
CONCISE REVIEW

The DEK oncoprotein and its emerging roles in gene
regulation
C Sandén and U Gullberg

The DEK oncogene is highly expressed in cells from most human tissues and overexpressed in a large and growing number of
cancers. It also fuses with the NUP214 gene to form the DEK-NUP214 fusion gene in a subset of acute myeloid leukemia. Originally
characterized as a member of this translocation, DEK has since been implicated in epigenetic and transcriptional regulation, but its
role in these processes is still elusive and intriguingly complex. Similarly multifaceted is its contribution to cellular transformation,
affecting multiple cellular processes such as self-renewal, proliferation, differentiation, senescence and apoptosis. Recently, the roles
of the DEK and DEK-NUP214 proteins have been elucidated by global analysis of DNA binding and gene expression, as well as
multiple functional studies. This review outlines recent advances in the understanding of the basic functions of the DEK protein and
its role in leukemogenesis.
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INTRODUCTION
The DEK gene was originally discovered as a fusion partner in the
(6;9)(p23;q34) chromosomal translocation in acute myeloid
leukemia (AML), described in detail below.1 Since then, DEK has
been shown to be expressed in most human cells and tissues and
overexpressed in tumors of different origin, including but not
limited to those of the skin, liver, breast, ovaries, brain, bladder
and colon.2–9 DEK has also generally been considered to be
upregulated in AML, based on increased expression in a majority
of patients in two independent studies.10,11 We also recently
showed that DEK protein levels are increased by multiple
leukemia-associated fusion proteins.12 Contrarily, another study
has shown the downregulation of DEK in pediatric AML and a
recent analysis of two large data sets showed lower expression of
DEK in adult AML than in normal bone marrow.13,14 However, its
well-established function in the proliferation, differentiation and
self-renewal of hematopoietic cells as well as its multiple roles in
carcinogenesis suggest that DEK may be a driver and possible
therapeutic target also in leukemia.15

DEK AND DNA BINDING
The DEK gene encodes a conserved and structurally unique
protein with orthologs in most higher eukaryotes but without
known human paralogs.16 The protein is 43 kDa in size and
contains 375 amino acids, of which all but 26 are included in the
DEK-NUP214 fusion protein.17 The domain structure is still
incompletely defined but certain structures have been related to
specific functions. The only part of DEK with homology to other
proteins is the SAP domain, which is located in the middle of the
protein sequence. This domain contains a helix–turn–helix motif
that resembles the Hox protein homeodomain and mediates
binding to DNA.18 SAP domains are found in DNA-binding
proteins with diverse functions in processes such as cell signaling,
DNA repair and chromosomal organization.19 The binding of DEK
to DNA is mediated both by the SAP domain and by a second

DNA-binding structure in the C-terminal end of the protein
(Figure 1).18 The specificity of the binding between DEK and DNA
has been investigated in several studies, demonstrating that it
depends on either the sequence or the structure of the chromatin
and that it correlates with the transcriptional activity of the gene.
It has been widely noted that the binding of DEK to DNA depends
on the structure rather than the sequence of the DNA, based on
the findings that DEK accumulates at specific chromatin structures
such as four-way DNA junctions and binds to several different
DNA sequences with similar affinity.20 DEK has also been shown to
bind DNA of various sequences in the absence of other
proteins.21,22 Sequence-specific binding has however been
demonstrated to the peri-ets site of the HIV-2 enhancer by
showing that DEK binds preferentially to this sequence over
unrelated sequences and that the binding is abolished upon
mutation of an essential nucleotide.23 In addition, DEK has been
shown to bind to different sequence variants of the class II major
histocompatibility complex promoter with varying affinity. Also,
this binding is abrogated by the introduction of a specific
mutation in the DNA.24 The distribution of the DEK protein
throughout the genome was recently determined by chromatin
immunoprecipitation sequencing in the myeloid U937 cell line.25

In this study, we demonstrated that DEK accumulates at the
transcription start sites of genes that are highly and ubiquitously
expressed across different cell types and tissues. The accumulation
of DEK protein at specific sites does not appear to be determined
by a specific DEK-binding motif but DEK-binding sites are enriched
for motifs for certain transcription factors, including PU.1 and SP1,
supporting the notion that such transcription factors may provide
the specificity in the interaction between DEK and DNA.

