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Testing a machine-learning algorithm to predict the persistence
and severity of major depressive disorder from baseline
self-reports
RC Kessler1, HM van Loo2, KJ Wardenaar2, RM Bossarte3, LA Brenner4, T Cai5, DD Ebert1,6, I Hwang1, J Li5, P de Jonge2, AA Nierenberg7,
MV Petukhova1, AJ Rosellini1, NA Sampson1, RA Schoevers2, MA Wilcox8 and AM Zaslavsky1

Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. Although efforts to use
symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed
that machine-learning (ML) models developed from self-reports about incident episode characteristics and comorbidities among
respondents with lifetime MDD in the World Health Organization World Mental Health (WMH) Surveys predicted MDD persistence,
chronicity and severity with good accuracy. We report results of model validation in an independent prospective national
household sample of 1056 respondents with lifetime MDD at baseline. The WMH ML models were applied to these baseline data to
generate predicted outcome scores that were compared with observed scores assessed 10–12 years after baseline. ML model
prediction accuracy was also compared with that of conventional logistic regression models. Area under the receiver operating
characteristic curve based on ML (0.63 for high chronicity and 0.71–0.76 for the other prospective outcomes) was consistently
higher than for the logistic models (0.62–0.70) despite the latter models including more predictors. A total of 34.6–38.1% of
respondents with subsequent high persistence chronicity and 40.8–55.8% with the severity indicators were in the top 20% of
the baseline ML-predicted risk distribution, while only 0.9% of respondents with subsequent hospitalizations and 1.5% with
suicide attempts were in the lowest 20% of the ML-predicted risk distribution. These results confirm that clinically useful MDD
risk-stratification models can be generated from baseline patient self-reports and that ML methods improve on conventional
methods in developing such models.
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INTRODUCTION
Heterogeneity in major depressive disorder (MDD) illness course
complicates clinical decision-making. Clinicians have consistently
identified absence of guidance on how to deal with this variation
as a critical gap in personalizing MDD treatment.1–4 However,
efforts to address this problem by finding useful prognostic
subtypes based on empirically derived symptom profiles5,6 or
biomarkers7–9 have so far yielded disappointing results. A
potentially promising complementary approach would be to
apply machine-learning (ML) methods to baseline data on
symptoms and other easily assessed clinical features to develop
first-stage prediction models of subsequent depression course
and treatment response10,11 that could be expanded to target and
examine incremental prognostic effects of novel biomarkers
among patients who could not be classified definitively with the
inexpensive first-stage prediction models.
Although ML methods have been used successfully to develop

risk-prediction schemes in other areas of medicine,12,13 applications
to depression have so far relied on small samples and

thin predictor sets, failing to realize the full potential of the
methods.14,15 A recent exception is a study carried out among
8261 respondents with lifetime DSM-IV MDD in the World Health
Organization World Mental Health (WMH) surveys.16,17

Retrospective reports about parental history of depression,
temporally primary comorbid disorders and characteristics of
incident depressive episodes were used to predict retrospectively
reported subsequent depression persistence (number of years
with episodes), chronicity (number of years with episodes lasting
most days), hospitalization for depression and work disability due
to depression. K-means cluster analysis of the four predicted risk
scores found a parsimonious three-cluster solution with the
high-risk cluster (32.4% of cases) accounting for 56.6–72.9% of
high persistence, chronicity, hospitalization and disability.
Although useful as a proof of concept, the WMH results were

based on retrospective reports. A prospective validation is
reported here that uses the WMH models to predict subsequent
MDD persistence, chronicity and severity in a sample of 1056
respondents with lifetime DSM-III-R MDD in the 1990–1992
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US National Comorbidity Survey (Survey 1)18 who were
re-interviewed 10–12 years later in the 2001–2003 National
Comorbidity Survey Follow-Up (Survey 2).19 ML model results
are compared with results based on more conventional logistic
regression models to determine whether ML methods improve on
conventional methods.

