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A novel Alzheimer disease locus located near the gene
encoding tau protein
G Jun1,2,3, CA Ibrahim-Verbaas4,5, M Vronskaya6, J-C Lambert7,8,9, J Chung1, AC Naj10, BW Kunkle11, L-S Wang10, JC Bis12,
C Bellenguez7,8,9, D Harold13, KL Lunetta3, AL Destefano3, B Grenier-Boley7,8,9, R Sims6, GW Beecham11,14, AV Smith15,16, V Chouraki17,
KL Hamilton-Nelson11, MA Ikram4,18,19, N Fievet7,8,9, N Denning6, ER Martin11,14, H Schmidt20, Y Kamatani21,22, ML Dunstan6,
O Valladares10, AR Laza23, D Zelenika24, A Ramirez25,26, TM Foroud27, S-H Choi3, A Boland24, T Becker28,29, WA Kukull30, SJ van der Lee4,
F Pasquier8,31, C Cruchaga32,33, D Beekly34, AL Fitzpatrick30,35, O Hanon36,37, M Gill38, R Barber39, V Gudnason15,16, D Campion40,41,
S Love41, DA Bennett42,43, N Amin4, C Berr44, Magda Tsolaki45, JD Buxbaum46,47,48, OL Lopez49,50, V Deramecourt8,31, NC Fox51,
LB Cantwell10, L Tárraga52, C Dufouil53, J Hardy54,55, PK Crane56, G Eiriksdottir16, D Hannequin40,53, R Clarke57, D Evans58,
TH Mosley Jr.59, L Letenneur53, C Brayne60, W Maier25,28, P De Jager5,61,62, V Emilsson16,63, J-F Dartigues53,64, H Hampel65,66,
MI Kamboh49,67, RFAG de Bruijn4, C Tzourio53, P Pastor68,69, EB Larson56,70, JI Rotter71,72, MC O’Donovan6, TJ Montine73, MA Nalls74,
S Mead54, EM Reiman75,76,77,78, PV Jonsson15,79, C Holmes80, PH St George-Hyslop81,82, M Boada52, P Passmore83, JR Wendland84,
R Schmidt85, K Morgan86, AR Winslow84, JF Powell87, M Carasquillo88, SG Younkin88, J Jakobsdóttir16, JSK Kauwe89, KC Wilhelmsen90,
D Rujescu91, MM Nöthen26,92, A Hofman4,19, L Jones6, IGAP Consortium103, JL Haines93, BM Psaty12,30,35,70, C Van Broeckhoven94,95,
P Holmans6, LJ Launer96, R Mayeux97,98,99, M Lathrop22,24,100, AM Goate32,33, V Escott-Price6, S Seshadri17, MA Pericak-Vance11,14,
P Amouyel7,8,9,101, J Williams6, CM van Duijn4, GD Schellenberg10 and LA Farrer1,2,3,17,102

APOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-
wide association study (GWAS) data from the International Genomics of Alzheimer’s Project (IGAP) Consortium in APOE ε4+ (10 352
cases and 9207 controls) and APOE ε4− (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for
interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (Po1 × 10-4) in stage 1
were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4− :
718 cases and 1699 controls). Among APOE ε4− subjects, novel genome-wide significant (GWS) association was observed with 17
SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets
(best SNP, rs2732703, P= 5·8 × 10− 9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire
100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects
(CR1 and CLU) or APOE ε4− subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific
APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of
APOE with rs1595014 in TMEM106B (P= 1·6 × 10− 7) is noteworthy, because TMEM106B variants have previously been associated
with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs
near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an
untranslated exon in hippocampus (P⩽ 1.3 × 10-8), frontal cortex (P⩽ 1.3 × 10-9) and temporal cortex (P⩽ 1.2 × 10− 11). Rs113986870
is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex
(P= 9.2 × 10− 6) and temporal cortex (P= 2.6 × 10− 6). Our APOE-stratified GWAS is the first to show GWS association for AD with
SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this
region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if
this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted.
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INTRODUCTION
The common late-onset form of Alzheimer disease (AD) has a
strong genetic component,1 a portion of which is explained by
APOE and several other genes identified by positional mapping,
targeted gene analysis and genome-wide association studies
(GWAS).2–4 Together, these loci account for less than one-half of
the heritable component in AD susceptibility, of which 20–25% is
due to APOE.4,5 Because many of the known AD loci cluster in
biological pathways, including those involved in inflammation,
lipid metabolism and processing and intracellular trafficking of Aβ,
there are likely more AD risk loci that are difficult to detect
because of very weak effect size, allelic heterogeneity or rare
variants. To examine yet another hypothesis, namely, that
associations for some loci may be obscured by confounding or
interaction with other loci, we conducted a two-stage GWAS in
APOE genotype subgroups using the large resources of the
International Genomics of Alzheimer’s Project (IGAP).

