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Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received
considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately
regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top
single-nucleotide polymorphisms (SNPs) followed-up in ~ 30 062 and 7964 coffee consumers of European and African-American
ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for
putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)45.64)
with per-allele effect sizes of 0.03–0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics
(ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related
to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of
many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR,
MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking
initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver
enzyme profiles (Po5 × 10− 8).Our genetic findings among European and African-American adults reinforce the role of caffeine
in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in
pharmacological and health effects of coffee.
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INTRODUCTION
Coffee is among the most widely consumed beverages in the
world.1 North American coffee drinkers typically consume ~ 2 cups
per day while the norm is at least 4 cups in many European
countries.1 In prospective cohort studies, coffee consumption is
consistently associated with lower risk of Parkinson’s disease, liver
disease and type 2 diabetes.2 However, the effects of coffee on
cancer development, cardiovascular and birth outcomes and other
health conditions remain controversial.2 For most populations,
coffee is the primary source of caffeine, a stimulant also present in
other beverages, foods and medications.1,3 The fifth edition of the
Diagnostic and Statistical Manual of Mental Disorders does not
include a diagnosis of caffeine dependence or abuse due to a
paucity of evidence but lists caffeine intoxication and withdrawal
as disorders.4 Knowledge of factors contributing to coffee’s
consumption and physiological effects may greatly advance the

design and interpretation of population and clinical research on
coffee and caffeine.5 Genetic factors could be especially valuable
as they offer ways to study the potential health effects of coffee
via instrumental variables or gene–environment interactions.5

Heritability estimates for coffee and caffeine use range between
36 and 58%.6 Genome-wide association studies (GWAS) of
habitual caffeine and coffee intake have identified variants near
CYP1A2 and aryl hydrocarbon receptor (AHR).7–9 Cytochrome P450
(CYP)1A2 is responsible for ~ 95% of caffeine metabolism in
humans and AHR has a regulatory role in basal and substrate-
induced expression of target genes, including CYP1A1 and
CYP1A2.10,11

To identify additional loci, we conducted a staged genome-
wide (GW) meta-analysis of coffee consumption including over
120 000 coffee consumers sourced from population-based studies
of European and African-American ancestry.
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MATERIALS AND METHODS
Study design and populations
Supplementary Figure S1 depicts an overview of the current study. We
performed a meta-analysis of GWAS summary statistics from 28 population-
based studies of European ancestry to detect single-nucleotide polymorph-
isms (SNPs) that are associated with coffee consumption. Top loci were
followed-up in studies of European (13 studies) and African-American (7
studies) ancestry and confirmed loci were explored in a single Pakistani
population. Detailed information on study design, participant characteristics,
genotyping and imputation for all contributing studies are provided in the
Supplementary Information and Supplementary Tables S1–S6.

Phenotype
All phenotype data were previously collected via interviewer- or self-
administered questionnaires (Supplementary Table S1). Our primary
phenotype (‘phenotype 1’) was cups of predominately regular-type coffee
consumed per day among coffee consumers. Coffee data collected
categorically (for example, 2–3 cups per day) were converted to cups
per day by taking the median value of each category (for example, 2.5 cups
per day). A secondary analysis was performed comparing high with
infrequent/non-coffee consumers (‘phenotype 2’). A subset of stage 1
studies collected information on decaffeinated coffee consumption; which
was examined in follow-up analysis of the confirmed loci.

Statistical analysis
Each stage 1 (discovery) study performed GWA testing for each phenotype
across ~ 2.5 million genotyped or imputed autosomal SNPs (HapMap II,
Centre d’Etude du Polymorphisme Humain (CEU) reference), based on
linear (cups per day, phenotype 1) or logistic (high vs none/low, phenotype
2) regression under an additive genetic model. Analyses were adjusted for
age, smoking status and, when applicable, sex, case–control status, study
site, family structure and/or study-specific principal components of
population substructure (Supplementary Table S7). SNPs with minor allele
frequency o0.02 or with low imputation quality scores were removed
before meta-analysis (Supplementary Table S5). The GWAtoolbox (see
Supplementary Information for URLs) was used for initial quality control.
Minor allele frequencies and a plot comparing (1/median standard error of
effect size) vs (square root of sample size) for each study were also reviewed
for outliers and these were addressed before the final meta-analysis.
For both phenotypes, GW meta-analysis was conducted using a fixed-

effects model and inverse-variance weighting with a single genomic
control correction as implemented in METAL12 and GWAMA13 (r40.99 for
correlation between METAL and GWAMA results). The phenotypic variance
explained by additive SNP effects was estimated in the Women’s Genome
Health Study (WGHS, n= 15 987 with identity-by-state o0.025) using
GCTA.14 Stage 1 summary statistics were also subjected to pathway
analysis using MAGENTA15 (Supplementary Information).
For regions achieving association P-values o5× 10− 8 (7p21, 7q23.11,