DEK AND GENE REGULATION
DEK is strongly implicated in gene regulation but its precise role
has remained elusive. Over the past two decades, several studies
have provided valuable insights but the results are still paradoxical
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at best and contradictory at worst. Regardless, we are still far from
a comprehensive view of the role of DEK in transcriptional
regulation. Immunofluorescent imaging has consistently localized
DEK to euchromatin.26–28 Immunoprecipitation studies have
confirmed that DEK associates with activating histone modifica-
tions such as H3K4me2/3 rather than repressive modifications such
as H3K9me3.27 DEK also displayed higher enrichment at the
promoter of the complement receptor 2 (CR2) gene in a cell line
expressing the CR2 gene than in a comparable cell line in which it
was silent. Induction of gene expression in the silent cell line by
treatment with the demethylation agent 5-aza-2’-deoxycytidine
conferred accumulation of DEK at the promoter.29 Conversely, the
binding of DEK to the topoisomerase 1 promoter was lost upon
transcriptional repression.26 DEK also coactivates the ecdysone
nuclear receptor in Drosophila melanogaster by serving as a
histone chaperone, incorporating histones with activating mod-
ifications into the chromatin at gene regulatory sites.27 Further-
more, DEK enhances the activity of the transcriptional activators
AP-2α and C/EBPα.30,31 DEK also interacts with the transcriptional
activator MLLT3 and promotes its transcriptional expression.32

There are thus many indications that DEK is associated with
transcriptional activation. However, DEK also associates with
heterochromatin binding protein 1α (HP1α) and strengthens its
binding to H3K9me3, thus preserving heterochromatin. Conse-
quently, knockdown of DEK markedly reduces the distribution of
constitutive heterochromatin.33 In addition, DEK associates with
the chromatin remodeling complex B-WICH, which is involved in
the replication of heterochromatin.34 Consistent with these
findings, the deposition of DEK onto chromatin inhibits the access
of endonucleases and the DNA replication machinery.21 DEK has
also been shown to inhibit several activating histone acetylations,
including those of H3K14 and H3K16. This action prevents
transcriptional activation by the histone acetyltransferases
p300 and PCAF.35 Specific inhibition of activating acetylations
in the promoter region appears to be the mechanism by
which DEK represses the transcription of the peroxiredoxin 6
gene.36 Additionally, DEK has been identified as a member
of a transcriptional repression complex with Daxx and has
been shown to antagonize transcription promoted by nuclear
factor-κB and tumor necrosis factor α.37,38 Thus, ample evidence
suggests that DEK has a role not only in the activation but also in

the repression of gene expression. We recently addressed the
complex role of DEK in transcriptional regulation by combining
genome-wide DNA-binding and gene expression analysis.25 Based
on these data, we could conclude that the binding of DEK to a
target gene may confer either transcriptional activation or
repression, thus consolidating the contradictory reports on the
role of DEK in gene regulation. However, the factors that
determine whether DEK serves to increase or decrease gene
expression in any given context remain unknown and their
identification should be a focus of future research.

DEK AND CELLULAR FUNCTION
Much like its complex role in transcriptional regulation, DEK is
involved in multiple cellular functions with implications for cancer
biology, including proliferation, differentiation, senescence and
apoptosis. Consistent with its well-documented role as an
oncogene, expression of DEK favors proliferation over differentia-
tion. DEK expression is generally high in rapidly proliferating cells
and decreases with differentiation.3,39,40 Our previous work has
confirmed this notion in primary hematopoietic cells.41 Depletion
of DEK by short hairpin RNA reduces cellular proliferation, whereas
overexpression promotes proliferation and prevents differentia-
tion of both keratinocytes and multiple breast cancer cell
lines.39,40 In the hematopoietic system, DEK contributes to the
maintenance of long-term hematopoietic stem cells.42 Presum-
ably, the maturation and accompanying proliferation of these cells
is what leads to the increase in colony-forming capacity that
results from DEK depletion.31 DEK has also been identified as a
senescence inhibitor as DEK expression is reduced during
replicative senescence, while overexpression of DEK prolongs
the lifespan of both primary and transformed keratinocytes.43