MATERIALS AND METHODS
Sample
Survey 1 was a community epidemiological survey of common DSM-III-R
disorders among English-speaking residents of the non-institutionalized
civilian US household population aged 15–54 years (n= 5877 respondents;
82.4% response rate).18 Respondents were paid $25 for participation.
Recruitment-consent procedures were approved by the human subjects
committee of the University of Michigan. Interviews were conducted
face-to-face in respondent homes after obtaining verbal informed consent.
Survey 2 attempted to re-interview all baseline respondents considered
here 10–12 years later using recruitment-consent procedures identical to
Survey 1 other than a $50 incentive. These procedures were approved by
the human subjects committees of both Harvard Medical School and the
University of Michigan. Interviews were again conducted face-to-face in
respondent homes after obtaining a verbal informed consent. The 5001
Survey 2 respondents (87.6% of living targeted Survey 1 respondents) were
administered an expanded version of the baseline interview assessing
onset-course of disorders between the two surveys. A non-response
adjustment weight corrected for baseline differences between Survey 2
respondents and non-respondents conditional on Survey 1 responses.
Analyses reported here use the weighted data from the 1056 Surveys 1–2
panel respondents who met lifetime criteria for MDD in Survey 1.

The baseline assessment of DSM-III-R disorders
Survey 1 assessed DSM-III-R disorders with the World Health Organization’s
Composite International Diagnostic Interview (CIDI) Version 1.1, a fully
structured lay-administered interview that assessed common mental
disorders using DSM-III-R criteria.20 Syndromes assessed included major
depressive episode, mania-hypomania, six anxiety disorders (generalized
anxiety disorder, panic disorder, agoraphobia, specific phobia, social
phobia and post-traumatic stress disorder) and five externalizing disorders
(conduct disorder, alcohol abuse, alcohol dependence, drug abuse and
drug dependence). Blinded Structured Clinical Interview for DSM-III-R21

clinical reappraisal interviews in a probability sub-sample found good
concordance with the DSM-III-R/CIDI diagnoses.20 Respondents with
lifetime MDD were asked whether their first lifetime episode ‘was brought
on by some stressful experience’ or happened ‘out of the blue’. DSM-III-R
Criteria A-D MDE symptoms were then assessed for this incident episode.
Family History Research Diagnostic Criteria questions22 were used to
determine parental history of depression.

Outcome measures
Depression persistence, chronicity and severity were assessed in Survey 2
with a computerized version of CIDI 3.0 using ‘pre-loaded’ information
about Survey 1 responses to guide follow-up questioning. Respondents
with Survey 1 lifetime MDD were asked to review the depressive
symptoms reported in Survey 1, update subsequent episodes and
symptoms using a life history calender and answer four summary
questions about subsequent episodes: in how many years since baseline
did the respondent have a depressive episode lasting 2+ weeks (referred
to below as 'persistence') and an episode lasting most days throughout
the year (referred to below as 'chronicity')? Was the respondent ever
hospitalized for depression since the baseline? Was the respondent
currently disabled (at least 50% limitation in ability to perform paid work)
because of depression? A fifth Survey 2 outcome measure was whether the
respondent attempted suicide at any time since the baseline.

Analysis methods
Predicting the outcomes in the WMH surveys. The predictors in the WMH
surveys included temporally primary comorbid lifetime disorders, parental
depression, MDD incident episode symptoms and other information about
the incident episode (age-of-onset and if the episode was triggered or
endogenous). The outcomes were MDD persistence severity (number of

years since age-of-onset with episodes lasting 2+ weeks and lasting most
days throughout the year, each standardized to a 0–100% range in relation
to number of years between age-of-onset and age-at-interview), whether
respondents were ever hospitalized for depression after their first episode,
and whether respondents were disabled at the time of interview
because of their depression. The ML methods used to develop the
models included ensemble regression trees23 and 10-fold cross-validated
penalized regression,24 both of which were designed to avoid overfitting.
These methods are described elsewhere.16,17

Between 9 and 13 predictors available at baseline in Surveys 1–2 emerged
as significant in each WMH model, including measures of individual
symptoms and symptom clusters in the incident episode, whether that
episode was triggered or endogenous, parental history of depression and
various measures of temporally primary comorbid anxiety and externalizing
disorders (some of them depending on age-of-onset). A more detailed
discussion of the final WMH models is available elsewhere.16,17

To evaluate whether models based on ML methods improve prediction
in an independent data set more than models based on conventional
methods, we also estimated a logistic regression model for each outcome
in the WMH data that included 23 predictors: the nine DSM-III-R Criterion A
symptoms of MDD, a measure of whether the episode was triggered or
endogenous, parental history of depression and 11 measures of the
temporally primary comorbid anxiety and externalizing disorders that were
also available in Survey 1. To the extent that the ML methods stabilize
estimates, we would expect predictions based on these methods to out-
perform predictions based on logistic regression despite the ML models
containing fewer predictors (9–13) than the logistic models (23).