METHODS
Study population
Details of the stage 1 sample from the IGAP Consortium, including subject
recruitment, genotyping, imputation, quality control, population substruc-
ture and statistical methods for association analyses, were previously
described.4 In brief, phenotype and genotype data, including APOE
genotypes, for a total of 53 711 subjects were assembled by IGAP from
the Alzheimer’s Disease Genetic Consortium (ADGC), the Cohorts for Heart
and Ageing Research in Genomic Epidemiology (CHARGE) consortium, the
European Alzheimer's Disease Initiative (EADI) and the Genetic and

Environmental Risk in Alzheimer’s Disease (GERAD) consortium. Character-
istics of this sample are in Supplementary Table S1. The stage 2 data set
included GWAS and APOE genotype data for 4203 subjects of European
ancestry from the ADC4, ADC5, ADC6, MTV, Pfizer and TARCC data sets in
the ADGC. These individuals were recruited under protocols approved by
the appropriate Institutional Review Boards. Details of the individual data
sets are provided in the Supplementary Materials and summarized in
Supplementary Table S1.

Procedures
QC, imputation and population substructure in stage 2 data sets. Quality
control of the clinical and genotype data in these cohorts was performed
using the procedures described elsewhere.4 Single-nucleotide polymorph-
ism (SNP) genotypes in each stage 2 data set were imputed with IMPUTE2
using reference haplotypes from the March 2012 release of 1000 Genomes.
We compared imputation results for selected variants in the stage 1 data
sets using the March 2012 release of 1000 Genomes and prior imputation
on the December 2010 release and found no significant difference in the
distribution of genotype probabilities between old and new imputations
for the same samples among the original ADGC data sets. We used actual
APOE genotypes when available, because previously we observed that
imputation in this region using the 1000 Genomes reference panel is
unreliable.5 Population substructure was evaluated within each data set by
principal components analysis using EIGENSTRAT (http://www.hsph.
harvard.edu/alkes-price/software/) and a subset of 21 109 SNPs common
to all genotyping platforms.

Statistical analysis
Genome-wide association study. Within each stage 1 data set, genome-
wide association analyses were conducted separately in subgroups of
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subjects with and without the APOE ε4 allele using a logistic generalized
linear model in case–control data sets and a logistic generalized estimating
equation in family-based data sets. The potential independent effect of the
APOE ε2 allele was not examined because of the paucity of carriers of this
allele, thus rendering very small cell sizes particularly among AD cases
and in smaller data sets. Cox-proportional hazards models were used to
evaluate association with incident AD in three CHARGE cohorts. A
quantitative estimate between 0 and 2 for the dose of the reference
allele for a SNP was used to incorporate the uncertainty of the imputation
estimates. Interaction between a SNP and APOE genotype was evaluated in
the APOE genotype subgroups combined within each data set using
regression models, including age, sex, the first three principal components
and terms for the SNP, APOE ε4 status and interaction between the SNP
and APOE ε4 status. Results for each model across data sets were
combined by meta-analysis using the inverse variance method imple-
mented in the software package METAL (http://www.sph.umich.edu/csg/
abecasis/Metal/). Effect sizes were weighted by their inverse variance and a
combined estimate was calculated by summing the weighted estimates
and dividing by the summed weights. SNPs with a minor allele frequency
45% that were available in at least 50% of the data sets were included in
the meta-analysis. The meta-analysis P-value for association was estimated
by the summarized test statistic, after applying genomic control within
each individual study.

Follow-up analysis in stage 2 data sets. SNPs attaining a P-value o10− 4 in
the stage 1 GWAS were evaluated in each of the stage 2 GWAS data sets,
containing a total of 1786 APOE ε4+ and 2417 APOE ε4− subjects
(Supplementary Table S1), using the same approach described above.