Several studies have examined the role of DEK in apoptosis,
assigning it antiapoptotic properties, although by different
mechanisms. Knockdown of DEK leads to apoptosis in HeLa cells
through p53 stabilization and a subsequent increase in p53-
mediated transcription.44 Studies in melanoma cells have shown
that DEK depletion can cause apoptosis independently of p53. In
these cells, DEK instead exerts its antiapoptotic activity by
promoting the transcription of the antiapoptotic protein
MCL-1.45 Consistent with these findings, reduced DEK expression
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Figure 1. Schematic structures of the DEK and NUP214 proteins. ‘SAP’ denotes the SAP (SAF-A/B, acinus and PIAS) domain, one of the two
identified DNA-binding domains in the DEK protein (gray). ‘CC’ denotes the coiled-coil domains that localize NUP214 to the nuclear pore
complex. ‘FG repeats’ denote the recurring sequences of phenylalanine and glycine that mediate nucleocytoplasmic transport in wild-type
NUP214. The vertical dashed line indicates the breakpoint in the (6;9)(p23;q34) chromosomal translocation, which fuses almost the entire DEK
protein with the carboxy terminal two-thirds of the NUP214 protein. Density of posttranslational modification sites was calculated based on
previously assembled data.15
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sensitizes cells from various tissues to apoptosis induced by
genotoxic agents.45,46 This may also be related to the most
recently discovered function of DEK as a cofactor in DNA damage
repair. DEK depletion leads to a decrease in non-homologous end-
joining, activation of the DNA damage response and enhanced
consequences of genotoxic stress.47 This finding may explain the
early observation that DEK enhances genome stability and
reduces the rates of spontaneous mutation and recombination
in ataxia telangiectasia cells.48 Given these functions, it is not
surprising that DEK contributes to cellular transformation. Over-
expression of DEK in human keratinocytes in combination with the
HRAS and human papilloma virus E6 and E7 oncogenes increases
the formation of colonies in soft agar and tumors upon
transplantation into mice. Interestingly, these tumor cells are
more sensitive than the surrounding normal tissue to depletion of
DEK by injection of short hairpin RNA.14 In combination with the
finding that DEK knockout mice appear to be healthy but less
prone to develop tumors, this suggests that DEK may be a
promising target for cancer therapy.14

DEK AS AN EXTRACELLULAR PROTEIN
Surprisingly for a chromatin-associated factor, DEK has been found
to be actively secreted by macrophages. Released in exosomes or
as free protein, extracellular DEK is proinflammatory and functions
as a chemotactic factor that attracts neutrophils, natural killer cells
and cytotoxic T cells.49 Strikingly, DEK is also internalized by
neighboring cells and translocated to the nucleus, where it has
been demonstrated to perform at least some of its regular
functions. Such uptake reverses the chromatin alterations and
DNA repair deficiencies that result from DEK depletion.50 The
addition of recombinant DEK protein also recaptures the effect of
endogenous DEK on the colony-forming capacity of hematopoietic
progenitor cells.42

