construct
valid predictive model for clinical use.

Modeling massively multivariate data
Overwhelming evidence shows that no single measurement—be
it a gene, a psychometric test or a protein—explains substantial
variance with regard to any practically relevant aspect of a
psychiatric disorder (compare, for example, ref. 38). In contrast, it
has been recognized that multiple measures are necessary to gain
meaningful information even within a single modality. It is this
profoundly multivariate nature of mental disorders that has driven
researchers to, for example, conduct genome-wide association
studies and acquire whole-brain neuroimaging data.
When aiming to build predictive models, this complexity

necessitates the use of methods suitable for high-dimensional
data sets, in which the number of variables (that is, measure-
ments) may far exceed the number of samples (that is, patients).
Generally, the so-called curse of dimensionality is addressed in
three ways (for an excellent review detailing this issue, see ref. 39).

Box 1 Predictive Analytics Projects in Mental Health Research

Every predictive analytics project can be described as a series of
steps aimed at ensuring the utility of the resulting model. Here,
we provide guiding questions covering issues essential to ensure
the validity and applicability of such a model

Defining objectives
● Is the prediction of an unknown (for example, future) quantity

required (for machine learning approaches to data analysis,
see refs 52,53 for the interdependent relationship between
group-level analyses and predictive analytics, see ref. 54)?

● What is the desired scope of the model? While models based
on a heterogeneous population (for example, diverse
comorbidities, age-range etc.) have a much broader field of
application and thus higher utility, they might require much
more training data.

● Will the link between predictors and the to-be-predicted
quantity remain stable in the future (cf. ref. 55)?

Acquiring data
● How to choose potentially informative predictors? While

drawing upon available group-level evidence (for example,
meta-analyses) is reasonable, even predictors displaying
substantial association with the target on the group-level are
not guaranteed to allow for single-subject prediction. Thus,
expert knowledge and evidence from prior predictive
analytics models will be essential.

● How to build efficient models? Predictors might contain
redundant information with respect to the target, thus
rendering the assessment of more than one inefficient. If
prior information is lacking, it might be better to base the
model solely on easily obtainable data; even if the model’s
predictive power is slightly decreased. For example, a model
using Smartphone-based ambulatory assessments and
actimetry data only might be more efficient—and thus more
useful in practice—than a more accurate model based on a
combination of whole-genome data and neuroimaging
measures. As a rule of thumb, measures routinely obtained
in the clinic should be used wherever possible.

● Is it necessary to obtain new data? Generally, any data set
acquired for group-level investigations may be suitable also
for predictive model building, stressing the relevance of data
sharing for the field. Importantly, constructing clinically
applicable models will require fully independent data for
model construction and validation (for details, see ref. 17).

Building the model
● Which machine learning approach should I use? In theory, no

learning algorithm can be superior on all possible
problems.56 Thus, the goal must be to identify the best
approach given the concrete problem and data at hand.
Generally, every approach will require finding the right
combination of learning algorithm(s) and data representa-
tion (commonly referred to as feature-engineering; for a
general introduction, see 37,39). In practice, this is empirically
determined based on the training data.

● How is the predictive model generated? Generally, machine
learning algorithms as used in this context are presented
with example inputs (features) and the corresponding
desired outputs (targets). The goal of this ‘training’ is for
the algorithm to learn a general rule that maps features to
targets. This rule constitutes a valid predictive model if it
correctly maps features to targets not only in the training
sample, but also in an independent, previously unseen test
sample.

Using the model in clinical practice
● How can a validated model be deployed? For patients to

benefit from predictive analytics models, they need to be
available to as many clinicians as possible. One option might
be to provide online applications to which service users can
upload patient data and receive the desired prediction(s).