Assigning WMH-predicted risk scores to Survey 1 respondents. Risk scores
based on the logistic models were generated in Survey 1 using the WMH
coefficients and the Survey 1 predictors. This direct estimation method
could not be used for the ML models, though, as Survey 1 did not assess a
number of significant predictors in the ML models (symptoms of anxious
depression and mixed episodes in incident episodes, comorbid obsessive–
compulsive disorder, intermittent explosive disorder and oppositional
defiant disorder). We addressed this problem by imputing ML risk scores to
Survey 1 respondents from a consolidated data set that combined WMH
respondents and Surveys 1 and 2 respondents. The data set included all
predictors in common across the surveys along with the four Ml-predicted
risk scores. The latter four scores had valid values for WMH cases and
missing values for Survey 1 cases. Multiple imputation was applied to this
data set to generate 10 predicted scores on each missing variable to each
Survey 1 respondent using SAS 9.2 (Cary, NC, USA) proc mi.25 Modal
imputed values were assigned to each Survey 1 respondent for purposes
of analysis. As these scores were strongly correlated across outcomes, a
single composite ML-predicted risk score was then constructed for each
respondent by averaging across the four scores after transforming to
percentiles.

Validating the prediction models. Survey 2 outcomes were predicted from
risk scores based on the ML and logistic models applied to the Survey 1
data. The Survey 2 outcomes included high (top 10%) MDD persistence
and chronicity in the 10–12 years between the two surveys, hospitalization
for depression and attempted suicide during those years and disability due
to depression at the time of Survey 2. Area under the receiver operating
characteristic curve (AUC) was calculated for each Survey 2 outcome
separately for the ML and logistic models. Sensitivity (SN; the percentage
of respondents with the outcome classified by the predicted risk scores as
having high risk), positive predictive value (PPV; the percentage of
respondents predicted to have high risk who experienced the outcome)
and likelihood-ratio positive (LR+; the relative proportions of respondents
who experienced the outcome among those classified as having or not
having high risk) were also calculated for the 20 and 33% of Survey 1
respondents with highest and lowest ML-imputed composite risk scores.
S.e.m. of SN, PPV and LR+ were estimated using the Taylor series method
with SUDAAN26 to adjust for design effects in the Surveys 1 and 2 panels.

RESULTS
Outcome distributions
One-third (37.9%) of the 1056 Surveys 1 and 2 respondents had at
least one depressive episode in 10–12 years between surveys
(Table 1). Mean (s.e.m) number of years in episode was 2.0 (0.2)
and the 90th percentile was 9 years. Roughly half the respondents
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with episodes (16.7% (1.5) of all respondents) reported episodes
lasting most days throughout one or more years, with a mean
(s.e.m.) of 0.8 (0.1) and a 90th percentile of 4 such years. A strong
correlation (polychoric) was found between number of years in
episode and number of years with episodes lasting most days
throughout the year (rp = 0.61).
Hospitalization for depression in the years between Surveys 1

and 2 was reported by 5.8% (1.1) of Survey 2 respondents and
attempted suicide by 4.5% (0.6). Current disability because of
depression was reported by 3.2% (0.6) of Survey 2 respondents.
Correlations (tetrachoric) among these three severity indicators
were rt = 0.51–0.84. Correlations (polychoric) between number of
years in episode and the severity indicators were rp = 0.38–0.49.
Correlations (polychoric) between number of years in episodes
lasting most days throughout the year and the severity indicators
were rp = 0.30–0.53.

Associations of the Survey 1 risk scores with Survey 2 outcomes
AUCs of the Survey 1 Ml and logistic risk scores with Survey 2
outcomes were 0.71 and 0.68, respectively; predicting high
persistence, 0.63 and 0.62, respectively; predicting high chronicity,
0.73 and 0.65, respectively; predicting hospitalization, 0.74 and
0.69, respectively; predicting disability, 0.76 and 0.70, respectively;
and predicting attempted suicide. (Table 2) The AUCs of the ML
scores were somewhat higher than those of the logistic regression
scores for all five outcomes despite the ML scores being based

on models that used only 9–13 predictors compared with
23 predictors in the logistic models and the fact that the
ML-predicted values were based on multiple imputation rather
than direct estimation.