11p13 and 15q24), we performed conditional analysis using the summary
statistics from the meta-analysis to test for the association of each SNP
while conditioning on the top SNPs, with correlations between SNPs due
to linkage disequilibrium (LD) estimated from the imputed genotype data
from the Atherosclerosis Risk in Communities cohort,16 a large and
representative cohort of men and women of European ancestry.
Our approach to select SNPs for replication (stage 2) is described in

Supplementary Information. Stage 2 meta-analyses were performed
separately for European and African-American populations, using the
same statistical models and methods as described for stage 1, but without
genomic control (Supplementary Information).
Studies from all stages were included in an overall meta-analysis using

MANTRA (Meta-ANalysis of TRans-ethnic Association) studies ;17 which
adopts a Bayesian framework to combine results from different ethnic
groups by taking advantage of the expected similarity in allelic effects
between the most closely related populations. MANTRA was limited to
SNPs selected for replication thus no genomic control was applied. A
random-effects analysis using GWAMA was performed in parallel to obtain
effect estimates, which are not generated by MANTRA. The GW-
significance threshold of log10 BF 45.64 approximates a traditional GW
P-value threshold of 5 × 10− 8 under general assumptions.18,19 Subgroup
analysis and meta-regression were performed to investigate possible
sources of between-study heterogeneity (Supplementary Information).

Fine-mapping. To assess the improvement in fine-mapping resolution
due to trans-ethnic meta-analysis, we applied the methods of Franceschini
et al.17 to stage 1 and stage 2 (African Americans only) GW-summary level
data (Supplementary Information).

Potential SNP function and biological and clinical inferences
Details pertaining to follow-up of confirmed loci are provided in the
Supplementary Information. Briefly, all confirmed index SNPs and their
correlated proxies were examined for putative function using publicly
available resources. Bioinformatics and computational tools were used to
systematically mine available knowledge and experimental databases to
inform biological hypotheses underlying the link between loci and coffee
consumption as well as connections between loci. For these analyses all
genes mapping to the confirmed regions were considered as potential
candidates. Finally, we searched the National Human Genome Research
Institute GWAS catalog20 and Metabolomics GWAS server21 for all GW-signifi-
cant associations with our confirmed coffee SNPs. Complete GWAS summary
data for coffee-implicated diseases or traits were additionally queried.

RESULTS
SNPs associated with coffee consumption
Discovery stage. Results from the discovery stage are summarized
in Supplementary Figures S2–S5. Little evidence for genomic inflation
(λo1.07) was observed for either phenotype. The two analyses
yielded similarly ranked loci and significant enrichment of ‘xenobiotic’
genes (MAGENTA’s FDRo0.006), suggesting no major difference in
the genetic influence on coffee drinking initiation compared with the
level of coffee consumption among coffee consumers at these loci.
Overall, ~ 7.1% (standard error: 2%) of the variance in coffee cups
consumed per day (phenotype 1) could be explained by additive and
common SNP effects in the WGHS.
Conditioning on the index SNPs of each region achieving

association P-values o5 × 10− 8 (7p21, 7q23.11, 11p13 and 15q24)
in the discovery stage provided little evidence for multiple
independent variants (Supplementary Figure S6). Only four of
the SNPs on chromosome 7 were potentially independent and
carried forward with other promising SNPs.

Replication and trans-ethnic meta-analysis. Forty-four SNPs span-
ning thirty-three genomic regions met significance criteria for
candidate associations and were followed-up in stage 2
(Supplementary Tables S8–S13). Eight loci, including six novel,
met our criteria for GW significance (log10 BF45.64) in a trans-
ethnic meta-analysis of all discovery and replication studies
(Table 1; Supplementary Tables S14–S16; Supplementary Figures
S7 and S8). Confirmed loci have effect sizes of 0.03–0.14 cups
per day per allele and together explain ~ 1.3% of the phenotypic
variance of coffee intake. We were underpowered to replicate these
associations in a Pakistani population (Supplementary Information).

