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Effects of glutamate positive modulators on cognitive
deficits in schizophrenia: a systematic review and
meta-analysis of double-blind randomized controlled trials
Y Iwata1,2,3,8, S Nakajima1,2,3,4,8, T Suzuki3, RSE Keefe5, E Plitman1,6, JK Chung1,6, F Caravaggio1,6, M Mimura3,
A Graff-Guerrero1,2,4,7 and H Uchida3,4

Hypofunction of N-methyl-D-aspartate (NMDA) receptors has been proposed to have an important role in the cognitive
impairments observed in schizophrenia. Although glutamate modulators may be effective in reversing such difficult-to-treat
conditions, the results of individual studies thus far have been inconsistent. We conducted a systematic review and meta-analysis to
examine whether glutamate positive modulators have beneficial effects on cognitive functions in patients with schizophrenia. A
literature search was conducted to identify double-blind randomized placebo-controlled trials in schizophrenia or related disorders,
using Embase, Medline, and PsycINFO (last search: February 2015). The effects of glutamate positive modulators on cognitive
deficits were evaluated for overall cognitive function and eight cognitive domains by calculating standardized mean differences
(SMDs) between active drugs and placebo added to antipsychotics. Seventeen studies (N= 1391) were included. Glutamate positive
modulators were not superior to placebo in terms of overall cognitive function (SMD= 0.08, 95% confidence interval =− 0.06 to
0.23) (11 studies, n= 858) nor each of eight cognitive domains (SMDs =− 0.03 to 0.11) (n= 367–940) in this population. Subgroup
analyses by diagnosis (schizophrenia only studies), concomitant antipsychotics, or pathway of drugs to enhance the glutamatergic
neurotransmission (glycine allosteric site of NMDA receptors or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors)
suggested no procognitive effect of glutamate positive modulators. Further, no effect was found in individual compounds on
cognition. In conclusion, glutamate positive modulators may not be effective in reversing overall cognitive impairments in patients
with schizophrenia as adjunctive therapies.
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INTRODUCTION
Cognitive impairment represents a core feature of schizophrenia,1

is evident before the first episode of psychosis (FEP),2 and has been
reported to be one of the strongest predictors of functional
outcome in schizophrenia.3,4 The primary treatment for schizo-
phrenia is antagonism of dopamine receptors with antipsychotic
medications. Unlike positive symptoms that are relatively well
controlled by antipsychotics, cognitive symptoms are generally
unresponsive to treatment.5–7 Thus, there is an urgent need to
develop novel compounds for the treatment of cognitive deficits in
schizophrenia that act beyond the dopaminergic system.
The glutamate hypothesis of schizophrenia posits that dysfunc-

tion of neurotransmission mediated by the N-methyl-D-aspartate
(NMDA) glutamate receptor might represent a primary deficit in
the illness.8,9 The most convincing link between NMDA receptor
function and schizophrenia is the ability of NMDA receptor
antagonists like ketamine to induce not only positive but also
cognitive and negative symptoms in healthy volunteers10–12 and
to exacerbate psychosis in patients with schizophrenia.13 Addi-
tionally, post-mortem studies have identified glutamate receptor

irregularities in the brains of patients with schizophrenia and
suggested a possible link between these abnormalities and
cognitive deficits.14,15 Taken together, these findings have led to
the hypothesis that cognitive deficits in schizophrenia may arise
from impaired NMDA neurotransmission.4,16 As such, modulation
of glutamate signaling could improve these difficult-to-treat
symptoms.
During the last decade, drugs that enhance NMDA neurotrans-

mission have been explored as a novel treatment approach for
cognitive deficits in schizophrenia.17–23 Two previous meta-
analyses have reported the effects of glutamate modulators on
cognitive deficits in schizophrenia. Tsai et al. noted beneficial effects
of NMDA enhancing agents (that is, D-alanine, D-cycloserine (DCS),
D-serine, glycine, and sarcosine) on cognitive deficits of schizo-
phrenia (Cohen’s d= 0.28, 13 studies, n= 485).24 Choi et al.
reported that glutamate receptor agonists (that is, CX516, DCS,
and D-serine) had no effect on overall neurocognitive function and
five cognitive domains (attention/vigilance, reasoning/problem
solving, speed of processing, verbal learning, and visual learning)
in schizophrenia (3–7 studies; sample sizes not reported).25
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Notably, in the past several years, a number of compounds have
been identified to enhance glutamatergic signaling. Minocycline, a
tetracycline with broad-spectrum antimicrobial activity, has been
suggested to increase GluR1 subunit phosphorylation and
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptor potentiation.26,27 L-carnosine, a co-localized dipeptide
with glutamate,28–31 and N-acetylcysteine, a precursor of glu-
tathione, may enhance NMDA signaling via the redox site of the
NMDA receptor.32,33 Pregnenolone, a neurosteroid, elevates serum
pregnenolone sulfate,34 which in turn positively modulates NMDA
receptors via a non-canonical G protein, phospholipase C, and a
Ca2+ dependent mechanism.35 These promising compounds were
not included in the previous studies. Therefore, it is critically
important to include those new drugs and conduct a more
comprehensive meta-analysis in order to provide robust evidence
on the effects of glutamate positive modulators on cognitive
functions in patients with schizophrenia.
In this study, we conducted a meta-analysis on the effects of

glutamate positive modulators on overall cognitive function and
eight specific cognitive domains of clinical relevance in schizo-
phrenia: (1) attention/vigilance, (2) cognitive control/executive
function, (3) reasoning/problem solving, (4) social cognition, (5)
speed of processing, (6) verbal learning, (7) visual learning, and (8)
working memory in patients with schizophrenia.