Operating characteristics of the composite-imputed risk score
The 20% of Survey 1 respondents with highest ML composite-
imputed predicted risk scores accounted for 38.1% of high
persistence in the years between the two surveys, 34.6% of high
chronicity, 40.8% of hospitalizations for depression, 55.8% of
disability because of depression and 55.8% of attempted suicides.
Sensitivities were substantially higher (49.7–70.7%) in the 33% of
Survey 1 respondents with highest predicted risk scores (Table 3).
Positive predictive values of the outcomes in the 20% of
respondents with highest predicted risk scores were in the range
8.8–18.3% (that is, 1.8–3.0 times the positive predictive values in
the remaining 80% of the sample), while positive predictive values
were 6.3–17.5% in the 33% of respondents with highest predicted
risk (that is, 1.5–2.2 times the positive predictive values in the
remaining 67% of the sample).
The ML-predicted risk scores were also useful at the low end of

the distribution, as seen most vividly in the fact that the 20% of
Survey 1 respondents with lowest predicted risk accounted for
only 0.9% of all hospitalizations and 1.5% of all attempted suicides
in the 10–12 years between surveys. This means that low
ML-predicted risk scores can be used as rule-outs for these
outcomes (LR+= 0.0–0.1). Sensitivities for other outcomes in this
20% of respondents with lowest predicted risk were 5.6–15.9%,
while those of the 33% of respondents with lowest predicted risk
were 9.7–16.7%. Positive predictive values of the outcomes in the
20% of respondents with lowest predicted risk were 0.3–6.7%
(that is, 0.0–0.8 times the positive predictive values in the
remaining 80% of the sample), while positive predictive values
were 0.9–4.2% in the 33% of respondents with lowest predicted
risk (that is, 0.3–0.5 times the positive predictive values in the
remaining 67% of the sample).

DISCUSSION
Four important limitations of the WMH models should be noted
before discussing the results. First, MDD was assessed with a fully
structured diagnostic interview rather than a semi-structured
clinical interview. Second, the models were developed in a cross-
sectional sample using retrospective reports that could have been

Table 1. Distributions and polychoric/tetrachoric correlations among the outcomes in the Surveys 1 and 2 panels (N= 1056)

Distribution Correlations with indications of severity

Est. s.e.m. Hospitalized Suicide attempt Disability

Number of years since Survey 1 with episodes lasting 2+ weeks
Any (%) 37.9 1.7 0.49 0.34 0.49
Number (mean) 2.0 0.2 0.46 0.38 0.49
High persistence (90th percentile (9+ years)) (%) 9.7 1.5 0.46 0.47 0.53

Number of years since NCS with episodes lasting most days
Any (%) 16.7 1.5 0.23 0.22 0.49
Number (mean) 0.8 0.1 0.30 0.30 0.53
High chronicity (90th percentile (4+ years)) (%) 8.4 1.0 0.29 0.29 0.58

Severity
Hospitalized for MDD since Survey 1 (%) 5.8 1.1 — 0.84 0.76
Suicide attempt since Survey 1 (%) 4.5 0.8 0.84 — 0.51
Disabled due to MDD at Survey 2 (%) 3.2 0.6 0.76 0.51 —

Abbreviations: MDD, major depressive disorder; NCS, national compensation survey.

Table 2. AUC of Survey 1 risk scores based on ML models and logistic
regression models predicting Survey 2 outcomes (N= 1056)

AUC of risk scores based on

ML models Logistic models

High persistence 0.71 0.68
High chronicity 0.63 0.62
Hospitalization 0.73 0.65
Disability 0.74 0.69
Suicide attempt 0.76 0.70