Functional and biological inferences
Enhancer (H3K4me1) and promoter (H3K4me3) histone marks
densely populate many of these regions and several non-
synonymous and potential regulatory SNPs are highly correlated
(r240.8) with the lead SNP and thus strong candidates for being a
causal variant (Table 2; Supplementary Information; Supplementary
Tables S17–S19). Candidate genes form a highly connected network
of interactions, featuring discernible clusters of genes around brain-
derived neurotrophin factor (BDNF) and AHR (Figure 1;
Supplementary Information; Supplementary Tables S20 and S21).
At least one gene in each of the eight regions (i) is highly expressed
in brain, liver and/or taste buds, (ii) results in phenotype abnor-
malities relevant to coffee consumption behavior when modified in
mice and (iii) is differentially expressed in human hepatocytes when
treated with high (7500 μM) but not low (1500 μM) doses of caffeine
(Table 2; Supplementary Tables S22–S24).
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Additional genomic characterization of the top loci allows
further biological inference as follows:

(i) Previously identified loci near AHR (7p21) and CYP1A2 (15q24).
Consistent with previous reports in smaller samples,7–9 the
intergenic 7p21 and 15q24 loci near AHR and CYP1A1/CYP1A2
respectively remained the most prominent and highly hetero-
geneous loci associated with coffee consumption. The same
index SNPs were identified in European and African Americans,
suggesting that they are robust HapMap proxies for causal
variants in these two populations. Cohort-wide mean coffee
consumption explained part of the heterogeneity in study results
for both loci (Supplementary Table S25; Supplementary
Information). The rs2472297 T and rs4410790 C alleles associated
with increased coffee consumption have recently been associated
with lower plasma caffeine levels21 and shown to increase
CYP1A2-mediated metabolism of olanzapine.22 The C allele of
rs4410790 is also positively correlated with cerebellum AHR
methylation, suggesting a novel role of Ahr in motor or learning
pathways that may trigger coffee consumption. The most
significant variants at 15q24 reside in the CYP1A1-CYP1A2
bidirectional promoter where AHR response elements have been
identified and shown to be important for transcriptional activation
of both CYP1A1 and CYP1A2.23 The rs2472297 T variant putatively
weakens the binding of SP1, a co-activator in the Ahr–Arnt
complex regulating CYP1 locus transcription24 and is also
implicated in the expression of several neighboring genes. The
latter observation, together with this region’s high LD and long
range chromatin interactions (Supplementary Figure S9), suggests
a regulatory network among these genes.

(ii) Novel loci at 7q11.23 (POR) and 4q22 (ABCG2) likely function in
caffeine metabolism. Variants at 7q11.23 (rs17685) and 4q22
(rs1481012) map to novel yet biologically plausible candidate
genes involved in xenobiotic metabolism. rs17685 maps to the
3’UTR of POR, encoding P450 oxidoreductase which transfers
electrons to all microsomal CYP450 enzymes.25 The rs17685 A
variant associated with higher coffee consumption is linked to
increased POR expression and potentially weakens the DNA
binding of several transcriptional regulatory proteins including
BHLHE40, which inhibits POR expression.26 The same SNP is in LD
(CEU: r2 = 0.93) with POR*28 (rs1057868 and Ala503Val), which is
associated with differential CYP activity depending on the CYP
isoform, substrate and experimental model used.27 rs1481012 at
4q22 maps to ABCG2, encoding a xenobiotic efflux transporter.
rs1481012 is in LD (CEU: r2 = 0.92) with rs2231142 (Gln141Lys), a
functional variant at an evolutionarily constrained residue.28

However, fine-mapping of this region on the basis of reduced
LD in the African-American sample limited an initial 189 102-kb
region to a credible span of 6249 kb (Supplementary Table S16)
that excluded rs2231142.

(iii) Novel loci at 11p13 (BDNF) and 17q11.2 (‘SLC6A4’) likely mediate
the positive reinforcing properties of coffee constituents. The index
SNP at 11p13 is the widely investigated missense mutation
(rs6265 and Val66Met) in BDNF (Supplementary Table S26). BDNF
modulates the activity of serotonin, dopamine and glutamate, and
neurotransmitters involved in mood-related circuits and have a
key role in memory and learning.29 The Met66 allele impairs
neuronal activity-dependent BDNF secretion30 and thus may
attenuate the rewarding effects of coffee and, in turn, motivation
to consume coffee. The increasingly recognized roles of BDNF in
the chemosensory system and conditioned taste preferences may
also be relevant.31 The index SNP (rs9902453) at 17q11.2 maps to
the EFCAB5 gene and is in LD (CEU: r240.8) with SNPs that alter
regulatory motifs for AhR32 in the neighboring gene NSRP1, but
neither gene is an obvious candidate for coffee consumption.
Upstream of rs9902453 lies a possibly stronger candidate: SLC6A4Ta
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encoding the serotonin transporter. Serotonergic neurotransmis-
sion affects a wide range of behaviors including sensory
processing and food intake.33