MATERIALS AND METHODS
Literature search
The meta-analysis was conducted in accordance with the
Preferred Reporting Items for Systematic reviews and Meta-
Analysis (PRISMA) group.36 Two independent authors (YI and SN)
independently performed the search (last search: 6 February 2015)
and assessed eligibility. Three authors (YI, EP and SN) indepen-
dently extracted data. Published articles from 1950 to February
2015 were searched for without language restrictions, using
Embase, Medline, and PsycINFO. The Ovid search was conducted
using the following search terms: (schizophreni* or psychosis) and
(acetylcysteine/'α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid'/AMPA/benzoate/CX516/D-cycloserine/D-serine/glutamine/
glutamate/'glutamate carboxypeptidase 2'/GCP2/glycine/'glycine
transporter type 1'/GlyT1/'glutamate receptor, ionotropic, kainate'/
GRIK/'kynurenine aminotransferase'/KAT/'metabotropic glutamate
receptor'/mGluR/minocycline/'N-acetyl-aspartylglutamate'/NAAG/
'N-methyl-D-aspartate'/NMDA/pregnenolone/sarcosine) and 'con-
trolled trial'.

Inclusion criteria
Studies were included if: (1) they were double-blind randomized
placebo-controlled trials, (2) they included patients with schizo-
phrenia or related disorders, (3) study duration was 2 weeks or
longer, (4) study drugs were used as adjunctive treatments to
concomitant antipsychotic treatment, (5) study drugs were
considered to act as glutamate positive modulators, (6) cognitive
outcomes were measured using established cognitive tests, and
(7) reported data were sufficient to calculate standardized mean
differences (SMDs) of cognitive domains.

Exclusion criteria
Studies were excluded if they simply reported that their results
were not significant without presenting raw data.

Outcome measures
In this study, we aimed to compare the effects of glutamate positive
modulators on cognitive deficits in patients with schizophrenia or
related disorders. We compared overall cognitive function (primary
outcome) as well as eight specific cognitive domains (secondary

outcomes), between active drugs and placebo that were added to
antipsychotics. Modifying the Measurement and Treatment
Research to Improve Cognition in Schizophrenia domains,37 we
classified cognitive function into eight cognitive domains: (1)
attention/vigilance, (2) cognitive control/executive function, (3)
reasoning/problem solving, (4) social cognition, (5) speed of
processing, (6) verbal learning, (7) visual learning, and (8) working
memory. Cognitive tests were classified into each cognitive
domain (Supplementary Table S1). If cognitive tests could not be
assigned to any domain, they were excluded.

Recorded variables
The variables for each study retrieved in the meta-analysis
included characteristics of the subjects (that is, age, baseline
symptom severity measured by the PANSS or the Clinical Global
Impression score,38 concomitant antipsychotics, diagnosis of
subjects, duration of illness, and gender) and study design (that
is, cognitive tests and outcomes, experimental drugs, duration of
study, study locations, and sources of funding).

Data analysis
Meta-analysis. The primary meta-analysis as well as subgroup
and sensitivity analyses were performed using Review Manager
Version 5.2 (http://tech.cochrane.org/revman). The meta-
regression was performed using Comprehensive Meta Analysis
(www.meta-analysis.com). SMDs between active drugs and
placebo were standardized by calculating the difference between
the mean changes (that is, differences between post- and pre-
treatment scores) divided by the pooled s.d. of the difference
scores. In cases that s.d. values were not reported, we
supplemented the missing values using one of the following
options: (1) authors were contacted for additional data; (2) s.d.
values were calculated from available data according to the
Cochrane Handbook for Systematic Reviews of Interventions (http://
www.cochrane-handbook.org.); or (3) when neither of the
previous options were possible, s.d. values from similar studies
that used the same drug were imputed. Effects were convention-
ally categorized as small (SMD=0.2), moderate (SMD=0.5) or
large (SMD=0.8),39 with positive values indicating improvements
in cognitive function. The inverse variance statistical method and
random effects model were used to adjust for study
heterogeneity.40 Two-sided 95% confidence intervals (CIs) were
used to assess significance, depending on whether the CIs
included the null value.
In the analysis, we only included subjects who underwent

cognitive tests. If the number of subjects who underwent
cognitive tests was not presented, we used the number of
subjects who completed the study.
The outcomes of overall cognitive function were derived from

