
ORIGINAL ARTICLE

FOXM1 is a therapeutic target for high-risk multiple myeloma
C Gu1,2,8, Y Yang1,3,8, R Sompallae2,4, H Xu3, VS Tompkins2, C Holman2, D Hose5,6, H Goldschmidt5,6, G Tricot3,7, F Zhan3,7,9 and S Janz2,7,9

The transcription factor forkhead box M1 (FOXM1) is a validated oncoprotein in solid cancers, but its role in malignant plasma cell
tumors such as multiple myeloma (MM) is unknown. We analyzed publicly available MM data sets and found that overexpression of
FOXM1 prognosticates inferior outcome in a subset (~15%) of newly diagnosed cases, particularly patients with high-risk disease based
on global gene expression changes. Follow-up studies using human myeloma cell lines (HMCLs) as the principal experimental model
system demonstrated that enforced expression of FOXM1 increased growth, survival and clonogenicity of myeloma cells, whereas
knockdown of FOXM1 abolished these features. In agreement with that, constitutive upregulation of FOXM1 promoted HMCL
xenografts in laboratory mice, whereas inducible knockdown of FOXM1 led to growth inhibition. Expression of cyclin-dependent
kinase 6 (CDK6) and NIMA-related kinase 2 (NEK2) was coregulated with FOXM1 in both HMCLs and myeloma patient samples,
suggesting interaction of these three genes in a genetic network that may lend itself to targeting with small-drug inhibitors for new
approaches to myeloma therapy and prevention. These results establish FOXM1 as high-risk myeloma gene and provide support for
the design and testing of FOXM1-targeted therapies specifically for the FOXM1High subset of myeloma.

Leukemia (2016) 30, 873–882; doi:10.1038/leu.2015.334

INTRODUCTION
The prognosis of patients with multiple myeloma (MM), a difficult-
to-cure blood cancer, depends in large measure on the genetic
makeup of the myeloma cell. This is reflected in risk stratification
models that consider cytogenetic features of myeloma, such as
occurrence of oncogene-activating chromosomal translocations,
and molecular features, such as gene expression changes1

measured with the assistance of the UAMS-70,2 EMC-92(ref. 3) or
REL-17(ref. 4) gene test, to assign newly diagnosed cases to either
standard- or high-risk groups. The distinction is clinically relevant
because patients with high-risk myeloma have poor outcomes.
Whereas overall survival (OS) for patients with standard-risk
myeloma is 6–7 years, that for high-risk disease is no more than 2–
3 years—despite the application of aggressive, risk-adapted
therapies that include new myeloma drugs and, for eligible
patients, high-dose therapy followed by autologous stem cell
transplantation.5 The unmet medical need of high-risk myeloma
calls for dedicated efforts to elucidate the underlying genetic
networks and develop approaches for their therapeutic targeting.
This study demonstrates the involvement of the transcription
factor forkhead box M1 (FOXM1) in a significant subset of high-risk
myeloma (~15%) and suggests that FOXM1 provides a molecularly
targeted treatment opportunity specifically for this group of
patients.
In 2010, based on its enormous potential for the diagnosis and

therapy of solid cancers, the AAAS journal Science bestowed upon
FOXM1 the ‘Breakthrough of the Year’ award. FOXM1, a member of
the large forkhead box (FOX) family of proteins (n≈50), is a

validated oncogene in carcinomas,6 but has received little
attention in myeloma and related plasma cell malignancies.
Findings implicating FOXM1 in the maintenance and self-renewal
of carcinoma stem cells7 have raised the question of whether it is
similarly important for the putative myeloma stem cell8—yet the
elusiveness of this cell9 stands in the way of resolving the issue.
Consistent with results that the expression of FOXM1 is tightly
regulated in normal cells to ensure mitotic fidelity throughout the
cell cycle,10 deregulated expression of FOXM1 in carcinoma cells
leads to centrosome amplification, mitotic catastrophe and other
cytogenetic aberrations typically seen in cancer cells.11 Whether
FOXM1 governs genomic instability of MM,12 a notorious but ill-
explained feature of the neoplasia, is unclear. In diffuse large B-cell
lymphoma, in which levels of the FOXM1 mRNA and the encoded
protein are high, targeted inhibition of FOXM1 augments cell
killing when combined with normally subtoxic doses of the
proteasome inhibitor, bortezomib.13 Whether this holds true for
MM has not been established.
Our interest in FOXM1 began with a comparative gene