THE REGULATION OF DEK
The regulation of DEK has been far less studied than its effects on
other genes, proteins and functions. The high expression of DEK in
rapidly proliferating cells may in part be explained by the activity
of the E2F-1, NF-Y, YY-1 and estrogen receptor α transcription
factors. These transcriptional activators are highly active in cancer
and normal cells with high proliferation rates and are the only
factors known to directly modulate the transcription of the DEK
gene.3,51,52 On the posttranslational level, DEK is regulated by
phosphorylation, acetylation and poly(ADP-ribosyl)ation. Phos-
phorylation of DEK is performed by casein kinase 2 and peaks at
the G1 phase of the cell cycle, but has not been demonstrated to
affect cell cycle regulation or progression.53 Phosphorylation
reduces the affinity of the binding between DEK and DNA, but
DEK remains bound to chromatin through dimerization with
unphosphorylated DEK.53 However, casein kinase 2-mediated
phosphorylation is a prerequisite for the binding of DEK to
histones and the histone chaperone activity.27 Thus, phosphoryla-
tion could be a mechanism by which the different actions of the
DEK protein are balanced. Acetylation of DEK also reduces its
binding to DNA and relocalizes the protein to interchromatin
granule clusters containing the RNA processing machinery.54

Accordingly, some studies have reported that DEK associates with
splicing factors and is essential for intron removal.55–57 However,
the specificity of the DEK antibodies used in these studies has
been challenged and the concept remains questionable.16,58

Finally, DEK is modified by poly(ADP-ribose) polymerase 1. Poly
(ADP-ribosyl)ation of DEK accumulates during apoptosis, leading
to the removal of DEK from chromatin and its subsequent
exocytosis.46,59 This posttranslational modification may be of
special importance in inflammation as extracellular DEK can serve
as an antigen to generate autoantibodies against the protein,

which have been identified in both juvenile rheumatoid
arthritis, systemic lupus erythematosus and other inflammatory
diseases.60–62

THE DEK-NUP214 FUSION GENE
The (6;9)(p23;q34) chromosomal translocation was originally
identified in small subsets of patients with AML.63,64 Recent
assessments have estimated that about 1% of all AMLs carry this
specific rearrangement.65–67 It is found in both adult and pediatric
AML, but the latter form dominates with a mean age of diagnosis
of 23 years.66 The t(6;9)(p23;q34) has traditionally been associated
with poor prognosis, although a recent retrospective study
suggests that the outcome for pediatric patients with this
translocation may be more similar to that of other childhood
AML.66,67 Patients are generally treated with either chemotherapy
or allogeneic hematopoietic stem cell transplantation, with a
slightly more favorable prognosis for the latter group.67 In 1992,
the (6;9)(p23;q34) translocation was characterized as a fusion
between specific introns in the gene encoding the chromatin
architectural protein DEK and the gene encoding the nucleoporin
NUP214 (originally termed CAN).17 The translocation is reciprocal
but the NUP214-DEK fusion does not produce a transcript, leaving
DEK-NUP214 as the sole gene product of the translocation.1 The
fusion protein includes almost the entire DEK protein and the
carboxy terminal two-thirds of the NUP214 protein (Figure 1),
resulting in a large protein of ~ 165 kDa.1

Despite its identification more than two decades ago, the role of
the DEK-NUP214 fusion protein still remains largely unknown. It
resides in the nucleus, likely due to the nuclear localization signal
in the DEK protein. However, the staining pattern of DEK-NUP214
differs from that of DEK, suggesting that the localization and thus
the function of DEK-NUP214 is qualitatively different from that of
DEK.68 Another indication of this is our previous finding that
expression of DEK-NUP214 increases the protein synthesis of
myeloid cells, as this effect was not achieved by expression of the
DEK protein or any of the six DEK-NUP214 deletion mutants, but
rather required all the major domains of the fusion protein.69 We
also show increased phosphorylation of the translational regulator
eukaryotic initiation factor 4E, suggesting that DEK-NUP214 affects
the regulation of protein synthesis.69 However, DEK-NUP214 also
appears to directly interact with the DEK protein and interfere with
its function. When the DEK-NUP214 protein was expressed in
293T cells, it co-immunoprecipitated with DEK and abolished the
binding between DEK and other factors in the identified histone
chaperone complex.27 Among these was casein kinase 2, which
has been previously shown to mediate a phosphorylation of DEK
that alters its association with chromatin.53 This dominant-
negative effect of DEK-NUP214 on DEK function lead to altered
expression of genes bound by the histone chaperone complex
and was suggested as a mechanism by which DEK-NUP214
contributes to leukemogenesis. It is however unlikely that this is a
major role, as DEK is a bona fide oncogene that is generally
upregulated in cancer and interference with DEK would thus be
expected to counter rather than promote leukemogenesis.
The leukemogenic potential of DEK-NUP214 has been estab-