Abbreviations: AUC, area under the receiver operating characteristic curve;
ML, machine learning.
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biased. Third, because the data were retrospective, predictors
were limited in two important ways: the predictors for comorbid
disorder did not include those with first onsets subsequent to first
onset of MDD; and no predictors were included for MDD course
subsequent to first onset. Both these types of predictors would
normally be available to clinicians interested in evaluating
differential patient risk for MDD persistence severity. Because of
these limitations, we would expect the performance of the WMH
models to be lower bounds on the performance of models with a
more complete set of predictors. Fourth, only a limited set of ML
methods was used to develop the WMH models. Because of
these limitations, it would be useful to replicate and expand the
model development and validation process illustrated here in
prospective clinical samples using consistently administered
semi-structured clinical interviews with a more complete set of
predictors using additional ML algorithms (for example, naive
Bayesian, random forests and support vector machines)27 and an
optimal combined suite of algorithms to maximize cross-validated
prediction accuracy.28

Within the context of these limitations, the validation exercise
reported here confirmed the predictive value of the kinds of
self-report variables included in the WMH ML models over a 10–12
year follow-up period in an independent sample of the US
household population. We also showed that prediction accuracy
(AUC) of the ML models was consistently higher across all study
outcomes (0.63–0.76) than a more conventional logistic model
(0.62–0.70) despite the logistic model including 23 predictors and
the ML models 9–13 predictors. This finding illustrates the value of
ML methods in stabilizing predictions to avoid overfitting in a
training data set (that is, the WMH sample), so as to improve
prediction in independent samples.
A question can be raised how well the WMH ML composite risk

score prediction accuracy compares with previous attempts to
predict long-term depression persistence severity. Only a handful
of relevant comparison studies exist over a follow-up period
of 10+ years in samples of initially depressed patients29,30 or
community residents.31,32 These studies were all quite small
(n= 87–424) and none reported AUC. However, AUC can be
computed post hoc from two of these studies. The first was a
50-year follow-up of 293 community respondents classified
post hoc as having had baseline DSM-IV MDD, 20 of whom

subsequently died by suicide.32 A composite measure of baseline
depression severity predicted subsequent suicide with 0.69 AUC
compared with 0.76 for the validated AUC of the most comparable
Survey 2 outcome (attempted suicide). The second comparison
study followed 313 outpatients with initial diagnoses of MDD 1, 4
and 10 years after baseline and predicted persistent depression
over that time period from 10 baseline depressive symptoms
along with 10 baseline measures of self-concept, social function
and coping. The AUC of 0.70 is quite similar to the 0.71 AUC for
the most comparable Survey 2 outcome of high persistence.
In making these comparisons, it is important to remember that

the AUCs in these other studies were not validated in independent
samples. As noted above, AUC estimates in the Surveys 1 and 2
panels were ~ 10% lower than in the WMH sample. Shrinkage
would be expected to be even greater in the earlier studies
because of their much smaller samples than in the broadly
representative WMH sample of 8261 respondents. Prediction
models in the two comparison studies might consequently yield
validated AUCs below 0.60 in independent samples. AUCs in that
range are considered small based on conventional guidelines,
while WMH ML AUCs would typically be considered moderate.33–35

It is noteworthy that AUC of the ML models in Surveys 1 and 2
was similar to widely used risk models in other areas of
medicine.36,37 For example, the 0.73 mean AUC of the ML models
over the four Survey 2 outcomes other than high chronicity is
similar to the 0.74 average AUC of the Framingham Risk Score of
coronary heart disease, one of the most widely used prediction
scores in medicine, across 79 different validation studies,38 and
higher than the AUCs (typically below 0.70) of models to predict
the course of breast cancer.39 Nonetheless, these AUCs are only
moderate, which means that predictions based on such models
could not be used to make definite rule-ins and could be used to
make definite rule-outs only for risks of hospitalization and suicide
attempts in the lowest 20% of the composite risk distribution. But
this level of precision could be useful in defining bands of
differential risk warranting variation in clinical attention. Tiered risk
assessments of this sort are becoming increasingly important in
other areas of medicine.40–42

Given that predictions based on models of the sort evaluated
here would most realistically be used to help clinicians identify
patients who might more profit from more intensive treatment

Table 3. Sensitivity, positive predictive value and likelihood-ratio positive of Survey 1 risk scores based on ML models in the upper and lower 20 and
33% of the risk distribution predicting Survey 2 outcomes (N= 1056)

High persistence High chronicity Hospitalization Disability Suicide attempt

Est. s.e.m. Est. s.e.m. Est. s.e.m. Est. s.e.m. Est. s.e.m.