the composite scores of cognitive batteries or the average SMDs of
cognitive domains if studies measured six or more of the eight
cognitive domains. The outcomes of cognitive domains were
derived as follows: (1) when one cognitive domain had two or more
cognitive tests, average SMDs were used and (2) when one
cognitive test had two or more outcomes, we used average SMDs
of the relevant selected outcomes (selected outcomes are displayed
in Supplementary Table S2). When studies reported outcomes of
both cognitive domains and cognitive tests, the former was
adopted. When studies included multiple doses of adjunctive
medications, we computed SMDs of the mean of the groups.
Study heterogeneity was quantified for the primary outcome

analysis using the I2 statistic with I2⩾ 50% indicating a significant
heterogeneity. When heterogeneity was present, sensitivity
analyses were conducted to assess potential influences of any
one single study on the pooled SMD and associated P-values. The
possibility of publication bias was also assessed using funnel plots,
Egger’s regression test,41 and trim-and-fill procedure.42
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Moderator analyses. Moderator analyses were conducted to
explore influences of study characteristics on the effects of
glutamate modulators on cognitive function. Subgroup analyses
were performed on overall cognitive function and eight cognitive
domains for the following categorical characteristics: (a) by the
pathway of drugs to enhance the glutamatergic neurotransmis-
sion (that is, the glycine allosteric site of NMDA receptors or AMPA
receptors); (b) by concomitant antipsychotics (that is, clozapine or
non-clozapine antipsychotics); and (c) by diagnosis (that is,
schizophrenia or other related disorders). Meta-regression ana-
lyses were conducted on overall cognitive function for the
following continuous characteristics: (a) age, (b) gender propor-
tion, (c) duration of illness, (d) concomitant antipsychotic dose,
(e) baseline PANSS total score, and (f) baseline Clinical
Global Impression score.38 Meta-regression was performed if
at least five data sets were available in order to minimize the effect
by chance.

Assessment of risk of bias. Included trials were assessed with the
Cochrane Risk of Bias Tool for methodological quality of sequence
generation, allocation concealment, blinding, incomplete out-
come data, and selective reporting.43

The significance level for all tests was set at a P-value of o0.05
(two-tailed). Continuous variables were described as mean± s.d.

RESULTS
Included individual studies
Seventeen double-blind randomized placebo-controlled trials were
included (total number of subjects, N=1391).22,23,34,44–57 The
PRISMA flow diagram is displayed in Supplementary Figure S1.
Study characteristics are summarized in Table 1. The average
duration of the studies was 12.6 ±8.7 weeks (range: 4–36 weeks),
and the number of subjects amounted to 79.4± 58.9 (range: 18–
214). Age of the subjects was 40.1 ± 7.4 years old, proportion of
male was 70.4± 14.0%, duration of illness was 14.7±7.3 years,
concomitant antipsychotic dose was 652.2 ± 261.8mg (chlorproma-
zine equivalent dose).58 The baseline PANSS total and Clinical
Global Impression scores were 72.7±10.4 and 4.5± 0.5, respectively,
indicating moderate illness severity. The numbers of the studies
and subjects for each compound included in more than one study
were as follows: CX516, 2 studies, n=124; D-serine, 4 studies,
n=350; DCS, 4 studies, n=216; and minocycline, 2 studies, n=146.
The numbers of studies and subjects included in the analyses of
each cognitive outcome were as follows: overall cognitive
function, 11 studies, n=858; attention/vigilance, 14 studies,
n=841; cognitive control/executive function, 13 studies, n=743;
processing speed, 15 studies, n=940; reasoning/problem
solving, 8 studies, n=575; social cognition, 5 studies, n=367;
verbal learning, 13 studies, n=875; visual learning, 10 studies,
n=752; and working memory, 16 studies, n=932. Studies
were conducted in the North America (n=5),23,34,44,48,53 East
Asia (n=4),22,45,56,57 multi-continental locations (n=4),46,47,51,52

Middle-East Asia (n=2),49,50 and unreported (n=2).23,54 Regarding
sources of funding, 14 studies (82%) were supported from
governmental grants.22,23,34,44,45,47–52,55–57

Risks of bias
The risks of bias of included studies are summarized in
Supplementary Figure S2. Although all studies were randomized
trials, the methodology of random sequence generation and
allocation concealment was often unreported, leading to 'unclear
risk' for selection bias in nine studies (53%). Similarly, blinding of
outcome assessors was often unspecified, resulting in 'unclear risk'
for detection bias in 12 studies (71%). Two studies (12%) were
judged to have 'high risk' of attrition bias because of unbalanced
dropout rates between the groups. One study (6%) did not report

the data of cognitive tests as secondary outcomes and were
judged to have 'high risk' of selective reporting. For other bias, one
study (6%) did not specify the diagnostic criteria used and two
studies (12%) were supported from industrial companies, which
were judged to have 'high risk'. Taken together, only four studies
(24%) showed a 'low risk' for bias.