Gene expression analysis
The effect of top-ranked SNPs on gene expression was evaluated using an
open access database of control brain microarray data (BRAINEAC) made
publically available by the UK Human Brain Expression Consortium (http://
caprica.genetics.kcl.ac.uk/BRAINEAC). This data set contains information
generated by analysis of tissue samples obtained from 12 different central
nervous system regions in 134 individuals. Details of the expression
quantitative trait locus (eQTL) analysis are reported elsewhere.6 In this
study, the experiment-wise significance threshold for association of a
genetic marker with expression was determined to be 1.6 × 10− 7 at the
gene level and 1.8 × 10− 6 for individual exons. Potential for functionality of
the top-ranked SNPs was assessed using the Regulome database (http://
www.regulomedb.org).

RESULTS
We conducted a genome-wide association study for AD using data
sets stratified by APOE genotype assembled by IGAP, which were
from the ADGC, CHARGE consortium, EADI and GERAD con-
sortium. Meta-analyses were performed separately in APOE ε4+
(10 246 cases and 11 924 controls) and APOE ε4− (7231 cases and
19 603 controls) subgroups, as well as the total sample, using a
model including a term for the interaction of the SNP with the
APOE ε4 status. There was limited genomic inflation in the GWAS
results in the APOE ε4+ (λ= 1.05) and APOE ε4− (λ= 1.06) groups,
but not in the total sample (λ= 0.98) testing the ε4 × SNP
interaction (Supplementary Figure S1). Genome-wide significant
(GWS) association (Po5 × 10− 8) for AD was found in five distinct
regions (CR1, BIN1, CLU, PICALM and APOE) in the APOE ε4+
subgroup (Supplementary Figure S2A, Supplementary Table S2)
and four distinct regions (BIN1, HBEGF, MS4A6A/MS4A4A, SLC24A4
and APOE) in the APOE ε4− subgroup (Supplementary Figure S2B,
Supplementary Table S2). No significant SNP× APOE interactions
were found in the total group (Supplementary Figure S2C).
Suggestive association (Po10− 6) was observed with SNPs in five
novel loci in the APOE ε4− subgroup (SOX14/CLDN18, ACSL6,
FAM20C, MAPT region and CDR2L; Supplementary Figure S2B,
Supplementary Table S3) and with 21 TMEM106B SNPs (top result:
rs1595014, P= 1.6 × 10-7) (Supplementary Figure S2C, Supple-
mentary Table S3).
Approximately 1130 SNPs from 38 regions (including 7

previously established AD loci) were tested in stage 2 (Supple-

mentary Table S3). Follow-up analyses of the novel loci confirmed
association with SNPs in CDC42SE2-ACSL6, KANSL1/LRRC37A and
CDR2L in the stage 2 sample (Table 1, Supplementary Table S2),
but only SNPs near MAPT and between KANSL1 and LRRC37A
(Figure 1a) were GWS after combining results from the stages 1
and 2 samples (best SNP: rs2732703, meta-analysis: P= 5.8 × 10− 9).
The association was consistent in nearly all data sets which
contained rs2732703 information (Figure 1b). To verify the
reliability of the association with rs2732703, an imputed SNP, we
compared rs2732703 allele dosages obtained directly by genotyp-
ing using a Taqman assay with those derived from imputation
among 1010 subjects from the ACT, ADC4, ADC5 and ADC6 data
sets. The correlation of these values, 0.813 in the entire sample
and 0.834 among APOE ε4− subjects, as well as a genotype
misclassification rate of only 3.5% among subjects with imputed
probability scores40.8 for a particular genotype, suggest that our
association findings were not influenced substantially by imputa-
tion quality.
Further examination of this region in the total sample revealed