lished in a murine model, where DEK-NUP214 was found to induce
leukemia when transduced to long-term but not short-term
repopulating stem cells.70 The resulting leukemia could however
be maintained by more mature cells, suggesting that there is a
difference between leukemia-initiating and -maintaining cells in
DEK-NUP214-induced leukemia. The finding that DEK-NUP214, as
opposed to, for example, PML-RARα, only has the potential to
initiate leukemia from very immature cells also suggests that it
may be a first hit rather than a secondary event during
leukemogenesis. The contribution of DEK-NUP214 to the leuke-
mogenic process has however not been fully characterized.
Expression of DEK-NUP214 has no effect on the terminal
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differentiation of human U937 cells as induced by vitamin D3 or
that of primary murine Sca+/Lin− cells induced by GM/G-CSF.70,71

Neither does it prolong the colony-forming capacity of murine
progenitor cells, an in vitro assay of self-renewal capacity.
However, the expression of DEK-NUP214 does increase the
number of colonies formed both in vitro and in vivo, an effect
that is similar in magnitude to that of PML-RARα.70 This suggests
that DEK-NUP214 may affect the proliferation rather than the
differentiation or self-renewal of hematopoietic cells. We con-
firmed this notion by introducing DEK-NUP214 in the myeloid
U937 cell line, where expression of the fusion gene lead to
increased proliferation by upregulation of the mammalian target
of rapamycin (mTOR) protein and a subsequent increase in
mTORC1 but not mTORC2 signaling. The proliferative effect was
reversed by treatment with the mTORC1 inhibitor everolimus,
suggesting that leukemias with the (6;9)(p23;q34) translocation
may be susceptible to treatment with the emerging classes of
mTOR inhibitors.72

The t(6;9)(p23;q34) is usually the only cytogenetic aberration in
these leukemias, but one of the most consistent findings of
leukemic cells with the DEK-NUP214 fusion gene is the con-
comitant mutation of the FLT3 gene. Internal tandem duplications
that cause constitutive activation of the FLT3 tyrosine kinase are
one of the most common genetic aberrations in AML. However,
whereas 20–30% of all AML patients carry an FLT3-ITD mutation,
the incidence among patients with the (6;9)(p23;q34) transloca-
tion is around 60%.65–67,73,74 Preliminary results from Martin
Ruthardt’s research group suggest that FLT3-ITD promotes
leukemia induction by DEK-NUP214 in a murine model of disease
(Heinssmann et al. ASH Annual Meeting abstract, 2012). However,
a synergistic effect to explain the high coincidence of the two
mutations has yet to be demonstrated.

CONCLUSION
Our understanding of DEK biology has greatly increased in recent
years but so has the complexity of its function. DEK mainly binds
to highly expressed genes but can act to either promote or repress
their transcription. The mechanisms underlying this dual role are
not yet understood and should be a primary focus of future
studies. DEK also affects crucial oncogenic processes such as cell
proliferation, differentiation, senescence and apoptosis. And as a
bona fide oncogene, it contributes to cellular transformation both
in vitro and in vivo. A major challenge for future research will be to
not only continue characterizing the role of DEK in such cellular
processes but to also determine common mechanisms that could
explain multiple effects of altered DEK expression and possibly
also consolidate the seemingly contradictory functions of the DEK
protein in epigenetic and transcriptional regulation. Furthermore,
it will be important to investigate the effect of DEK inhibition on
these functions in both healthy and malignant cells to assess the
potential of DEK as a drug target in cancer.
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