Meta-analyses
Effects of glutamate positive modulator on cognitive function. As a
whole, glutamate positive modulators were not superior to
placebo in terms of overall cognitive function (SMD=0.08,
CI =− 0.06 to 0.23, P= 0.57) (Figure 1) and each of eight cognitive
domains (Supplementary Figure S3) in patients with schizophre-
nia. Regarding individual compounds studied in more than one
study, minocycline was effective for attention/vigilance (SMD=
0.42, CIs = 0.02 to 0.82, P= 0.04) (Supplementary Figure S3). In
contrast, DCS had negative effects on visual learning (SMD=
− 0.48, CIs =− 0.86 to − 0.09, P= 0.01). These results, however, did
not survive after adjusting for multiple comparison testing (the
significance level was set at a Bonferroni corrected P-value
ofo0.05/(10 × 8) (10 compounds and 8 cognitive domains).
(Supplementary Figure S3).

Moderator analyses
1. Subgroup analyses. Results of overall cognitive function are
displayed in Supplementary Figure S4 (see Supplementary Figure
S5 for each cognitive domain).

A. By the pathway of drugs to enhance the glutamatergic neuro-
transmission:
Glycine allosteric site of NMDA receptors
There were no differences between the drugs (benzoate, DCS, D-

serine, glycine, and Org25935) and placebo in terms of overall
cognitive function (Supplementary Figure S4).

AMPA receptors
Beneficial effects of the drugs (CX516 and minocycline) on

attention/vigilance were found compared to placebo (four studies,
n= 205, SMD= 0.32, CIs = 0.01 to 0.64, P= 0.05); the statistical
significance did not survive after adjusting for multiple compar-
ison testing in two subgroups and eight cognitive domains (a
significance level of Po0.05/2 × 8) (Supplementary Figure S5).

B. By concomitant antipsychotics: No difference was found in
subjects on non-clozapine antipsychotics between the drugs and
placebo with respect to overall cognitive function (Supplementary
Figure S4; no data for overall cognition available for those on
clozapine).

C. By diagnosis of schizophrenia: Among the studies that included
subjects with schizophrenia only, we found beneficial effects of
glutamate positive modulators on attention/vigilance (seven studies,
n=460, SMD=0.20, CIs = 0.01 to 0.39, P=0.04), which, however, was
not confirmed after adjusting for multiple comparisons in 8
cognitive domains (significance level of Po0.05/8) (Supplemen-
tary Figures S5).

2. Meta-regression analyses. It was found that the higher the
proportion of males in studies, the lower the SMDs of effects of
glutamate modulators on overall cognitive function (11 studies,
n= 858, slope=− 0.01, 95% CI: − 0.03 to − 0.002, P= 0.03)
(Figure 2). There were no associations between the SMDs and
age, duration of illness, concomitant antipsychotic dose, baseline
PANSS total score, and baseline Clinical Global Impression score
(Supplementary Figure S6).
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Table 1. Characteristics of included studies

Year Author Intervention Dose
(mg day− 1)

Study period
(week)

Randomized
subjects (n)

Completer
rate (%)

Age (year)
mean (s.d.)

Gender (% male)

2014 Cain44 DCS 50 8 40 80.0 47.5 (12.4) 86.1
2014 Liu45 Minocyclin 200 16 92 68.5 27.4 (6.5) 62.1
2014 Schoemaker46 Org25935 4–8 and 12–16 12 214 89.3 38.1 (10.4) 61.7
2013 D'souza47 D-serine 30 per kg 36 104 64.4 36.5 (8.5) 75.0
2013 Lane22 Benzoate 1000 6 52 90.4 37.3 (8.8) 49.8
2012 Chengappa48 L-carnosine 500 12 70 84.3 46.5 (8.8) 62.9
2012 Weiser49 D-serine 2000 16 195 76.4 39.6 (12.2) 72.0
2010 Levkovitz50 Minocycline 200 24 54 38.9 25.0 (4.4) 76.4
2009 Marx34 Pregnenolone 500 8 21 85.7 51.1 (9.3) 50.4
2008 Berk51 NAC 2000 24 140 60.0 36.6 (10.9) 70.0
2008 Goff23 CX516 900 8 105 87.6 43.3 (10.2) 83.0
2007 Buchanan52 DCS/glycine 50/6000 16 165 80.6 43.5 (10.9) 80.3
2004 Duncan53 DCS 50 4 22 100.0 51.8 (6.0) 100.0
2001 Goff54 CX516 900 and 1200 4 19 94.7 39.8 (10.5) 84.2
1999 Goff55 DCS 50 8 47 83.0 43.9 (10.2) 73.9
1999 Tsai56 D-serine 30 per kg 6 20 100.0 41.1 (4.6) 55.0
1998 Tsai57 D-serine 30 per kg 6 31 90.3 32.8 (7.1) 54.8

Year Author Duration of
illness (year)
mean (s.d.)

Concomitant AP AP dose
(CPZ equivalent

dose (mg))
mean (s.d.)

PANSS total
scores mean (s.d.)