an association peak spanning 41.25 Mb that contains 15 genes
(Figure 1a). Within this region, 17 SNPs were GWS, have minor
allele frequencies ranging from 0.13 to 0.17 and are located in a
10.2-kb segment upstream of both KANSL1 and LRRC37A
(Supplementary Table S4). Nominally significant association was
observed with only one of these SNPs among ε4+ subjects
(rs2732703, P= 0.02) (Supplementary Table S3). Although the odds
ratios (OR) for effect of the effect of minor allele on AD risk were
substantially lower for all of the GWS SNPs in the ε4− group
(0.54oORo0.86) than in the ε4+ group (0.76oβo1.04), there
was no evidence of interaction with APOE genotype (Supple-
mentary Table S3). The minor alleles of these SNPs reduced AD risk
by 20–37% in the ε4− group. The 350-kb gap in the broad
association signal is punctuated at one end by a ‘cliff’ adjacent to
the MAPT–KANSL1–LRRC37A association peak (Figure 1). This gap is
populated by relatively few SNPs and contains several copy-
number variation polymorphisms.7,8 To explore the possibility that
the association observed in the present analysis is explained
by previously identified haplotypes H1/H2 in the MAPT region,8

we evaluated six models in the entire data set conditioning
on rs8070723 (an H1/H2 tagging SNP), rs2732703 or rs199533.
Rs2732703 remained significant in models conditioning on
rs8070723 (P= 0.013) or rs199533 (P= 0.0020), and rs8070723
was marginally significant in the model conditioning on rs199533
(P= 0.043) (Supplementary Table S5, Supplementary Figure S3).
These results suggest that KANSL1/LRRC37A is the only AD risk
locus in this region.
We also examined the effect of APOE ε4 status on pre-

viously established AD loci (Supplementary Table S2). Four
of these loci attained genome-wide significance in at least
one of the APOE subgroups (Table 2), and the association
signal in the MS4A cluster region was evident primarily in the
APOE ε4− subgroup (Supplementary Figure S4). The association
of AD with CR1, BIN1 and CLU was supported in both the APOE
subgroups.
Next we interrogated the BRAINEAC database to determine

whether any of the 17 GWS SNPs located between KANSL1 and
LRRC37A are cis-eQTLs. Data were available for only one of these
SNPs (rs113986870) that is in high linkage disequilibrium (LD) with
and 2461 base pairs away from rs2732703 (r2 and D’40.9). Ten
exon probes from four genes (KANSL1, LRRC37A4P, MAPT and
C17orf69) were significantly associated with rs113986870 when
averaged across all brain regions (Table 3). Rs113986870 was
significantly associated with gene-level expression (Figure 2a), as
well as with exon-level expression, (Figure 2b) in hippocampus,
temporal cortex and cerebellum. In these brain regions,
rs113986870 was significantly associated with KANSL1 probes
3762011, 3762012 and 3762013 that measure expression of the
first translated exon. Additionally, we observed that expression of
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probe 3760518 (Supplementary Figure S5A) present in all three
transcripts (NM_001193466, NM_015443 and NM_001193465)
and 3760219 in transcript variant 2 (NM_015443) was signifi-
cantly associated with rs113986870 (Supplementary Figure S5B),
while expression of probe 3760217 in transcript variant 1
(NM_001193466) was not significant (Supplementary Figure
S5C), indicating that alternative splicing may be a crucial
mechanism for regulating KANSL1 expression. Rs113986870 was
also strongly associated with MAPT transcription (Supplementary
Figure S6A) and in particular with probe 3723712 that targets
transcription of alternatively spliced exon 3 in frontal cortex
(P⩽ 9.2 × 10− 6) and temporal cortex (P⩽ 2.6 × 10− 6) (Supplemen-
tary Figure S6B). The rs113986870 minor allele (A), which is
associated with reduced risk of AD (Supplementary Table S4),
increased the expression of the target exons in KANSL1 and MAPT
(Figure 2, Supplementary Figure S6, Supplementary Figure S7).

The association with LRRC37A4P exon probe 3759898 was
significant in all three AD-related brain regions (P⩽ 3.6 × 10− 9).
The association of rs113986870 with exon probe 3723594 for
C17orf69 was significant in hippocampus only (P= 1.6 × 10− 7). Five
of the GWS SNPs, including rs2732703 and rs113986870, are
located within a transcription factor-binding site or a DNase
sensitivity peak, and two of these five SNPs, including rs2668626
which is only 47 bp from rs2732703, have also been identified
within an eQTL (Supplementary Table S4).