● How can the future validity of the model be ensured? To this
end, continuously monitoring real-life performance is crucial.
This can be achieved if users provide feedback regarding the
accuracy of the prediction at a later point in time. In addition,
the data provided by service users might be used to increase
the amount of training data for the model, thus adding to its
reliability, accuracy and scope.
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First, unsupervised methods for dimensionality reduction—such
as principal component analysis—may be used. These algorithms
apply more or less straightforward transformations to the input
data to yield a lower-dimensional representation. Also, they can
extract a wide range of predefined features from raw-data. For
example, distance measures can be extracted from raw protein
sequences for classification in a fully automated fashion.40 Second,
techniques integrating dimensionality reduction and predictive
model estimation (for example, regularization, Bayesian model-
selection and cross-validation) may be applied. In essence, they
use penalties for model complexity, thereby enforcing simpler,
often lower-dimensional models. Simply speaking, models con-
taining more parameters must enable proportionally better
predictions to be preferred over simpler models. These algorithms
are at the heart of predictive analytics projects and include well-
known techniques such as Support Vector Machines and Gaussian
Process Classifiers as well as the numerous tree algorithms
(for details, see refs 37,41). Third, feature-engineering, that is, all
methods aiming to create useful predictors from the input data—
can be used. In short, feature-engineering aims to transform the
input data (that is, all measures acquired) in a way that optimally
represents the underlying problem to the predictive model. An
illustrative example comes from a recent study which constructed
a model predicting psychosis onset in high-risk youths based on
free speech samples. Whereas it would have been near impossible
to build a model based on the actual recordings of participants’
speech, the team achieved high accuracy in a cross-validation
framework using speech features extracted with a latent semantic
analysis measure of semantic coherence and two syntactic
markers of speech complexity.42 While these results still await
fully independent replication, the approach shows that transform-
ing the input data (speech samples) using domain-knowledge
(in this case the knowledge that syntax differs in certain patients)
can greatly foster the construction of a predictive model.
Demonstrating the problem-dependent nature of feature-engi-
neering, it might have been much easier to decode, for example,
participants’ gender from the actual recordings than from latent
semantic analysis measures given the difference in pitch between
males and females. In that it links data acquisition and model
algorithms, feature-engineering is not primarily a preprocessing or
dimensionality-reduction technique, but a conceptually decisive
step of building a predictive model.
While important for all modalities, feature-engineering often

has a particularly crucial role when constructing predictive models
based on physiological or biophysical data. On the one hand,
these data are often especially high-dimensional (for example,
genome, proteome or neuroimaging data with regularly tens of
thousands of variables), thus often requiring dimensionality-
reduction. On the other hand, alternative transformations of the
raw-data can contain fundamentally different, non-redundant
information. For example, the same funational magnetic reso-
nance imaging raw-data, that is, measures of changes in regional
blood-oxygen levels—can be processed to yield numerous, non-
redundant representations (for example, activation maps or
functional connectivity matrices). In addition, domain-knowledge
regarding the choice of relevant regions-of-interest or atlas
parcellations also fundamentally affects the representation of
information in neuroimaging data.43 As different parameters can
be meaningful in the context of different disorders, these
examples powerfully illustrate the fundamental importance of
domain-knowledge in feature-engineering. The sources of
domain-knowledge needed to decide which data representations
might be optimal with regard to the problem at hand may range
from large-scale meta-analyses, reviews and other empirical
evidence to clinical experience.
Taking the traditionally somewhat subjective ‘art of feature-

engineering’ a step further, are automated feature-engineering
algorithms. The former are akin to other unsupervised methods

for dimensionality reduction, but can learn meaningful transfor-
mations from large, unlabeled data sets (for example, using Deep
Learning algorithms44). In short, these algorithms form high-level
representations of more basic regularities in the data (for a large-
scale example, see ref. 45). It is these high-level representations
which can then be used to train the model. For example, we might
use large data sets of resting-state funational magnetic resonance
imaging to automatically uncover regularities (such as network-
structure) using unsupervised learning. These newly constructed
features might then provide a lower-dimensional, more informa-
tive basis for model-building in future funational magnetic
resonance imaging projects. Note that domain-knowledge is not
provided directly, but learned from independent data sources in
this framework. Although these techniques appear highly efficient
as no expert involvement is required, discovering high-level
features for the massively multivariate measures commonly
needed in psychiatry will require extraordinarily large—though
possibly unlabeled—data sets as well as computational power
beyond the capabilities of most institutions today. Considering the
developments in other areas such as speech recognition, we
believe, however, that the significance of automated feature-
engineering techniques can only grow in the years to come.
In many ways, the theory-driven approach to computational