(iv) Novel loci at 2p24 (GCKR) and 17q11.2 (MLXIPL). Variants at
2p24 (rs1260326) and 7q11.23 (rs7800944) map to GCKR and
MLXIPL, respectively. The former has been associated with plasma
glucose and multiple metabolic traits and the latter with plasma
triglycerides (Table 3; Supplementary Table S27). Adjustment of
regression models for plasma lipids in the WGHS (n~ 17 000) and
plasma glucose in TwinGene (n~ 8800) did not significantly
change the relationship between SNPs at these two loci and
coffee consumption (P40.48, Supplementary Tables S28 and S29).
The rs1260326 T allele encodes a non-synonymous change in the
encoded, glucokinase regulatory protein leading to increased
hepatic glucokinase activity.34 Glucokinase regulatory protein and
glucokinase may also cooperatively function in the glucose-
sensing process of the brain35 that may, in turn, influence central
pathways responding to coffee constituents. A direct link between
MLXIPL and coffee consumption remains unclear, except for the
interactions with other candidate genes (Figure 1). Experimental
evidence and results from formal prioritization analyses also
warrants consideration of other candidates in these regions
(Figure 1; Table 2; Supplementary Tables S23). For example, in the
frontal cortex, the rs1260326 allele positively associated with
coffee consumption correlates with lower methylation of PPM1G; a
putative regulatory target for AhR and binding target for PPP1R1B,
which mediates psychostimulant effects of caffeine.36

Pleiotropy and clinical inferences
None of the eight loci was significantly associated with caffeine
taste intensity (P40.02) or caffeine-induced insomnia (P40.08),

according to previously published GWAS of these traits.37–39 SNPs
near AHR associated with higher coffee consumption were also
significantly associated with higher decaffeinated coffee con-
sumption (~0.05 cups per day, Po0.0004, n= 24 426); perhaps a
result of Pavlovian conditioning among individuals moderating
their intake of regular coffee or the small amounts of caffeine in
decaffeinated coffee.1

Across phenotypes in the GWAS catalog,20 the alleles leading to
higher coffee consumption at 2p24, 4q22, 7q11.23, 11p13 and
15q24 have been associated with one or more of the following:
smoking initiation, higher adiposity and fasting insulin and
glucose but lower blood pressure and favorable lipid, inflamma-
tory and liver enzyme profiles (Po5 × 10− 8, Table 3; Supple-
mentary Table S27). Focused on metabolic, neurologic and
psychiatric traits for which coffee has been implicated (Table 3;
Supplementary Table S32), there were additional sub-GW
significant associations in published GWAS. Variants associated
with higher coffee consumption increased adiposity (rs1481012,
P= 4.85 × 10− 3), birth weight (rs7800944, P= 2.10 × 10− 3), plasma
high-density lipoprotein (HDL, rs7800944, P= 2.24 × 10− 3), risk of
Parkinson’s disease (rs1481012, P= 7.11 × 10− 3), reduced blood
pressure (rs6265, P= 6.58 × 10− 4; rs2472297, Po6.80 × 10− 5 and
rs9902453, P= 6.05 × 10− 3), HDL (rs6968554, P= 1.18 × 10− 3), risk
of major depressive disorder (rs17685, P= 6.98 × 10− 3) and bipolar
disorder (rs1260326, P= 2.31 × 10− 3). Associations with adiposity,
birth weight, blood pressure, HDL and bipolar disorder remain
significant after correcting for the number of SNPs tested.