DISCUSSION
This study was undertaken to identify loci whose effect on AD risk
may be obscured by confounding or interaction with APOE
genotype. Our APOE-stratified GWAS is the first to show GWS
association for AD with SNPs in the chromosome 17q21.31 region,

Table 1. Association results (Po10-6) in novel AD loci among APOE ε4− subjects in the combined stages 1 and 2 samples

SNP CH Region or closest gene MA MAF Stage 1 Stage 2 Stages 1+2

OR (95% CI) OR (95% CI) P OR (95% CI) P

rs16847609 3 SOX14/CLDN18 A 0.09 1.21 (1.12–1.29) 2.3 × 10− 7 1.09 (0.87–1.37) 0.47 1.19 (1.11–1.28) 5.3 × 10− 7

rs382216 5 CDC42SE2-ACSL6 T 0.36 0.88 (0.83–0.93) 6.5 × 10− 6 0.78 (0.67–0.91) 0.002 0.87 (0.82–0.92) 2.0 × 10− 7

rs11168036 5 PFDN1/HBEGF T 0.50 1.14 (1.09–1.19) 9.3 × 10− 9 0.97 (0.85–1.11) 0.64 1.12 (1.07–1.17) 3.2 × 10− 7

rs2732703 17 KANSL1/LRRC37A G 0.13 0.73 (0.65–0.83) 6.4 × 10− 7 0.71 (0.58–0.88) 0.001 0.73 (0.65–0.81) 5.8 × 10− 9

rs71380849 17 CDR2L A 0.06 1.45 (1.24–1.70) 3.8 × 10− 6 1.59 (1.01–2.50) 0.04 1.47 (1.26–1.71) 9.1 × 10− 7

Abbreviations: AD, Alzheimer’s disease; CH, chromosome; CI, confidence interval; MA, minor allele; MAF, minor allele frequency; OR, odds ratio; SNP, single-
nucleotide polymorphism.

Figure 1. Association of Alzheimer’s disease with single-nucleotide polymorphisms (SNPs) in chromosome 17q21.31 in the combined stages 1
and 2 samples. (a) Regional Manhattan plot in the APOE ε4+ (upper panel) and the APOE ε4− (lower panel) subgroups. SNPs with the lowest P-
value are indicated with a purple diamond. Computed estimates of linkage disequilibrium (r2) of SNPs in this region with the most significant
SNP are shown as red circles for r2⩾ 0.8, orange circles for 0.6⩽ r2o0.8, green circles for 0.4⩽ r2o0.6, light blue circles for 0.2⩽ r2o0.4, and
blue circles for r2o0.2. Unannotated SNPs are shown as grey circles. (b) Forest plot of association results for rs2732703 in the stages 1 and 2
and total samples among APOE ε4− subjects. CI, confidence interval; MAF, minor allele frequency; OR, odds ratio.
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including MAPT, KANSL1 and LRRC37A. Among the genes expected
to emerge from GWAS but never seen before is MAPT, which
encodes the microtubule-associated protein tau (MAPT) found in
AD neurofibrillary tangles. The association peak is located
between KANSL1 and LRRC37A, approximately 200 kb downstream
of MAPT, in a subset of subjects who do not possess the APOE ε4
allele. Although the association signal includes MAPT, conditional
analysis suggests that the causal variant(s) are more likely located
in a DNA segment between the 5′ end of KANSL1 and 5′ end of
LRRC37A and not within MAPT or another gene distal to LRRC37A.
The nature of the AD-related functional variant could not be

discerned from our genetic association findings. None of the GWS
SNPs are within 42.1 kb of the KANSL1 start site or 16.8 kb of the
LRRC37A start site, suggesting that the functional variant is not
within the promoter region of either gene. KANSL1 is a widely
expressed gene encoding a member of the nonspecific lethal
complex. The KANSL1 protein is an evolutionarily conserved
regulator of the chromatin modifier KAT8, which influences gene
expression through histone H4 lysine 16 acetylation.9 Notably,
mutations in KANSL1 cause the 17q21.31 microdeletion syndrome,
which is associated with a wide range of abnormalities, including
intellectual disability and developmental delay, and is therefore
thought to be involved in neuronal development.10,11 LRRC37A
encodes a member of the leucine-rich repeat containing 37 family.
Leucine-rich repeats (LRRs) are protein–ligand interaction motifs
found in a large number of proteins with different structure,
localization and function.12 LRR motifs are important for
intermolecular or intercellular interactions with exogenous factors
in the immune system and/or with different cell types in the
developing nervous system.12