CGI mean
(s.d.)

Inpatients
or outpatients

2014 Cain44 NR FGA and SGA 485.6 (300.4) NR NR Outpatients
2014 Liu45 2.0 (1.2) SGA 381 (89.5) 82.3 (11.8) 5.1 (1.3) NR
2014 Schoemaker46 NR SGA NR 79.3 (11.0) NR NR
2013 D'souza47 10.5 (7.7) FGA and SGA 336.4 (92.5) 58.1 (13.1) NR Outpatients
2013 Lane22 14.5 (6.1) FGA and SGA 574.7 (378.7) 88.7 (12.5) 4.5 (0.7) NR
2012 Chengappa48 NR CLZ and FGA and SGA 612.7 (470.2) 56.4 (12.2) NR NR
2012 Weiser49 16.2 (11.0) FGA and SGA NR 75.5 (14.0) NR Inpatients and outpatients
2010 Levkovitz50 3.8 (3.9) CLZ and SGA NR 76.0 (13.3) 4.0 (0.8) NR
2009 Marx34 NR SGA 470.9 (147.9) 72.7 (10.6) 4.0 (0.3) Outpatients
2008 Berk51 12.2 (8.9) CLZ and FGA and SGA 656.5 (473.1) 64.2 (15.9) 4.0 (0.9) Inpatients and outpatients
2008 Goff23 NR CLZ and SGA 589.3 (246.4) 68.0 (16.4) NR Outpatients
2007 Buchanan52 20.7 (10.7) FGA and SGA 1359.7 (1174.0) NR 4.7 (0.7) Inpatients and outpatients
2004 Duncan53 27.3 (6.0) FGA 803.2 (703.5) NR NR Inpatients and outpatients
2001 Goff54 19.8 (5.6) CLZ 609.9 (189.9) 78.4 (17.2) NR Inpatients
1999 Goff55 18.5 (11.0) FGA 914.3 (715.0) NR NR Inpatients and outpatients
1999 Tsai56 20.3 (5.9) CLZ 508.5 (219.0) NR 5.3 (0.7) Inpatients
1998 Tsai57 10.6 (6.4) FGA and SGA 827.6 (635.5) NR 4.6 (0.6) Inpatients and outpatients

Year Author Study population Site Funding

2014 Cain44 18–65 Years old USA, single site Government
2014 Liu45 18–40 Years old, duration of illness o5 years China, two sites Government
2014 Schoemaker46 18–55 Years old, subject with predominant persist

negative symptom, non-first episode psychosis
Europe, Latin America and Russia,
25 sites

Industry

2013 D'souza47 18–65 Years old, stable subjects USA and India, two sites Government
2013 Lane22 18–65 Years old, symptomatic subjects, PANSS ⩾ 60 China and Taiwan, two sites Government
2012 Chengappa48 18–65 Years old, stable subjects USA, multi-sites (number is not reported) Government
2012 Weiser49 18–64 Years old, PANSS-N ⩾ 18 Israel, ten sites Government
2010 Levkovitz50 18–35 Years old, PANSS ⩾ 60, early stage of illness Israel, two sites Government
2009 Marx34 18–65 Years old, duration of illness41 USA, single site Government
2008 Berk51 18–65 Years old, PANSS ⩾ 55 or at least two PANSS

positive or negative items43 or CGI ⩾ 3
Australia and Switzerland, five sites Government

2008 Goff23 18–65 Years old USA, five sites Government
2007 Buchanan52 18–64 Years old, SANS ⩾ 20 or affective flattening

score or alogia score of SANS ⩾ 3
Israel and USA, five sites Government

2004 Duncan53 SANS ⩾ 30, deficits subjects USA, single site NR
2001 Goff54 Subjects taking CLZ NR Industry
1999 Goff55 SANS ⩾ 30 NR Government
1999 Tsai56 SANS ⩾ 45, TRS, deficit subjects China, single site Government
1998 Tsai57 SANS ⩾ 40, TRS, deficit subjects China, single site Government

Year Author Primary outcomes Cognitive
battery

Cognitive measures

2014 Cain44 ADT, MATRICS, SANS MATRICS Attention/vigilance, reasoning/problem solving, social cognition,
speed of processing, verbal learning, visual learning, working memory

2014 Liu45 SANS MATRICS Brief visuospatial memory test, CPT-IP, grooved pegboard, HVLT-
revised, mazes (NAB), spatial span (WAIS III), stroop color word test,
symbol coding (BACS), TMT A, verbal fluency, WCST
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Sensitivity analysis
Since significant heterogeneity of the included studies was found
for social cognition (I2 = 56.0%) and visual learning (I2 = 51.0%),
sensitivity analyses were performed. For social cognition, when
one industry-sponsored study was excluded,46 the heterogeneity
disappeared (I2 = 0.00%) and the SMD was slightly reduced
(SMD= 0.00 to − 0.17). For visual learning, no single study
significantly contributed to heterogeneity.