expression analysis of B-lymphoma counterparts in humans and
mice, implicating the transcription factor in an evolutionarily
conserved pathway of neoplastic B-cell development.14 Further
encouraged by new evidence indicating that FOXM1 (1) drives
tumor development and progression15–19 by virtue of a complex
mechanism that includes enhanced cell proliferation, migration
and invasion,6 regulation of the DNA damage response20 and
changes in the cancer epigenome,21 (2) promotes cancer
cell resistance to ionizing radiation22 and cytotoxic drugs,23
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(3) governs, in part, the survival and tissue-regenerating capacity
of both normal hematopoietic stem cells24 and malignant stem
cell-like cells,25 (4) links acquired resistance to cancer therapy with
cancer stemness26 and (5) owing to the development of specific
small-molecule inhibitors,27 it may soon be targeted more
effectively than possible in the past;28 we here decided to
evaluate whether FOXM1 might have an important but heretofore
overlooked role in plasma cell myeloma.

MATERIALS AND METHODS
FOXM1 expression and survival analysis in patients with myeloma
Levels of FOXM1 mRNA in myeloma cells were determined using
Affymetrix U133Plus 2.0 microarrays (Affymetrix, Santa Clara, CA, USA) as
described previously.1 Results are available in the NIH Gene Expression
Omnibus (GEO) under accession number GSE2658. Microarray data on
monoclonal gammopathy of undetermined significance and normal
plasma cells are available at GSE5900. Statistical analysis of microarray
results relied on GCOS1.1 software (Affymetrix), including log-rank tests for
univariate association with disease-related survival.

HMCLs, antibodies and reagents
Human myeloma cell line (HMCLs), designated H929 or APR1, were chosen
for studies on inducible knockdown (KD) of FOXM1. HMCLs, CAG or XG1
were used for studies on constitutive overexpression (OE) of FOXM1. All
four cell lines had secretion of IgA29–32 and in vitro culture conditions
(37 °C, 5% CO2) in common. Oncogene-activating chromosomal transloca-
tions took the form of t(4;14) in case of H929 cells,33 t(11;14) in XG1 cells30

and t(14;16) in ARP1 and CAG cells.33,34 Gene expression spikes on
microarrays corresponded to the translocation status: FGFR3 and WHSC1
(better known as MMSET) in case of H929 cells, CCND1 (cyclin D1) in
XG1 cells and MAF (c-MAF) in ARP1 and CAG cells.35 The status of the
tumor suppressor p53 was wild type in case of H929 cells,36 mutated in
XG1 cells37 and null in ARP1 and CAG cells.34 Antibodies for western
blotting were purchased from Santa Cruz Biotechnology (Dallas, TX, USA)
(FOXM1, catalog number sc-500; CDK6 (cyclin-dependent kinase 6), sc-
7961; β-actin, sc-47778) or Cell Signaling Technology (Danvers, MA, USA)
(caspase-8, 4927; cleaved caspase-8, 9496; caspase-9, 9502; caspase-3,
9668; cleaved caspase-3, 9661; PARP, 9542). Dox and thiostrepton (TS)
were from Sigma-Aldrich (St Louis, MO, USA).

Quantitative, reverse transcription polymerase chain reaction
Total RNA was extracted using Quick-RNA MiniPrep (Zymo Research, Irvine,
CA, USA) and reverse transcribed using oligo dT primers and SuperScript III
RT (Invitrogen, Carlsbad, CA, USA). Data analysis relied on the ΔΔCt
method. Primers were purchased from Integrated DNA Technologies
(Coralville, IA, USA). Sequences are available upon request.

Western blotting and co-immunoprecipitation assays
Whole myeloma cell lysates were prepared using the Mammalian Cell
Extraction Kit (K269-500) from Biovision (Milpitas, CA, USA). Proteins (30 μg
per sample) were fractionated on 4–12% polyacrylamide gels blocked with
5% non-fat milk in Tris-buffered saline containing 0.05% Tween-20.
Proteins were transferred to nitrocellulose membranes, incubated with
primary antibody (dilution 10− 3) overnight (4 °C) and visualized with horse
radish peroxidase-conjugated secondary antibody using SuperSignal West
Pico (Pierce Biotechnology, Rockford, IL, USA). Blots were stripped,
reprobed for β-actin and evaluated by densitometry to estimate protein
abundance. Co-immunoprecipitations (co-IPs) using the Pierce Direct
Magnetic IP/Co-IP Kit (Thermo Scientific, Rockford, IL, USA) and antibodies
to FOXM1 and CDK6 were performed as recently described.38 IgG from
Bethyl Laboratories (Montgomery, TX, USA) was used as control.