psychiatry is following an at least equally promising—albeit
extreme opposite—strategy. This approach builds mechanistic
models based on theory and available evidence. After a model is
validated, model parameters encapsulate a theoretical, often
mechanistic, understanding of the phenomena (for an excellent
introduction, see ref. 39). In many ways, the resulting models thus
constitute highly formalized (one might say ‘condensed’) repre-
sentations of domain-knowledge, custom-tailored to the problem
at hand. Unlike virtually all other approaches to feature-engineer-
ing, computational models allow researchers to test the validity of
data representations while simultaneously fully explicating
domain-knowledge. While certainly more scientifically satisfying
and theoretically superior to feature-engineering, constructing
valid models is far from simple. Thus, we believe that this
technology will gain in importance to the degree that building
valid models proofs feasible, further intertwining theoretical
progress and predictive analytics.
Having discussed feature-engineering in greater detail, it is

important to point out that model construction algorithms are not
limited to the use of one single data-representation. To the
contrary, it is a particular strength of this approach—with
algorithms usually allowing for massively multivariate data and
model integration—that multiple, meaningful data representa-
tions can be combined to enable valid predictions (for a more
detailed discussion of model integration, see below).
Summarizing, the acquisition of high-dimensional data is

regularly required to capture the massively multivariate nature
of the processes underlying psychiatric disorders. Even on a single
level of observation, we thus need to deal with the curse of
dimensionality. To this end, model building commonly includes
steps such as simple dimensionality-reduction techniques
(for example, principal component analysis) and penalizing
model-complexity as part of machine learning algorithms. Most
importantly, however, feature-engineering is used to create data
representations from the input data which enable machine
learning algorithms to build a valid model. Feature-engineering
may draw on partially (meta-analyses or clinical experience) or
fully formalized domain-knowledge (for example, parameters from
previously validated computational models) or a combination
thereof. This prominent role of domain-knowledge underlines the
interdependence of classic scientific approaches seeking mechan-
istic insight fostering theoretical development and predictive
analytics approaches in mental health. While theoretical progress
and meta-analytic evidence aid the construction of optimal
features, a predictive analytics approach, in turn, allows for a
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direct assessment of the clinical utility of group-level evidence and
theoretical advances. Thus, it is evident that these two branches of
research are not mutually exclusive, but complementary
approaches when aiming to benefit patients.

Incorporating (interactions across) multiple levels of observation
Substantially aggravating the problem of dimensionality discussed
above, mental disorders are characterized by numerous, possibly
interacting biological, intrapsychic, interpersonal and socio-
cultural factors.46,47 Thus, a clinically useful patient representation
must probably, in many cases, be massively multimodal, that is,
include data from multiple levels of observation—possibly
spanning the range from molecules to social interaction. All these
modalities might contain non-redundant, possibly interacting
sources of information with regard to the clinical question. In fact,
it is this peculiarity—distinguishing psychiatry from most other
areas of medicine—which has hampered research in general and
translational efforts in particular for decades now. As applying a
simple predictive modeling pipeline on a multi-level patient
representation would increase the already large number of
dimensions for a unimodal data set by several orders of
magnitude, it might seem that Predictive Analytics endeavors
are likely to suffer from similar if not larger problems. Indeed,
neither of the dimensionality-reduction, regularization or even
feature-engineering approaches outlined above is capable of
seamlessly integrating such ultra-high-dimensional data from so
profoundly different modalities. Considering the tremendous
theoretical problems of understanding phenomena on one level
of observation, we also cannot rely on progress regarding the
development of a valid theory spanning multiple levels of
observation in the near future. Likewise, detailed domain-
knowledge across levels of observation is extremely difficult to
obtain as empirical evidence as well as expert opinions are usually
specific to one modality. Given the extreme amounts of data and
the combinatorial explosion due to their potential interactions,
fully automated feature-engineering approaches across levels of
observation (as opposed to such techniques for single levels of
observation) also appear unlikely in the near future. Finally, the
often qualitatively different data sources alone—including genet-
ics, proteomics, psychometry, and neuroimaging data as well as
ambulatory assessments and information from various, increas-
ingly popular wearable sensors—would make this a
herculean task.
A somewhat trivial solution would be to limit the predictive