However, expression analysis of exon array data in control brain
tissue revealed that rs113986870, which is in high LD with the top-
ranked SNP (rs2732703) in the GWAS, is an eQTL for expression of
the first translated exon in KANSL1 and the alternatively spliced
exon 3 in MAPT. Previous studies suggest that splicing of MAPT
may be a crucial regulatory mechanism in the brain and
tauopathies in particular13 and that increased expression of exon
3 protects against neurodegeneration.14 Although rs113986870 is
apparently not an eQTL for its adjacent gene LRRC37A, it was
significantly associated with a closely related gene, LRRC37A4P, in
all three AD-related brain regions. These results suggest that
rs113986870 may have a potential function as a cis-acting
regulatory element for multiple genes in this region. Another
confounding feature of this region are copy-number variations
that in part overlap with the 5′ end of KANSL1 and possibly
influence expression.7,8 Thus it is possible that the exon probes
targeting the first translated in KANSL1 may be tagging this
duplication. In addition, interrogation of a database curating
information about DNA features and regulatory regions revealed
that five of the GWS SNPs, including rs2732703 and rs113986870,
may have strong regulatory potential.
The association peak for AD on chromosome 17q21.31 is

located in a well-recognized and perplexing genomic region
containing a 900-kb inversion.8 Previous GWAS identified associa-
tions of variants within and at the edges of this inversion with
Parkinson disease15 and progressive supranuclear palsy,16 but the
most significant associations were not with SNPs between KANSL1
and LRRC37A (Supplementary Table S6). Multiple studies have
identified440 MAPT deletions, missense mutations and splice site
mutations that cause frontotemporal dementia (FTD).17 Although
AD is only nominally associated with common variants in MAPT,

Table 2. Results (Po10-6) in previously known AD loci showing different pattern of association among APOE ε4+ and ε4− subjects in the combined
data sets

SNP CH Region or closest gene MA MAF APOE ε4(+) APOE ε4(− )

OR (95% CI) P OR (95% CI) P

rs679515 1 CR1 T 0.21 1.22 (1.14–1.30) 3.6 × 10− 9 1.13 (1.07–1.19) 1.6 × 10− 5

rs4663105 2 BIN1 C 0.43 1.19 (1.12–1.25) 2.5 × 10− 9 1.19 (1.13–1.24) 1.8 × 10− 12

rs9331896 8 CLU C 0.38 0.84 (0.80–0.89) 2.8 × 10− 9 0.90 (0.86–0.94) 9.6 × 10− 6

rs1582763 11 MS4 region A 0.37 0.92 (0.87–0.97) 0.003 0.87 (0.83–0.91) 2.2 × 10− 9

Abbreviations: AD, Alzheimer’s disease; CH, chromosome; CI, confidence interval; MA, minor allele; MAF, minor allele frequency; OR, odds ratio; SNP, single-
nucleotide polymorphism.

Table 3. Exon probes covering the region between 43.5 and 45.0 Mb on chromosome 17 that reveal significant rs113986870 allelic expression
differences averaged over 10 brain areas

Gene ExprID Start End AVGALL FCTX HIPP TCTX

LRRC37A4P 3759896 43583231 43583802 1.4 × 10− 15 6.4 × 10− 4 4.0 × 10− 6 2.4 × 10− 5

LRRC37A4P 3759898 43584264 43584884 1.7 × 10− 20 8.0 × 10− 11 5.3 × 10− 10 3.6 × 10− 9

C17orf69 3723594 43716765 43716853 3.3 × 10− 13 2.0 × 10− 5 1.6 × 10− 7 8.3 × 10− 5