Soft-agar clonogenicity assay
Clonogenic growth of myeloma was evaluated by seeding 1×104 cells in
0.5 ml RPMI 1640 (Invitrogen) supplemented with 0.33% agar and 10% FBS.
Cells were grown in vitro (37 °C, 5% CO2) for 3 weeks, replenishing cell culture
medium twice weekly. In some cases, cells were treated during weeks 2 and 3
with the FOXM1-inhibiting thiazole antibiotic, TS. Cell clones, defined as tight
aggregates of ⩾40 myeloma cells, were enumerated using photographic
images of soft-agar plates uploaded to Image J.

Cell proliferation and viability
Cell proliferation rate and viability were determined in 6-well plates using a
hemacytometer and the trypan blue exclusion assay (0.4% dye in
phosphate-buffered saline, pH 7.3).

Myeloma xenografts in immune-compromised laboratory mice
To evaluate the impact of FOXM1 KD on myeloma growth, 2 × 106 H929
cells expressing either normal (FOXM1N) or reduced (FOXM1KD) levels of
FOXM1 were injected subcutaneously into the right and left flank,
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Figure 1. FOXM1 mRNA levels predict poor survival in a subset of
patients with newly diagnosed myeloma. (a) Line graph depicting
the range of FOXM1 mRNA levels (gene probe ID 202580) in normal
BM plasma cells (NPC), ‘premalignant’ BM plasma cells from
individuals with monoclonal gammopathy of undetermined
significance (MGUS) or malignant plasma cells from patients with
newly diagnosed MM from the University of Arkansas TT2 cohort.
Specimens exhibiting o or 4200 U of FOXM1 message were
categorized as FOXM1Low and FOXM1High, respectively. This is
indicated by the horizontal, labeled arrow pointing left. (b) Reduced
EFS and OS in newly diagnosed TT2 patients harboring high FOXM1
levels. Of 351 myeloma cases, 316 (90%) had low FOXM1 levels (blue
curve) and 35 (10%) had high FOXM1 levels (red curve). EFS and OS
data were available from 186 (53%) and 113 (32%) patients,
respectively. (c) Mean values of FOXM1 levels in eight molecular
subgroups of MM: CD1, CCND1/CCND3 group 1; CD2, CCND1/CCND3
group 2; HY, hyperdiploid; LB, low bone disease; MF, MAF/MAFB; MS,
MMSET; MY, myeloid; PR, proliferation.2 FOXM1 is significantly elevated
in MF myelomas as compared with six subgroups with low FOXM1
levels (open squares), and in the PR myelomas as compared to four
such subgroups (closed squares), as assessed using the Bonferoni t-test.
The number of patients within each molecular subgroup who exhibit
the standard- or high-risk UAMS-70 gene signature is indicated at
the bottom. In total, 46 of 351 patients fell into the high-risk
category, with at least one case in each of the molecular subgroups
except CD2. (d) FOXM1 expression in high-risk MM, as defined by the
UAMS-70 gene signature (n= 46), is elevated compared with that in
low-risk MM (n= 305; Mann–Whitney test).
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respectively, of NSG (NOD scid gamma) mice (Jackson Laboratory, Bar Harbor,
ME, USA). To induce FOXM1 KD in incipient tumors, Dox (2 mg/ml) was added
to the drinking water, beginning on day 10 following myeloma cell transfer.
Similarly, to assess the effect of FOXM1 OE on myeloma growth, paired

samples of CAG cells (2 million in each flank) that expressed either
elevated levels of FOXM1 (FOXM1OE) or normal levels (FOXM1N) were
transferred subcutaneously to NSG mice (Jackson Laboratory). After
10 days, some mice were treated with intraperitoneal administrations of
TS (30 mg/kg) twice weekly. In all cases, tumor growth was measured two
to three times weekly, using a pair of calipers. Mice were killed using CO2

asphyxiation when tumors reached 20 mm in diameter. All studies were
approved under protocol 1301010 of the Institutional Animal Care and Use
Committee of The University of Iowa.