Publication bias
Results of Egger’s test suggested the presence of publication
biases in the analysis on attention/vigilance and working memory

(P= 0.05 and 0.01, respectively). The SMDs were slightly reduced
when the trim-and-fill method was used (SMD=0.10 to 0.07 and
SMD=0.04 to − 0.02, respectively). Forest plots are displayed in
Supplementary Figure S7.

DISCUSSION
Main findings
To our knowledge, this is the first comprehensive meta-analysis to
examine the effects of glutamate positive modulators on cognitive
deficits in patients with schizophrenia. As a whole, glutamate
positive modulators were not found to be superior to placebo as
an adjunctive therapy to antipsychotics although 5 out of 17

Table 1. (Continued )

Year Author Primary outcomes Cognitive
battery

Cognitive measures

2014 Schoemaker46 SANS, PANSS-N CNS-VS Executive functioning, memory score, perception emotions, reasoning,
speed of processing, sustained attention, verbal memory, visual
memory, working memory

2013 D'souza47 AIMS, BARS, CDS, cognitive function,
PANSS, MMAA, QOL, SSPA, UPSA

N/A CPT, digit span (WAIS III), digit symbol-coding (WAIS III), HVLT-revised,
letter/number span or sequencing (WAIS), logical memory (WAIS III),
spatial span (WAIS III), TMT A, Tower of London, WCST

2013 Lane22 PANSS MATRICS Category fluency, CPT, digit span (WAIS III), digit symbol-coding (WAIS
III), maze (WAIS for Children III), MSCEIT, spatial span (WAIS III), TMT A,
visual reproduction, word listing (WAIS III)

2012 Chengappa48 Cognitive function N/A Auditory digit span, finger tapping tests, set shifting test, strategic
target detection test, word-list memory, working memory

2012 Weiser49 SANS, MATRICS MATRICS Brief visuospatial memory test, category fluency, CPT-IP, Letter/number
span (WAIS III), mazes (NAB), RAVLT, spatial span (WAIS III), symbol
coding (BACS), TMT A

2010 Levkovitz50 SANS CANTAB Intra dimensional/extra dimensional set-shifting (CANTAB), motor task
(CANTAB), pattern recognition memory, rapid visual processing task,
spatial recognition memory, spatial working memory (CANTAB), Tower
of London

2009 Marx34 BACS, MATRICS, SANS MATRICS
and BACS

Brief visuospatial memory test, category fluency test, CPT - IP, digit
sequencing (BACS), HVLT, letter/number span (WAIS), mazes (NAB),
MSCEIT, spatial span (WAIS III), symbol coding (BACS), token motor
(BACS), Tower of London, TMTA, verbal fluency, verbal memory (BACS)

2008 Berk51 PANSS N/A Digit Span (WAIS III), TMT A & B, verbal fluency, word learning
2008 Goff23 Cognitive function N/A Faces I and II (delayed) subtests, letter/number sequencing (WAIS),

grooved peg board, HVLT, TMT B minus A, verbal fluency, WCST
2007 Buchanan52 Cognitive function, SANS N/A Brief visual spatial memory test, CPT, digit symbol-coding (WAIS III),

grooved peg board, letter/number sequencing (WAIS), RAVLT, spatial
working memory, verbal fluency, WCST

2004 Duncan53 ATRS, BPRS, cognitive function, SANS, SAS N/A CPT, Sternberg short term memory scanning paradigm
2001 Goff54 AIMS, Cognitive function, GAS, HAM-D,

PANSS, SANS
N/A Attention (SANS), finger tapping task, gordon diagnostic system,

Randt Memory Test, Rey-Osterrieth and Taylor complex figure tests,
TMT B, verbal fluency, WCST

1999 Goff55 AIMS, cognitive function, SANS, PANSS,
HAMD, GAS, serum level of DCS and
amino acids

N/A Digit Span (WAIS III), finger tapping tests, Miller–Selfridge test,
Sternberg Item Recognition Paradigm, Stroop color word test, verbal
fluency