C17orf69 3723604 43723359 43723556 4.9 × 10− 10 0.004 9.8 × 10− 4 1.3 × 10− 5

MAPT 3723712 44051752 44051833 3.6 × 10− 14 9.2 × 10− 6 7.6 × 10− 4 2.6 × 10− 6

KANSL1 3760158 44117069 44117161 9.8 × 10− 14 2.8 × 10− 5 0.008 6.2 × 10− 5

KANSL1 3760211 44247654 44247852 4.0 × 10− 23 8.0 × 10− 13 3.0 × 10− 17 1.6 × 10− 15

KANSL1 3760212 44248224 44248977 1.4 × 10− 24 2.6 × 10− 18 7.8 × 10− 20 2.5 × 10− 21

KANSL1 3760213 44249529 44249592 7.7 × 10− 16 3.0 × 10− 11 1.1 × 10− 13 1.2 × 10− 11

KANSL1 3760219 44270189 44270252 4.3x10− 13 1.3 × 10− 9 1.3 × 10− 8 1.3 × 10− 11

Abbreviations: AVEALL, average expression levels across 10 regions, including cerebellum (CRBL), frontal cortex (FCTX), hippocampus (HIPP), medulla
(specifically inferior olivary nucleus, MEDU), occipital cortex (specifically primary visual cortex, OCTX), putamen (PUTM), substantia nigra (SNIG), thalamus
(THAL), temporal cortex (TCTX), and intralobular white matter (WHMT); ExprID, exon-specific probeset ID. Map position is based on 1000 Genomes database
release GRCh37/hg19 assembly, February 2009. Significance threshold after multiple testing determined as 0.05/292 000 exon probes= 1.7 × 10− 7.
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previously we observed association of a rare MAPT variant (A152T)
with increased risk for FTD and AD in a large sample,18 a finding
which was supported by a subsequent smaller study.19 Ikram
et al.20 identified a GWS association peak with a KANSL1 SNP
approximately 166 kb away from our most significant AD SNP
(rs2732703) for a continuous measure of intracranial volume in a
sample of nearly 10 000 community-dwelling elders (Supplemen-
tary Table S6). These two SNPs are moderately correlated
(r2 = 0.71), which indicates that they may tag the same functional
variant.
Other studies have focused on two divergent extended MAPT

haplotypes, H1 and H2, which are in near complete LD with
status of the inversion and contain independently derived
partial duplications of KANSL1.8,16 The common H1 haplotype is
associated with increased risk of FTD,21 Parkinson disease,22

progressive supranuclear palsy23 and corticobasal degeneration23

while H2 is linked to recurrent deletion events associated with the
17q21.31 microdeletion syndrome.10 Among these non-AD forms
of dementia, it is possible for FTD to masquerade clinically as AD

and thereby cases of FTD could be present in our study group;
however, any inadvertent inclusion of FTD cases is expected to be
very small as the minimum age of dementia onset in our study
group was 60 years and onset of dementia from FTD after age 69
years is relatively rare compared with AD that in most cases occurs
after age 69 years.24 Furthermore, a recent review of almost 5000
autopsy brains from a subset of cases in the ADGC cohort failed to
identify any case of FTD.25 Myers et al.26 reported association of
AD with H1 and with common MAPT SNPs, but this association is
controversial27 and did not reach genome-wide significance in
our study or previous GWAS. Another recent study showed that
carriers of at least one H2 allele had a 5.4-fold increased risk of
worsening hallucinations, but this result was marginally
significant.28 Previously, we observed in a subset of the sample
studied here that the H2-haplotype tagging rs8070723-G allele
was associated with reduced risk of AD.29 However, this variant is
no longer associated after conditioning on rs2732703 (Supple-
mentary Table S5). In carriers of H2, the ancestral haplotype in
both humans and chimpanzees,30 increased expression of exon 3

Figure 2. Genotype specific effect of the expression quantitative trait locus (eQTL) rs113986870 on expression of KANSL1. (a) Gene-level
expression of KANSL1 transcript t3760137. Transcript-level expression represents the average across all KANSL1 exon probe sets. (b) Expression
of exon probe 3760212. Probes 3760211, 3760212 and 3760213 measure expression of the first translated exon, are present in all three
transcript variants and were significantly associated with the eQTL. Expression profiles for probes 3760211 and 3760213 were similar to those
for probe 3760212 (Table 3). The distance from 3760212 to rs113986870 is 85 431 base pairs. Log2 scale of expression (y axis) is shown for 10
regions of cognitively normal human brains (x axis) ordered by mean expression level. Rs113986870 genotype counts: AA= 0, AG= 56, and
GG= 76. Rs113986870 allele frequencies are 0.21 (A) and 0.79 (G). CRBL, cerebellum; FCTX, frontal cortex; HIPP, hippocampus; MEDU, medulla
(specifically inferior olivary nucleus); OCTX, occipital cortex (specifically primary visual cortex); PUTM, putamen, SNIG, substantia nigra; TCTX,
temporal cortex; THAL, thalamus; WHMT, intralobular white matter.
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in MAPT has been associated with an eQTL located approximately
1500 bp from rs113986870, which decreases aggregation of
microtubules.6,31 These observations are consistent with our
results showing that the rs113986870 minor allele is protective
for AD and associated with elevated exon3 expression.
There is a large body of experimental evidence linking tau protein