Statistical analysis
Two-tailed Student’s t-test was used to compare two experimental groups.
One-way analysis of variance was used to evaluate more than two groups.
The Kaplan–Meier method was used to determine myeloma patient
survival in accordance with FOXM1 expression. In all cases, P⩽ 0.05 was
considered significant.

RESULTS
Heightened FOXM1 expression predicts poor survival in patients
with myeloma
To evaluate the possibility that FOXM1 is important for myeloma,
we analyzed a well-annotated, mature data set, designated total
therapy 2 (TT2), for which microarray-based gene expression and
clinical outcome data were available. The levels of FOXM1 in 351
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xenografts in NSG mice. (a) Shown at the top is a scheme of the
study design. FOXM1KD and FOXM1N H929 cells, generated using
lentiviral shRNA transduction, were xenografted subcutaneously (s.c.)
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images were taken (bottom). (b) Mean weight of FOXM1KD

and FOXM1N xenografts on day-28 postmyeloma cell transfer.
(c) Western blot analysis comparing FOXM1 protein levels in
day-28 FOXM1KD and FOXM1N xenografts. (d) Time course of tumor
growth in NSG mice. Doxycycline treatment of mice began 10 days
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pointing down. Tumor diameters were measured using a caliper,
beginning on day 8 after xenografting. Mice were killed on day 28.
Mean tumor diameters (squares) and standard deviations of the
mean (short vertical lines with error bars) are plotted. Regression
analysis of growth rates demonstrated that the FOXM1KD tumors
(y= 0.665x+0.0295; r2= 0.948; Po10�3) lagged behind their
FOXM1N counterparts (y= 0.896x+0.0280; r2= 0.973; Po10�3) by
~ 25%. The area under the curve of the FOXM1KD tumors (160) was
~ 15% smaller than that of the FOXM1N (188) tumors.
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patients with newly diagnosed myeloma from that data set are
presented in Figure 1a, according to increasing gene expression.
With 200 units of FOXM1 message used as a cutoff, the great
majority of cases (316/351, 90%) exhibited the same expression
levels seen in normal plasma cells from the bone marrow
(BM; n= 22) or in BM plasma cells from individuals with
monoclonal gammopathy of undetermined significance (n= 44),
a precursor of frank myeloma.39 However, in 10% of myelomas
(35/351) FOXM1 levels were grossly elevated. The distinction
between high and low FOXM1 was of prognostic significance, as
both event-free survival (EFS) and OS were reduced in cases
exhibiting high FOXM1 expression (Figure 1b). A very similar
fraction of ‘FOXM1High’ myelomas (18/149, 12.1%; Supplementary
Figure 1a) associated with the same kind of survival disadvantage
(Supplementary Figure 1b) was seen in the Total Therapy 3 (TT3)
cohort, which comprised intensively treated patients (n= 149)
who had received tandem autologous stem cell transplantation
and bortezomib/thalidomide-based induction and maintenance.40

Similarly, elevated FOXM1 message predicted poor OS of patients
with myeloma (n= 247) treated upfront using high-dose therapy/
autologous stem cell transplantation at the University of Heidel-
berg (Heidelberg, Germany) (Supplementary Figure 2).41 In
agreement with the variable FOXM1 message levels seen in TT2/3
myelomas, a pilot immunolabeling study of archival myeloma-
laden BM sections pointed to variable amounts and distribution
patterns of FOXM1 protein in myeloma cells (Supplementary
Figure 3). These findings indicated that upregulation of FOXM1 in
a subset of myeloma (10–12%) leads to inferior outcome.

FOXM1 is a high-risk myeloma gene
We asked whether heightened FOXM1 expression in the TT2
cohort might be associated with a particular molecular subgroup
of myeloma. Figure 1c presents the mean values of FOXM1 levels
in eight widely recognized subgroups, showing that elevated
FOXM1 was particularly prevalent in two known to confer high risk
in terms of clinical course and outcome: MAF/MAFB (MF) and
proliferation (PR). A more recently developed molecular genetic
approach to distinguishing high- and standard-risk disease, that is,
the UAMS-70 gene signature,2 afforded another way of testing
whether upregulated FOXM1 might be a feature of high-risk
myeloma. Statistical comparison of the mean FOXM1 levels in the
46 and 305 cases identified as high and standard risk according to
this signature supported this contention (Figure 1d). In sync
with that, not only was FOXM1High status statistically linked
(χ2 contingency analysis) with a positive score in the 70-gene test
(Po10− 4) but almost two-thirds of the UAMS-70 high-risk cases
(29/46, 63%) fell into the PR (n= 20) and MF (n= 9) subgroups of
myeloma (indicated by red squares in Figure 1c, bottom). The TT3
myelomas exhibited the same preponderance of FOXM1High in the
MF/PR subgroups and the same association of FOXM1High status
and positive 70-gene test score seen in the TT2 sample
(Supplementary Figures 1c and d). The findings in more than
500 myelomas from the TT2/3 studies led us to conclude that
FOXM1 is a bona fide high-risk myeloma gene.