DISCUSSION
Coffee’s widespread popularity and availability has fostered public
health concerns of the potential health consequences of regular
coffee consumption. Findings from epidemiological studies of

Table 2. Potential function of loci associated with coffee consumptiona

Locus Gene expression
response to caffeineb

Lead-SNP, allele
↑coffee consumptionc

Non-Syn
SNPs in LDd

CRe DNAsef Proteins
boundg

Histone
marksh

Motifs changedi eQTLj mQTLk

2p24 GCKR, CCDC121, FNDC4,
ZNF513, SNX17, PPM1G,
GPN1, SUPT7L, MPV17,

SLC4A1AP, PREB, ATRAID,
GTF3C2

rs1260326, C Leu446Pro ✓ ✓ ✓ Enhancer NRSF EIF2B4, SNX17,
NRBP1

KRTCAP3, PPM1G

4q22 ABCG2, SPP1 rs1481012, A ✓ ✓ ✓ ✓ Enhancer AIRE, Zfp105
7p21 AHR rs4410790, C

rs6968554, G
✓ ✓ Cdx2, DMRT3, E4BP4,

Foxa, GR, Hoxa10, Hoxa9,
Hoxb13, Hoxb9, Hoxc9,
Hoxd10, Myc, p300, TR4

AHR

7q11.23 MLXIPL, BCL7B, DNAJC30,
TBL2, WBSCR22

rs7800944, C ✓ ✓ Promoter
enhancer

AP-4, BHLHE40, GATA,GR,
Irf, Pax-5

WBSCR22, MLXIPL FZD9

7q11.23 RHBDD2, POR STYXL1,
TMEM120A, MDH2,

HSPB1

rs17685, A ✓ ✓ ✓ ✓ Arnt, BHLHE40, DEC,Ets,
Mxi1,Myc, Pax-5,
Sin3Ak-20, TFE

RHBDD2, POR,
TMEM120A,

STYXL1, MDH2

STYXL1

11p13 CCDC34, LIN7C, METTL15, rs6265, C Val66Met ✓ ✓ ✓ Promoter
enhancer

BHLHE40, Myc, SREBP

15q24 PPCDC, ARID3B, ULK3,
SEMA7A, EDC3, COX5A,

CSK, RPP25, MPI

rs2470893, T
rs2472297, T

SP1 MPI, SCAMP2,
ULK3, ISLR,

SNUPN, RPP25,
CSK,

SCAMP2

17q11.2 TAOK1, SLC6A4 NSRP1,
BLMH

rs9902453, G ✓ ✓ ✓ ✓ Promoter
enhancer

STAT GIT1, ATAD5,
SLC6A4

NSRP1, ANKRD13B,
CRLF3, CORO6

Abbreviations: CEU, Centre d’Etude du Polymorphisme Humain; CR, conserved region; eQTL, expression quantitative trait loci; LD, linkage disequilibrium;
mQTL, methylation quantitative trait loci; SNP, single-nucleotide polymorphism. aSee Supplementary Information for details and references to data resources.
bIn vitro human hepatic gene expression in response to caffeine. Red and green font corresponds to increased and decreased expression, respectively. cLead
SNP allele associated with higher coffee consumption. dCheck marks (✓) denote the presence of non-synonymous SNPs in LD (CEU: r2⩾ 0.80) with lead SNP
(details provided for lead SNP only). eCheck marks (✓) denote the presence of a conserved region (spanning lead SNP and its correlated proxies, CEU: r2⩾ 0.8).
fCheck marks (✓) denote the presence of DNAse hypersensitivity sites at region spanning lead SNP and its correlated proxies, CEU: r2⩾ 0.8. gCheck marks (✓)
denote the presence of proteins bound at region spanning lead SNP and its correlated proxies, CEU: r2⩾ 0.8. hEnhancer (H3K4me1) or promoter (H3K4me3)
histone marks (as defined by Ernst et al.32) spanning lead SNP and its correlated proxies, CEU: r2⩾ 0.8. iRegulatory motifs altered by lead SNP. jExpression QTLs
for lead SNP or perfect proxy (CEU: r2= 1) derived from lymphoblastoid cell lines, blood, or liver, adipose and brain tissues. Red and green font corresponds to
increased and decreased expression, respectively, relative to allele associated with higher coffee consumption. Direction of GITI expression is not available.
kMethylation QTLs for lead SNP derived from cerebellum and frontal cortex. Red and green font corresponds to increased and decreased expression,
respectively, relative to allele associated with higher coffee consumption.
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coffee consumption and certain health conditions remain contro-
versial.2 Knowledge of genetic factors contributing to coffee’s
consumption and physiological effects may inform the design and
interpretation of population and clinical research on coffee.5 In the
current report, we present results of the largest GWAS of coffee
intake to-date and the first to include populations of African-
American ancestry. In addition to confirming associations with
AHR and CYP1A2, we have identified six new loci, not previously
implicated in coffee drinking behavior.
Our findings highlight an important role of the pharmacokinetic