to AD pathogenesis,32 and some studies show evidence of
association of AD with common MAPT SNPs.29,33 However, analysis
of the MAPT coding sequence did not reveal disease-causing
variants for early-onset AD,34 and other studies examining associa-
tion of MAPT SNPs with late-onset AD were negative.27,35 Recently,
Allen et al.29 reported that the rs8070723-G allele was associated
with reduced MAPT expression in the cerebellum and temporal
cortex of AD subjects. Robust genetic associations have also been
identified for AD with several genes in cytoskeletal and axonal
transport pathways, including tau, or leading to neurofibrillary
tangles, most notably BIN1, EPHA1, RIN3, CASS4 and FERMT2.4

Based on the observation that overexpression of human ApoE4
in transgenic mouse neurons results in hyperphosphorylation of
tau,36 it is possible that associations with AD-related loci in the
chromosome 17q21.31 region are obscured by the much stronger
effect of APOE ε4 on MAPT expression or function.37 This idea is
consistent with lack of GWS association with 17q21.31 SNPs in the
same data set without stratification by APOE genotype,4 and no
evidence for interaction between APOE and any SNPs in the
MAPT–KANSL1–LRRC37A region in the current study. Another
possible explanation for the significant association of 17q21.31
SNPs with AD only among subjects lacking APOE ε4 is genetic
heterogeneity, suggesting that variation at the chromosome
17q21.31 locus is associated with a distinct etiological subtype
of AD where tau is the primary disease activator.38 Finally, the
diagnosis of AD for most subjects in this data set was established,
clinically suggesting the possibility of misdiagnosis or AD
accompanied by other processes associated with other dementing
illnesses. Further studies are needed to determine whether this
subtype can be distinguished clinically or neuropathologically.
Our study also showed that the previously established

association with the MS4A gene cluster is derived almost
completely from subjects lacking APOE ε4, suggesting the
contribution of the MS4A locus to AD may be mechanistically
different than AD-related processes that are associated with APOE
ε4. Members of the MS4A gene family encode membrane
proteins, some of which have known roles in immune cell
function;39 however, little is known about the function of MS4A6A,
MS4A4A or MS4A6E in humans. Karch et al.40 showed that
expression of MS4A6A was upregulated in the brains of AD
patients compared with the brains of controls and significantly
correlated with AD status, AIF1 expression (a marker for microglia,
which is the immune cell of the brain), cognitive dementia rating
score and extent of AD neuropathological change.
The observed statistical interaction of genotypes for TMEM106B

with APOE on AD risk in the stage 1 GWAS is noteworthy
(rs1595014, P= 1.6 × 10− 7) even though it is not supported by
results in the comparatively small stage 2 sample. TMEM106B is a
glycoprotein predominantly localized at the lysosomal membrane
where it might interact with intracellular progranulin (GRN).41,42

TMEM106B variants, particularly the p. T185S (rs3173615) muta-
tion, are risk factors for FTD, especially among persons carrying a
GRN mutation.43 TMEM106B variants are also associated with
development of cognitive impairment in amyotrophic lateral
sclerosis44 and implicated in the pathological presentation of
AD.45 Cruchaga et al.46 observed association of the TMEM106B SNP
rs1990622 risk allele with younger onset of the frontotemporal
lobar degeneration subtype with TAR DNA-binding protein
inclusions (FTLD-TDP), a pattern reminiscent of the association
of APOE ε4 with increased risk and younger onset of AD. The
biological underpinning of the interaction of TMEM106B with APOE
affecting AD risk is unclear.

Our top findings, including those that are GWS, should be
confirmed in independent samples. Functional studies will be
needed to understand the relationship between APOE and the
causative variant(s) in 17q21.31 once they are identified, as well as
with other loci showing much stronger association with AD in
particular APOE genotype strata (for example, MS4A6A/MS4A4A/
MS4A6E) or through interaction with APOE (for example,
TMEM106B). Our study provides a firm genetic connection of AD
to several other pathologically distinct disorders in which
dementia is a cardinal or common characteristic.
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