Inducible downregulation of FOXM1 inhibits myeloma cells in vitro
Following up on the clinical observations described above, we
decided to elucidate the role of FOXM1 in myeloma biology using
two independent HMCLs, designated H929 and ARP1, that
harbored ample amounts of FOXM1 protein. To evaluate whether
short hairpin RNA (shRNA)-mediated KD of FOXM1 message blunts
the growth and survival of myeloma, we transduced H929 and
ARP1 cells with lentivirus that encoded a FOXM1-targeted shRNA
under the control of a Dox-inducible gene promoter: FOXM1KD

cells. Cells transduced with a Dox-inducible ‘scrambled’ shRNA,
not targeting any expressed gene in mice and therefore leaving
FOXM1 at normal levels (N), were used as control: FOXM1N cells.
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Quantitative, reverse transcription-PCR ( (qRT-PCR) and western
blot analyses demonstrated successful KD of FOXM1 in both cell
lines at the mRNA (Figure 2a) and protein (Figure 2b) level.
Significant reductions in FOXM1KD cell numbers, relative to
FOXM1N controls, after 2, 3 and 4 days of Dox-dependent
expression of shRNA indicated that partial loss of FOXM1 hampers
myeloma growth in vitro (Supplementary Figure 4a). The
diminished growth rate of FOXM1KD cells was attributed to both
increased apoptotic cell death evidenced by increased proteolytic
cleavage of poly (ADP-ribose) polymerase and caspases 3, 8 and 9
(Supplementary Figure 4b) and reduced cell cycle progression.
The latter was revealed by flow cytometric analysis of DNA
content that demonstrated an increase of cells in the G1 phase
and a concomitant decrease in the S and G2/M phases (not
shown). Soft-agar clonogenicity assays demonstrated a striking
(~7-fold) drop in size and number of FOXM1KD versus FOXM1N

colonies: 0.88% vs 6.4% in case of H929 cells and 0.92% vs 6.0% in
case of ARP1 cells (Figure 2c). These results suggested that FOXM1
regulates, in part, the growth and survival of myeloma cells.

Genetic targeting of FOXM1 retards myeloma growth in mice
To determine whether inducible KD of FOXM1 inhibits myeloma
in vivo, we xenografted FOXM1KD and FOXM1N H929 cells under
the skin of the left and right abdominal flank of NSG mice (n= 5),
respectively. Ten days after in vivo transfer of two million cells to
each side, the mice were administered Dox in the drinking water
to induce the expression of FOXM1-targeted or scrambled shRNA
in the malignant plasma cells (Figure 3a, top). Tumor diameters
were measured daily, using a pair of calipers, to compare the
growth rate of the paired FOXM1KD and FOXM1N xenografts. In
five of five hosts, the FOXM1KD tumors harvested on day 28
(end point of study) were visibly smaller than their FOXM1N

counterparts (Figure 3a, bottom). The mean weight of FOXM1KD

tumors (1.24 g) was 35% lower compared with that of FOXM1N

tumors (1.91 g; Figure 3b). Compared with FOXM1N tumors,
FOXM1KD tumors contained reduced amounts of FOXM1 protein
(Figure 3c). Comparison of growth rates demonstrated that the
FOXM1KD tumors lagged behind their FOXM1N counterparts
(Figure 3d), indicating stable expression of the FOXM1-targeted
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shRNA during the 28-day growth period. These results demon-
strated that genetic targeting of FOXM1 inhibits myeloma in vivo.