1999 Tsai56 AIMS, BACS, CGI, HDRS, PANSS, SANS,
UKU, serum level of D-serine, WCST

N/A WCST

1998 Tsai57 AIMS, BAS, CGI, HAMD, PANSS, SANS,
UKU, serum level of D-serine, WCST

N/A WCST

Abbreviations: ADT, Auditory Discrimination Test; AIMS, Abnormal Involuntary Movement Scale; AP, antipsychotics; ATRS, Abrams and Taylor Scale for
Emotional Blunting; AVLT, Auditory Verbal Learning Task; BACS, Brief Assessment of Cognition in Schizophrenia; BARS, Barnes Akathisia Rating Scale; BPRS,
Brief Psychiatric Rating Scale; CANTAB, Cambridge Neuropsychological Test Automated Battery; CDS, Calgary Depression Scale, CGI; Clinical Global Impression;
CLZ, clozapine; CNS-VS, CNS-Vital Signs Neurocognitive Test Battery; CPT, Continuous Performance Test; CPT-IP, Continuous Performance Test-Identical Pairs
Version; CPZ, chlorpromazine; CVLT, California Verbal Learning Test; DCS, D-cycloserine; DSM, Diagnostic and Statistical Manual of Mental Disorders; Dx,
diagnosis; FGA, first generation antipsychotics; HAMD, Hamilton Depression Rating Scale; HVLT, Hopkins Verbal Learning Test; MATRICS, Measurement and
Treatment to Improve Cognition in Schizophrenia; MMAA, Medication Management Ability Assessment; MSCEIT, Managing Emotions Branch of the Mayer-
Salovey-Caruso Emotional Intelligence Test; N/A, not applicable; NAB, Neuropsychological Assessment Battery; NAC, N-acetylcysteine; NR: not reporeted;
PANSS, Positive and Negative Syndrome Scale; QOL, Heinrichs-Carpenter Quality-of-Life Scale; RAVLT, Rey Auditory Verbal Learning Test; SAD, schizoaffective
disorder; SANS, Scale for the Assessment of Negative Symptom; SAS, Simpson-Angus Scale; SGA: second generation antipsychotics; SSPA, Social Skills
Performance Assessment; Sz, schizophrenia; TMT, Trails Making Test; TRS, treatment resistant schizophrenia; UKU, Udvalg for Kliniske Undersogelser Side
Effects Rating Scale; UPSA, University of California San Diego Performance-Based Skills Assessment; WAIS, Wechsler Adult Intelligence Scale; WCST, Wisconsin
Card Sorting Test.
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individual studies have demonstrated their procognitive
effects.22,45,46,50,54

This result is consistent with a recent meta-analysis by Choi
et al.25 Compared with the two previous meta-analyses, however,
the present study has several strengths. First, the numbers of
included individual studies and subjects are 17 and 1391,
respectively, which is considerably larger than the earlier works
(13 and 485, 7 and 342, respectively). Second, 10 compounds were
included, which is also larger (3 and 5, respectively). This meta-
analysis included five compounds (benzoate, L-carnosine, minocy-
cline, Org25935, and pregnenolone) for the first time. Third, we
covered extensive domains of cognitive function. The study by
Tsai et al. employed PANSS cognitive subscale,59 which cannot
assess each cognitive domain, while the study by Choi et al. did

not examine cognitive control/executive function, social cognition,
and working memory. Finally, our calculation methods for the
cognitive outcomes were more conservative. In the meta-analysis
by Choi et al., when the tests had multiple outcomes, only the
one outcome with the largest effect size was chosen for the
corresponding analysis. In contrast, our meta-analysis extracted
outcomes from each test and averaged their SMDs for each
outcome.
Despite the reported potential link between cognitive deficits

and NMDA hypofunction in schizophrenia,10–12,14,15 it still remains
unclear whether cognitive deficits are related to glutamatergic
signaling. For example, Ohnuma et al. did not find any relationship
between cognitive functions and plasma levels of glutamatergic
amino acid in this population.60 In addition, to date, seven proton

Figure 1. Effects of glutamate positive modulators on overall cognitive function. There were no significant differences in effects on overall
cognitive function between glutamate positive modulators and placebo in patients with schizophrenia. CI, confidence interval; DCS,
D-cycloserine; IV, inverse variance; SE, standard error; Std, standard.
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magnetic resonance spectroscopy studies have examined the
relationship between cognitive functions and glutamate levels
in this patient population.61–67 However, the results are
inconsistent;68 three studies did not find any relationships while
the other four noted that executive functioning is negatively
related to glutamate levels in the hippocampus/medial temporal
lobe.61,64,66,67 Thus, our null finding of the effects of glutamate
positive modulators on cognitive deficits in patients with
schizophrenia is consistent with previous work.

Findings by analyses of individual drugs and subgroup analyses
No significant effects were found in the analyses of individual
drugs or subgroup analyses, while there was some suggestion that
glutamate modulators may have beneficial effects on attention/
vigilance. Glutamate positive modulators—in particular, AMPA
receptor positive modulators—had a tendency to improve
attention/vigilance in patients with schizophrenia; this finding
did not survive after statistical corrections.
Cognitive functions have been reported to be one of the

strongest predictors for functional outcome in patients with
schizophrenia.3,4 For example, one 7-year longitudinal study
reported that three cognitive functions (attention, verbal memory,
and processing speed) predicted functional outcomes of FEP.69

Another 6-month longitudinal study examined neurocognitive
predictors of remission in patients with FEP, reporting that only
attention/vigilance at baseline was a predictor of remission of FEP
amongst the seven Measurement and Treatment Research to
Improve Cognition in Schizophrenia cognitive domains.70 Given
that attention/vigilance has a crucial role in predicting favorable
outcomes in patents with schizophrenia, AMPA positive modula-
tors in particular, which may have beneficial effects on attention/
vigilance, might have a role in improving functional outcome.
AMPA receptors have been considered a promising target for

the treatment of cognitive impairment in patients with schizo-
phrenia because they have a critical role in synaptic plasticity,
which is thought to be responsible for learning and memory.71