and pharmacodynamic properties of the caffeine component of
coffee underlying a genetic propensity to consume the beverage.
Loci near BDNF and SLC6A4 potentially impact consumption
behavior by modulating the acute behavioral and reinforcing
properties of caffeine. Others near AHR, CYP1A2, POR and ABCG2
act indirectly by altering the metabolism of caffeine and thus the
physiological levels of this stimulant. The strength of these four
associations with coffee intake, along with results from pathway
analysis showing significant enrichment for ‘xenobiotic’ genes,
emphasize an especially pronounced role of caffeine metabolism
in coffee drinking behavior. The current study is the first to
link GCKR and MLXIPL variation to a behavioral trait. The non-

synonymous rs1260326 SNP in GCKR has been a GW signal for
various metabolic traits particularly those reflecting glucose
homeostasis (Table 3). GCKR variation may impact the glucose-
sensing process of the brain35 that may, in turn, influence central
pathways responding to coffee constituents. Methylation quanti-
tative trait loci and binding motif analysis suggest that PPM1G
may be another candidate underlying the association between
rs1260326 and coffee consumption. Variants near MLXIPL have
also topped the list of variants associated with plasma triglycer-
ides (Table 3), but their link to coffee consumption remains
unclear. Future studies on the potential pleiotropic effects of these
two loci are clearly warranted. Interestingly, several candidate
genes implicated in coffee consumption behavior, but not
confirmed in our GWAS, interact with one or more of the eight
confirmed loci (Figure 1). While these findings are encouraging for
ongoing efforts they also emphasize the need to study sets or
pathways of genes in the future.
Specific SNPs associated with higher coffee consumption have

previously been associated with smoking initiation, higher
adiposity and fasting insulin and glucose but lower blood pressure
and favorable lipid, inflammatory and liver enzyme profiles.
Whether these relationships reflect pleiotropy, confounding or

Figure 1. Network describing direct interactions between candidate genes of confirmed loci. Relationships were retrieved from databases of
transcription regulation and protein–protein interaction experiments (Supplementary Table S21). Genes are represented as nodes that are
colored according to locus. Candidate genes for loci identified in the current study were supplemented with known candidate genes related
to caffeine pharmacology (gray nodes). Edges indicate known interactions.
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offer insight to the potential causal role coffee plays in these traits
merits further investigation. Future research, particularly Mende-
lian Randomization and gene–coffee interaction studies, will need
to consider the direct and indirect roles that each SNP has in
altering coffee drinking behavior as well as the potential for
interactions between loci (Figure 1). The heterogeneous effects
specific to AHR- and CYP1A2-coffee associations point to SNP-
specific interactions with the environment or population char-
acteristics that might also warrant consideration (Supplementary
Information).
The strong cultural influences on norms of coffee drinking may

have reduced our power for loci discovery. This might, in part,
underlie our lack of replication in a Pakistani population, wherein
coffee consumption is extremely rare. Methodological limitations
specific to our approach may also have reduced our power for loci
discovery or precision in estimating effect sizes (Supplementary
Information). For example, some studies collected coffee data in
categories of cups per day (for example, 2–3 cups per day)
rendering a less precise record of intake as well as a non-Gaussian
distributed trait for analysis. The precise chemical composition of
different coffee preparations is also not captured by standard food
frequency questionnaire and is likely to vary within and between
populations. Nevertheless, the eight loci together explain ~ 1.3%
of the phenotypic variance, a value at least as great as that
reported for smoking behavior and alcohol consumption which
are subjected to similar limitations in GWAS.40,41

The additive genetic variance (or narrow-sense heritability) of
coffee intake as estimated by GCTA in WGHS (7%) is considerably
lower than estimates based on pedigrees (36–57%).6 The marked
discrepancies between the GCTA and pedigree estimates of
heritability may be due to one or more of the following: the
potential contribution of rare variants to heritability (not captured
by GCTA’s ‘chip-based heritability’), biases in pedigree analysis
resulting in overestimates of heritability, differences in phenotype
ascertainment or definition and cultural differences in the
populations studied.42

In conclusion, our results support the hypothesis that metabolic
and neurological mechanisms of caffeine contribute to coffee
consumption habits. Individuals adapt their coffee consumption
habits to balance perceived negative and reinforcing symptoms
that are affected by genetic variation. Genetic control of this
potential ‘titrating’ behavior would incidentally govern exposure
to other potentially ‘bioactive’ constituents of coffee that may be
related to the health effects of coffee or other sources of caffeine.
Thus, our findings may point to molecular mechanisms underlying
inter-individual variability in pharmacological and health effects of
coffee and caffeine.
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