Enforced expression of FOXM1 promotes myeloma in vitro
To complement the KD studies described above with the opposite
experimental approach, we assessed whether enforced transgenic
expression of FOXM1 might enhance myeloma growth. To that
end, we transfected two independent HMCLs containing
moderate amounts of FOXM1 protein, CAG and XG1, with
lentivirus that encoded a FOXM1 cDNA gene under control of
the EF1α promoter. Compared with cells transduced with
noncoding ‘empty’ virus that left FOXM1 levels unchanged
(FOXM1N, used as control), cells overexpressing FOXM1 (FOXM1OE)
contained elevated amounts of FOXM1 message (Figure 4a, top)
and FOXM1 protein (Figure 4a, bottom). Upregulation of FOXM1
promoted cell growth (Figure 4b), which was abolished by the
FOXM1-inhibiting thiazole antibiotic, TS42 (Supplementary Figure 5a).
Increased growth of FOXM1OE cells was attributed to enhanced
cell cycle progression (not shown) and survival. The latter was
reflected by less pronounced activation of PARP and caspases in
FOXM1OE cells compared to FOXM1N cells (Figure 4c). Clonogenic
growth in soft agar was moderately heightened (by ~ 30%) in
untreated FOXM1OE vs FOXM1N cells, but more significantly
elevated (2–3-fold) in TS-treated FOXM1OE vs FOXM1N cells
(Supplementary Figures 5b and c). These results agreed with

the FOXM1 KD studies and strengthened the contention that
FOXM1 regulates growth and survival of myeloma cells in vitro.

OE of FOXM1 promotes myeloma xenografts in NSG mice
We transferred FOXM1OE and FOXM1N CAG cells to NSG mice
treated with TS or left untreated (Figure 5a, top). In all cases,
FOXM1OE tumors harvested at study endpoint (day 28) were larger
than the FOXM1N tumors (Figure 5a, bottom). In untreated mice,
the mean weight of FOXM1OE tumors (3.97 g) was significantly
higher compared with that of FOXM1N tumors (0.848 g): a ratio of
4.7 (Figure 5b). The OE-to-N ratio (2.03 g/0.432 g, 4.7) was the
same in TS-treated mice (Figure 5b), which agreed with the
expectation that TS inhibits FOXM1-expressing tumors, but did
not support the possibility that FOXM1OE tumors were more
sensitive to the drug compared with that of their FOXM1N

counterparts. In both TS-treated and -untreated mice, FOXM1OE

tumors contained elevated levels of FOXM1 protein relative to
FOXM1N controls (Figure 5c). Time-course analyses of tumor size,
analogous to those carried out in the KD studies, underlined the
myeloma-promoting effect of FOXM1. Using the area under the
curve as metric, growth rates of FOXM1OE tumors (198) were
elevated by 77% in TS-treated mice compared with FOXM1N

tumors (112; Figure 5d). Similarly, in untreated mice, growth rates
of FOXM1OE tumors (250) were 83% higher compared with that of
FOXM1N tumors (137; Figure 5d). These results added confidence
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to the contention that FOXM1 promotes myeloma in vivo, yet also
indicated that TS may not be as active in mice as it is in vitro.

Coordinated expression of FOXM1 and CDK6 in myeloma
To elucidate the mechanism by which FOXM1 promotes myeloma,
we followed up on publicly available UCSC ChIP-Seq results and
published findings,43 both indicating that CDK6 is a transcriptional
target of FOXM1 in normal and malignant cells. There is also
strong evidence that FOXM1 is a direct phosphorylation target of
CDK6 in cancer, suggesting a positive autoregulatory FOXM1-
CDK6 feedforward loop that supports the malignant state.44 Co-IP
analysis of FOXM1OE CAG and XG1 cells—which demonstrated

that antibody to CDK6 (bait) pulled down FOXM1 (Figure 6a, top),
whereas antibody to FOXM1 (bait) pulled down CDK6 (Figure 6a,
bottom)—pointed to physical interaction of both proteins in
myeloma cells. Codetection of FOXM1 and CDK6 in FOXM1OE CAG
cells by means of immunofluorescence microscopy supported this
interpretation (not shown). qRT-PCR (Figure 6b, top) and western
blotting (Figure 6b, bottom) of FOXM1KD and FOXM1N H929 and
ARP1 cells showed that FOXM1 and CDK6 expression may be
coregulated in myeloma. Consistent with that, pharmacological
inhibition of FOXM1 using TS caused a coordinated drop of FOXM1
and CDK6 message in CAG and XG1 cells—more steeply in
FOXM1OE than FOXM1N cells (Figure 6c, top). Corresponding
changes in FOXM1 protein levels were also seen, but their
magnitude was not as high as in case of mRNA (Figure 6c,
bottom). In sync with the laboratory findings, FOXM1 and CDK6
expression were correlated in the TT2 and TT3 patient cohorts
(Supplementary Figure 5b) and predictive of survival
(Supplementary Figure 5c). Interestingly, before adopting the
UAMS-70 gene signature for stratifying standard- and high-risk
myeloma,2 a 3-gene minisignature had been developed for the
same purpose. It relied on CDK6; one of its regulators, CKS1B,
which encodes a member of the highly conserved cyclin kinase
subunit 1 family of proteins;45 and OPN3 (opsin 3), the role of
which in myeloma is obscure (FZ, unpublished result).