Recently, one post-mortem study noted that AMPA receptor
proteins, GRIA3 and GRIA4, were dysregulated in the auditory
cortex of this population.72 In addition, one genetic study reported
that GRIA3 gene mutations were related to moderate cognitive
impairment in humans.73 Furthermore, another line of evidence
from animal studies has suggested a potentially compensatory
role of AMPA receptors following NMDA receptor dysfunction.74–76

For example, Jackson et al.77 demonstrated that an increase in
glutamate efflux by NMDA antagonists stimulated cortical AMPA
receptors. Given that NMDA receptor dysfunction has been
implicated in cognitive deficits in schizophrenia, enhancing AMPA

signaling to further compensate this dysfunction may be
promising for improving cognitive deficits. These findings
corroborate our finding that AMPA positive modulators might
improve attention/vigilance in schizophrenia. However, future
studies are necessitated to investigate this relationship, given that
there was a tendency that AMPA positive modulators might
improve attention/vigilance.
Among several routes in the glutamate synapse that can

potentially enhance glutamatergic neurotransmission,20 the gly-
cine allosteric site of NMDA receptors has been most examined for
the effects of glutamate positive modulators on cognitive deficits
in patients with schizophrenia. Out of 10 studies, 8 have reported
negative results, and there are presumably several reasons for
their lack of procognitive effects. For example, orally administered
D-serine is metabolized substantially by D-amino acid oxidase,
diminishing its oral bioavailability.78 On the other hand, higher
doses of D-serine may cause nephrotoxicity.79 DCS has been
suggested to have a narrow therapeutic window due to its partial
agonist properties,78 which may explain our finding that DCS
might worsen visual learning impairments in schizophrenia. Thus,
further research is needed to elucidate optimal dose ranges and
route of administration of the drugs acting on glycine allosteric
site in an effort to derive procognitive effects in schizophrenia.

Findings by meta-regression
Higher proportion of female gender was linked with greater
improvements of overall cognitive function in our study. Previous
reports have shown that female gender was related to better
cognitive functioning throughout the illness stages.80,81 Although
it still remains unclear whether the higher cognitive reserve is
related to the greater magnitude of procognitive effects induced
by cognitive enhancers in female patients, our results suggest that
female patients may benefit more from procognitive effects of
glutamate positive modulators.

Limitations
The present report must be considered in light of various
limitations. First, the number of included subjects and individual
studies was still small. Second, we did not examine the long-term
effects of glutamate positive modulators since duration of
individual studies did not exceed 36 weeks. Third, the total
number of subjects and studies varied across cognitive domains,
as not all studies examined all cognitive domains. The results for
specific cognitive domains that are based on a small number of
studies or subjects need to be considered as preliminary. Fourth, it
is worth noting that many of the drugs included in this study have
different mechanisms of action even though each involves the
glutamatergic system. As such, combining compounds with
different glutamate-influencing mechanisms represents a limita-
tion of our study. To somewhat address this limitation, we
conducted subgroup analyses by the pathway of drugs to
enhance the glutamatergic neurotransmission in which drugs
were divided into the glycine allosteric site of NMDA receptor and
AMPA receptor groups. However, the aforementioned limitation
still exists for this subgroup analysis. Further research is
necessitated to examine the relationships between procognitive
effects and specific glutamate-influencing mechanisms of action.
Fifth, some of the included compounds have been reported to
have other mechanisms of action such as glutamatergic signal
enhancers, anti-inflammation,45 or neuroprotection.34 Sixth, 15 out
of 17 studies enrolled subjects within the chronic stage of the
illness. It remains unclear whether these compounds have effects
on subjects in the early stage of the illness (for example, FEP).
Seventh, influences of concomitant antipsychotics are not clear.
For example, 5 out of 17 studies did not discriminate between
those taking clozapine, which has been reported to modulate
glutamatergic signaling,82,83 and those taking non-clozapine

Figure 2. Meta-regression of effects of glutamate positive modula-
tors on overall cognitive function in relation to proportion of
male. Proportion of males had a negative correlation with SMDs
of effects of glutamate positive modulators on overall cognitive
function (11 studies, n= 858, slope=− 0.01, 95% CI: − 0.03 to − 0.002,
P= 0.03). CI, confidence interval; SMD, standard mean difference.
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antipsychotics. Eighth, although we included only double-blind
randomized placebo-controlled trials, only 24% of the studies had
a 'low risk' of bias, which should be carefully taken into account.
Ninth, a possibility of publication bias should not be dismissed.
Finally, we did not examine adverse events, which clearly hinders
us from making a balanced risk-and-benefit decision.

CONCLUSION
The findings from this meta-analysis indicate that glutamate
positive modulators were not effective for overall cognitive
deficits in patients with schizophrenia. Further research is required
to elucidate the role of the glutamatergic system on the cognitive
dysfunction observed in schizophrenia. Going forward, it is
necessary to characterize a subgroup of patients for which
glutamate modulators are specifically procognitive within this
heterogeneous population.
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