Sensitivity
Highest 20% 38.1 4.2 34.6 7.3 40.8 6.8 55.8 6.6 55.8 6.9
Highest 33% 62.2 4.8 49.7 6.7 66.6 3.2 68.3 5.8 70.7 3.8
Lowest 33% 10.5 3.7 16.7 5.9 11.8 4.2 9.7 2.9 10.6 2.7
Lowest 20% 5.6 1.8 15.9 5.8 0.9 0.9 7.4 3.0 1.5 0.7

Positive predictive value
Highest 20% 18.3 3.5 14.4 3.2 13.1 3.0 8.8 1.8 12.5 2.7
Highest 33% 17.5 2.8 12.2 2.3 12.5 2.6 6.3 1.5 9.3 1.7
Lowest 33% 3.1 1.3 4.2 1.5 2.3 1.1 0.9 0.5 1.4 0.7
Lowest 20% 2.7 1.0 6.7 2.4 0.3 0.3 1.2 0.7 0.3 0.2

Likelihood-ratio positive
Highest 20% 2.1 0.4 1.8 0.4 2.2 0.5 2.9 0.6 3.0 0.5
Highest 33% 2.0 0.2 1.5 0.2 2.1 0.2 2.1 0.3 2.2 0.2
Lowest 33% 0.3 0.1 0.5 0.2 0.3 0.1 0.3 0.1 0.3 0.2
Lowest 20% 0.3 0.1 0.8 0.3 0.0 0.0 0.4 0.2 0.1 0.0

Abbreviation: ML, machine learning.

Testing a machine-learning algorithm for MDD
RC Kessler et al

1369

© 2016 Macmillan Publishers Limited, part of Springer Nature. Molecular Psychiatry (2016), 1366 – 1371



(for example, long-term maintenance therapy), the vast majority
of whom present for treatment of recurrent rather than incident
episodes, an obvious future direction should be to go beyond the
WMH model focus on incident episodes to develop expanded
models in the Surveys 1 and 2 panels focused on recurrent
episodes. Such an expansion could evaluate the incremental value
of including new predictors for course of MDD between onset
and time of Survey 1, secondary comorbid disorders, and other
variables found to be important in previous studies of the course
of depression (for example, childhood family adversities, history of
traumatic stress exposure, comorbid physical disorders, social
networks-support, personality). We plan to implement this kind of
expansion in future work with the Surveys 1 and 2 panels.
Beyond our own work with these data, it would be useful to

develop an interview schedule to assess the full set of self-report
predictors found in the WMH data and in the earlier studies
reviewed above to use in future depression treatment trials. Such
an instrument, if administered at trial baseline, could be used as
part of a principled approach to study heterogeneity of treatment
effects.43,44 An even more promising extension given the small
size of most depression treatment trials might be to administer
this same instrument to a large observational sample of patients
beginning depression treatment, follow these patients to assess
treatment response and analyze these data to develop a robust
model predicting heterogeneity of treatment effects. In addition
to providing an a priori representation of predicted treatment
response for use in subsequent controlled trials, such a model
could be useful in targeting depressed patients with high risk
of treatment resistance at the beginning of treatment who
might warrant the substantial investment currently being made in
large pragmatic trials to determine the value of expensive base-
line biomarker assessments in guiding depression treatment
targeting.8,9 It would also be valuable in this context to evaluate
the 'incremental' value of promising biomarkers to prediction over
and above the level of prediction accuracy achieved in a model
based only on baseline self-reports.45

Risk stratification data from a large observational study of this
sort could also be analyzed using an extension of the innovative
statistical approaches recently developed to study comparative
effectiveness in observational studies.46 The potential value of
such an approach is supported both by evidence that treatment
effect size estimates in appropriately analyzed observational
studies are comparable with those in controlled trials47 and by
the existence of numerous replicated predictors of heterogeneity
of depression treatment effects in existing trials.14,15,48,49 The use
of an expansion of our model in this way would address two
important problems in previous research on heterogeneity of
depression treatment effects: the small sample sizes of depression
treatment trials;50,51 and the fact that most such trials assess only a
small number of potential treatment effect modifiers, thus
providing no principled basis for using pooling across trials to
develop the kind of fine-grained multivariate models of hetero-
geneity of treatment effects that will eventually be needed to
guide personalized depression treatment planning.44 The results
presented in the current report, while only taking a first step in
this direction, provide strong support for the potential value of
this possible extension.
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