Coexpression of FOXM1 and NEK2 in myeloma
To identify additional network genes that may collaborate with
FOXM1 in promoting myeloma, we interrogated the MMRC data
set available online for genes tightly coexpressed with FOXM1
(Figure 7a). Among the top 10 genes (r2 = 0.838) was NIMA-related
kinase 2 or NEK2. Because NEK2 is not only a well-established
transcriptional target of FOXM1 in various cell lineages46,47 but
also a driver of drug resistance in myeloma and other cancers,48–50

we sought to confirm the coexpression of NEK2 and FOXM1 in
independent data sets. This was the case in TT2 and TT3
(Supplementary Figure 6a, left) and also in MMRF’s CoMMpass℠
study (Supplementary Figure 6a, right), in which FOXM1High status
conferred the same kind of survival disadvantage (Supplementary
Figure 6b) seen in the TT2 (Figure 1b) and TT3 (Supplementary
Figure 1) cohorts. In the CoMMpass℠ data set, NEK2 was among
the top 20 differentially expressed genes (P= 0.000331) in a
130-gene list (Po0.05) that distinguished FOXM1High from
FOXM1Low tumors (Supplementary Figure 6c). Gene set enrichment
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Portal. The heat map contains the top 100 genes coexpressed with
FOXM1. Each row and column represents one specific gene and
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left. (b) Shown at top is an immunoblot analysis of the FOXM1 and
NEK2 protein levels in paired FOXM1KD/FOXM1N samples of H929
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of CAG and XG1 myeloma cells (right). The ratios of target to
housekeeping protein (β-actin) are indicated below the western
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the result of a qRT-PCR analysis of FOXM1 and NEK2 expression in
FOXM1KD and FOXM1N H929 (left) and ARP1 (right) cells, demon-
strating that genetic downregulation of FOXM1 leads to a
corresponding drop in NEK2 message. (c) Expression levels of FOXM1
and NEK2 are associated with survival in TT2 myeloma patients.
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medium expressers (blue). EFS and OS in all three groups was
plotted and statistically compared using log-rank analysis.
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analysis using this gene list as the input revealed a FOXM1-
dependent network of transcription factors, DNA replication and
cell division pathways in myeloma (Supplementary Figure 6d).
These in silico findings prompted us to determine whether FOXM1
and NEK2 might be coexpressed in the four HMCLs used
throughout this study. Western blotting showed that FOXM1
and NEK2 proteins shifted coordinately in accordance with FOXM1
status in four of four cell lines (Figure 7b, top). At the message
level, results were less consistent; that is, although NEK2 mRNA
dropped upon KD of FOXM1 in H929 and ARP1 cells (Figure 7b,
bottom), NEK2 did not rise upon OE of FOXM1 in CAG and
XG1 cells (results not shown). Despite the latter finding, FOXM1
and NEK2 expression status was statistically linked with survival in
the TT2 cohort (Figure 7c). These results provided evidence that
FOXM1 and NEK2 are coregulated in myeloma.

DISCUSSION
The main finding of this study is clinical and experimental
evidence for the involvement of FOXM1 in a relatively small
(~15%) but aggressive subset of myeloma (chiefly subgroups MF

and PR). FOXM1 expands the list of candidate genes uncovered
by us35,38,48,51 and others,52,53 which seem to render myeloma
a high-risk disease by regulating pathways of tumor progression
and stemness, acquisition of drug resistance and, ultimately,
refractory relapse. A distinctive feature of FOXM1, compared with
all other candidate genes identified thus far, is its discovery in a
comprehensive gene expression analysis of mature B-cell
lymphoma counterparts in humans and mice.14 Cross-species
analyses of this sort, which afford a unique and powerful approach
to identifying genetic networks of neoplastic growth conserved
over millions of years of evolution, have been successfully used in
research on solid cancers but largely neglected in myeloma.14 The
results on FOXM1 reported here demonstrate the utility of this
approach for myeloma and suggest that comparative oncoge-
nomics of myeloma-like tumors in genetically engineered mouse
models may not only further our understanding of the natural
history of myeloma but also reveal new targets for treatment and
prevention. The ongoing development of new genetically
engineered mouse models54–56 and continuous refinement of
established ones57–59 are generating great promise along this line.
The results reported here may be summarized in a working