model to a single level of observation. If high-accuracy predictions
can be obtained in this way—which might be considered unlikely
at least for the most difficult clinical questions—such unimodal
models are always preferable due to their comparatively high
efficiency. Apart from the inherent multimodal nature of mental
disorders which might render unimodal models less accurate, it is,
however, exactly these efficiency considerations, which obviate
the need for predictive analytics research to consider multiple
levels of observation. In order to identify the most efficient
combination of data sources in a principled way in the absence of
detailed cross-modal expert knowledge and evidence, we have to
learn it from the data. To this end, a plethora of machine learning
approaches which can be broadly described as model integration
techniques—have been developed.
Probably, the most intuitive way to combine information from

different high-dimensional sources is by voting. In this framework,
a predictive model is trained for each modality and the majority
vote is used as the overall model prediction. In a binary
classification—if we wish to predict therapeutic response
(yes, patient will benefit vs. no, patient will not benefit from the
intervention) from five multivariate data sources—we first train a
model for each modality. Then, we count the number of models
predicting a response (#yes) and the number of models predicting

no response (#no). The final prediction of therapeutic response is
given by the option receiving more votes across modalities. A
slightly more sophisticated approach is stacking or stacked
generalization. Here, again, a model is trained for each modality.
The predictions are, however, not combined by voting, but used
as input to another machine learning algorithm which constructs
a final model with the unimodal predictions as features (note that
both examples might technically be considered automatic feature-
engineering techniques). In addition to these simple approaches,
numerous other techniques (for example, (Bayesian) model
averaging, bagging, boosting or more sophisticated ensemble
algorithms) exist—each with different strengths and weaknesses
which affect the computational infrastructure needed and interact
with data structure within and across modalities. That said, most
predictive analytics practitioners would agree that models—in the
field—are most often constructed by evaluating a large number of
approaches, that is, by trial-and-error relying on computational
power. However, it cannot be emphasized enough that this
strategy must rely on the training data only. At no time and in no
form, may the test set—that is, the samples later used to evaluate
(out-of-bag) model performance—be used in this process. Only in
this way, we guarantee a valid estimation of predictive power in
practice. Note that the techniques for model combination can
generally be used also to construct predictive models from
unimodal multivariate data sets as well (see for example refs 43,48
for an in-depth introduction, see ref. 49). Given the multimodal
nature of psychiatric disorders, however, they hold particular value
for cross-modal model integration.
Importantly, the construction of models from multimodal data

does not mean that the final predictive model used in the clinic
must also be multimodal. To the contrary, by training models with
multimodal data, we not only guarantee maximum predictive
power but also gain empirical evidence regarding the utility of
each modality. Analyzing the final model, we can investigate
which modalities (and which variables within each modality)
contribute substantial, non-redundant information. In an inde-
pendent sample, we could then train a model based only on those
modalities (or variables) most important in the first model. With
this iterative process, we can obtain not only the most accurate,
but also the most efficient combination of modalities and
variables in a principled manner. Thus, final models might only
consist of very few modalities and variables fostering their
widespread use also from a health economics point of view.

PERSPECTIVES
Effective translation of research findings into clinical practice using
predictive analytics will not only require the combination of expert
domain-knowledge and data integration technology as outlined
above. Effective translation will also need to address more general
issues regarding the organization and structure of the emerging
field. This will require joint efforts from all stakeholders including
researchers, clinicians, patients, funding bodies, and policymakers.
One such example is the Patient Centered Outcomes Research
Network (PCORnet.org) and its associated psychiatric networks,
the MoodNetwork, the Interactive Autism Network, and the
Community and Patient-Partnered Centers of Excellence which
focuses on behavior disorders in underserved communities. 50

Given the often sensitive nature of the data needed to build
predictive models—which might for example include electronic
health records—an adequate level of security must be maintained
at all times. Whether this speaks for decentralized infrastructure or
outsourcing to specialized institutions is likely to remain a matter
of intensive debate. As an example, PCORnet uses a federated
datamart with a common data model infrastructure for multiple
health-care systems across USA that includes over 90 million
people. Similar discussions will probably arise with regard to the
predictive models themselves. Although only easy access to