model of FOXM1’s function in myeloma (Figure 8a), which
considers (1) the gene’s coregulation with CDK6 and NEK2,
(2) the output of a network analysis that relied on the GeneMANIA
online tool to predict genetic interactions of FOXM1 in myeloma
cells (Figure 8b) and (3) the ability of a novel 3-gene minisignature,
comprised of FOXM1, CDK6 and NEK2, to prognosticate survival of
patients with myeloma (Figure 8c). Although the underlying
molecular genetics of the interaction depicted in Figure 8a needs
to be elucidated in greater depth, the scheme may provide a
useful blueprint for designing combination treatments for
FOXM1High myelomas. This may take advantage of small-
molecule inhibitors of (a) FOXM1, such as FDI-6, which binds
directly to the transcription factor and displaces it from genomic
targets in cancer cells,27 (b) CDK6, such as palbociclib, which is not
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Figure 8. FOXM1 may interact with CDK6 and NEK2 to shorten
survival of patients with high-risk myeloma. (a) Working model on
the interaction of FOXM1, CDK6 and NEK2 in myeloma. Although
FOXM1 is most firmly established as a proliferation-associated gene,
new findings indicating that FOXM1 governs self-renewal and
tumorigenicity of cancer stem cell-like cells in glioblastoma,25 and
that the FOXM1 target, CDK6, serves as a key regulator of leukemia
stem cell activation,64 raise the possibility that the interaction of
FOXM1 and CDK6 in myeloma is also important for stemness.
Additionally, FOXM1 may collaborate with NEK2 to drive resistance
of myeloma cells to cancer therapy, given that NEK2 has been
implicated in acquired drug resistance of many cancers48–50 and
specifically shown to activate certain ABC drug transporters in
myeloma.48 Specific inhibitors of all three genes have been
developed. Palbocicblib has already demonstrated activity in clinical
trials on myeloma. (b) Genetic interaction network of FOXM1, CDK6
and NEK2 (indicated in black to the left) generated with the help of
the GeneMANIA online tool. Blue and pink lines denote pathways
and physical interactions, respectively. Network genes are indicated
by gray circles to the right that are labeled. The network’s apparent
enrichment for ubiquination genes (not shown) points to the
proteasome, suggesting in turn that the FOXM1-CDK6-NEK2 net-
work core is involved in the response of myeloma cells to
proteasome inhibition, a widely used treatment for myeloma.
(c) Kaplan–Meier plots of EFS (left) and OS (right) of patients with
myeloma from the TT2 cohort stratified according to high levels
(red) or low levels (black) of FOXM1, CDK6 and NEK2 message upon
microarray analysis. Myelomas containing higher than median
amounts of mRNA of all three genes were designated as high
(n= 80), whereas myelomas that did not meet this criterion were
designated as low (n= 271). The differences in survival were
significant using log-rank analysis (Po0.05).
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highly specific (it also targets CDK4) but has already demonstrated
therapeutic activity (in conjunction with bortezomib and dex-
amethasone) in a phase 1/2 clinical trial of relapsed/refractory
MM60 and (c) NEK2, such as aminopyridine scaffold compounds,
which inhibit NEK2’s kinase activity,61 or unrelated inhibitors,
which trigger NEK2 degradation indirectly, using a mechanism
that involves the disruption of NEK2 binding to kinetochore
complex component, NDC80, better known as highly expressed in
cancer 1 or HEC1.62 Despite broad cancer-suppressing activities,63

the cyclic oligopeptide antibiotic, TS, which has been used here as
a FOXM1-inhibiting compound, is an unlikely candidate for further
therapeutic development because its extensive use in veterinary
medicine revealed severe toxicity issues.
In conclusion, FOXM1 appears to be a bone fide high-risk

myeloma gene that interacts with CDK6 and NEK2 to facilitate
myeloma xenografts in mice and promote the growth, clonogenic
self-renewal and survival of myeloma cells in vitro. Clinical studies
are warranted to further validate FOXM1 as a potential therapeutic
target in FOXM1High high-risk myeloma.
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