Predictive analytics in mental health
T Hahn et al

41

© 2017 Macmillan Publishers Limited, part of Springer Nature. Molecular Psychiatry (2017), 37 – 43



validated, pre-trained models will make them widespread, useful
tools in the clinic, predictive models might also enable the
prediction of sensitive personal data from the combination of
seemingly harmless information an individual might readily
provide. Thus, it is in the interest of all stakeholders to reach a
public consensus regarding the regulation of access to pre-trained
models before practically applicable models become available.
While some level of regulation is likely beneficial with regard to
industry use, it will be essential for efficient model construction to
encourage model sharing (similar to data sharing) for research
purposes. Especially for multimodal models, sharing modality-
specific, pre-trained models (for example, in dedicate model
databases) will save substantial amounts of time and money.
Finally, we need experts to consider the legal implications of
deploying models (publicly or within the field) which predict
health-related information which potentially guides medical
decisions.
From a more applied perspective, we believe that technology

will continue to simplify data acquisition and improve data quality
in the years to come, thus bringing predictive mobile health
(mHealth) applications within reach. Although holding great
promise, especially mHealth applications raise the question of
whether it is generally better to rely on mechanistic predictors or
instead on a pragmatic approach.23,51 Although we firmly believe
that the identification of causal relationships provides the most
robust and scientifically satisfying features for prediction, we
expect a pragmatic approach to prevail in the years ahead for two
reasons. First, while causal predictors might be most effective,
they will often be inefficient. For example, measuring variables of
brain metabolism causally linked to a disorder might enable the
construction of highly accurate predictive models. If however, we
can use cheaper and more readily obtainable (for example,
smartphone-based) measures not causal to the disorder with
comparable or even slightly lower predictive power, those would
probably be more efficient and thus more useful to clinicians in
practice. Secondly, as decades of research have only begun to
uncover causal links on single levels of observation, we think it
highly unlikely that unified theoretical models across levels of
observation will be established even in the mid-term.
To promote the endeavor of creating individualized predictive

models to improve patient care and maximize cost efficiency in
psychiatry, concrete steps can to be taken by institutions,
researchers and practitioners. For example, we have recently seen
numerous educational efforts such as organizing workshops and
seminars on the various technical topics. Conferences such as the
European College of Neuropsychopharmacology Congress or the
Resting-State Conference and many others will continue to host
sessions and satellite symposia dedicated to predictive analytics.
Common in the field of machine learning, but currently scarce in
psychiatry, predictive analytics competitions in which teams
compete for the best predictive model performance (for example,
ADHD-200 global competition) bring together clinicians, research-
ers, and machine learners and may accelerate the availability of
pre-trained, validated models in the mid-term as well as make this
research more visible to the public.
Although patients, clinicians, and researchers share a common

interest in improving mental health outcomes, there will need to
be a thoughtful balancing of issues related to privacy, data
security and ethics in relation to the contrasting priorities and
roles of various stakeholders. Currently, research and curation of
shared data bases arise primarily from publicly funded, academic
research groups, where data sharing is viewed as a common good
to support greater utilization of large data sets to enhance
predictive accuracy. A private business, on the other hand, could
have the different role of using predictions to make decisions
about reimbursing health-care options or to advise on hiring
practices or to identify potential customers for advertisements.
Although these contrasting goals could lead to some tensions

about the use of predictive analyses, there are examples where a
public-private hybrid could be advantageous. For example,
because intervention research is costly and complex, it tends to
have limited numbers of subjects and relatively short durations
(such as evaluation immediately after an intervention). Public–
private partnerships could take advantage of the ongoing
administration of treatments to very large numbers of subjects
over extended time periods.
In summary, we believe that unimodal feature-engineering and

model integration across levels of observation will be the key to
highly accurate and efficient predictive analytics models in mental
health. Successful predictive analytics projects will thus require (1)
substantial domain-knowledge-based or technology-driven efforts
(e.g. from computational modelling or deep learning) to enable
optimal feature-engineering for the often massively multivariate
data sets obtained on each level of observation and (2) profound
machine learning expertise with a focus on model integration
techniques. With technology rapidly simplifying data acquisition
and model construction, we urge all stakeholders including
researchers, clinicians, patients, funding bodies and policymakers
to initiate an open discussion regarding key-issues such as data-
sharing and model access-regulations to enable predictive analytics
technology to close the gap between bench and bedside.
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