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The multifaceted functions of C/EBPα in normal and
malignant haematopoiesis
E Ohlsson1,2,3,4, MB Schuster1,2,3, M Hasemann1,2,3 and BT Porse1,2,3

The process of blood formation, haematopoiesis, depends upon a small number of haematopoietic stem cells (HSCs) that reside
in the bone marrow. Differentiation of HSCs is characterised by decreased expression of genes associated with self-renewal
accompanied by a stepwise activation of genes promoting differentiation. Lineage branching is further directed by groups of
cooperating and counteracting genes forming complex networks of lineage-specific transcription factors. Imbalances in such
networks can result in blockage of differentiation, lineage reprogramming and malignant transformation. CCAAT/enhancer-binding
protein-α (C/EBPα) was originally identified 30 years ago as a transcription factor that binds both promoter and enhancer regions.
Most of the early work focused on the role of C/EBPα in regulating transcriptional processes as well as on its functions in key
differentiation processes during liver, adipogenic and haematopoietic development. Specifically, C/EBPα was shown to control
differentiation by its ability to coordinate transcriptional output with cell cycle progression. Later, its role as an important tumour
suppressor, mainly in acute myeloid leukaemia (AML), was recognised and has been the focus of intense studies by a number of
investigators. More recent work has revisited the role of C/EBPα in normal haematopoiesis, especially its function in HSCs, and also
started to provide more mechanistic insights into its role in normal and malignant haematopoiesis. In particular, the differential
actions of C/EBPα isoforms, as well as its importance in chromatin remodelling and cellular reprogramming, are beginning to be
elucidated. Finally, recent work has also shed light on the dichotomous function of C/EBPα in AML by demonstrating its ability to
act as both a tumour suppressor and promoter. In the present review, we will summarise the current knowledge on the functions of
C/EBPα during normal and malignant haematopoiesis with special emphasis on the recent work.
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INTRODUCTION
Proper haematopoietic differentiation requires a strict pattern of
spatiotemporal gene transcription, which is orchestrated by
intricate interactions of proteins with promoter and enhancer
regions. In particular, binding of transcription factors to enhancer
regions has been shown to facilitate the recruitment of RNA
polymerase II to the target gene promoter and to induce
epigenetic modifications that make the chromatin more
accessible.1 Work performed in embryonic stem cells has shown
that transcription factors bind enhancers in a sequential manner
and that embryonic stem cell-specific transcription factors
establish an active epigenetic state at tissue-specific regulatory
elements.2 These factors are subsequently replaced by lineage-
specific transcription factors that are able to induce the proper
gene expression pattern of differentiating cells. Thus, dynamic
binding of transcription factors appears to be mediated by the cell
type-specific chromatin environment where extracellular cues are
routed to intracellular transcription in a manner dependent on the
recruitment of lineage-specific transcription factors to regulatory
elements.
CCAAT/enhancer-binding protein-α (C/EBPα) is the founding

member of a family of six transcription factors: C/EBP-α, -β, -γ, -δ,
-ε and -ζ, which all share a basic region leucine zipper C-terminal
domain. The C-terminal DNA-binding domain consists of an

86-residue α-helical structure with a leucine-rich hydrophobic part
that allows for homo- or heterodimerization with family members
and other proteins with a similar structure,3,4 and simultaneously
positions the basic region in the major groove enabling efficient
binding to its cognate site on the DNA.5,6

CEBPA is an intronless gene located on chromosome 19q13.1 in
humans. The single mRNA transcribed from the CEBPA gene is
translated into two isoforms (Figure 1), due to alternative start site
usage resulting in the full-length C/EBPα (42 kDa; p42) and a
shorter, N-terminal truncated isoform (30 kDa; p30). P30 lacks
the first 117 amino acids of full-length p42, which includes the
transactivation domain 1 (TAD1). TAD1 has been shown to
regulate transcriptional activation through interactions with
components of the RNA polymerase II preinitiation complex,
including the TATA-box-binding protein (TBP) and the transcrip-
tion factor IIB.7 TAD1 has also been implicated in C/EBPα-mediated
repression of E2F activity, which has a role in the ability of C/EBPα
to control cell cycle progression.8–10 The ratio between p30 and
p42 is regulated at the level of translation by eIF2a/eIF3E.
Abundance of nutrients and growth factors results in the
activation of eIF2a/eIF3E, increasing the p30/p42 ratio through
the use of alternative translational start site usage. Thus, increased
translation of p30 promotes proliferation in favourable
conditions.11
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Both C/EBPα isoforms share the TAD2 that mediates antimitotic
effects through direct interactions with p21(ref. 12) and regulates
proliferation through interactions with the chromatin remodelling
complex SWI/SNF.13 In addition, proliferative arrest has been
suggested to be mediated through inhibition of Cdk2/Cdk4.14

However, more recent work has shown that deletion of the
Cdk2/Cdk4-binding domains of Cebpa in mice has no effect
neither on proliferation nor liver development.15

The transcriptional regulation mediated by C/EBPα is essential
for proper differentiation of cells in various tissues. Wang et al.16

were the first to demonstrate how non-conditional disruption of
Cebpa affects liver development in the foetus. Thus, Cebpa
deletion is perinatal lethal as a consequence of imbalanced
energy homeostasis due to perturbed hepatic glycogenesis.16

Furthermore, newborn Cebpa− /− mice exhibit impaired adipocyte
maturation, accumulate immature myeloid cells and lack mature
granulocytes.17 In the haematopoietic system, C/EBPα is most
prominently expressed in myeloid progenitor cells and its
expression is subsequently downregulated as the cells differenti-
ate (Figure 2). Hence, conditional deletion of Cebpa in the adult
haematopoietic system of mice disrupts the transition between
common myeloid progenitors and granulocyte monocyte
progenitors (GMPs). Notably, although Cebpa− /−mice accumulate
immature myeloid progenitors, they do not develop acute
myeloid leukaemia (AML).18

C/EBPΑ IN MYELOID DIFFERENTIATION
Myelopoiesis is the process by which myeloid progenitor cells
differentiate into myeloid cells such as granulocytes (eosinophilic,
basophilic and neutrophilic) and monocytes. The above-
mentioned essential role of C/EBPα in this developmental process
has spurred an extensive interest in deciphering the mechanisms
by which C/EBPα mediates this process in cooperation with other
myeloid transcription factors (reviewed in Friedman19).
Myeloid differentiation is primed at an early stage by

PU.1(refs 20,21) and RUNX1(ref. 22) and is further directed by
C/EBP family members.17,18 Additional factors such as IRF8,23

GFI1(ref. 24) and SCL/TAL1(ref. 25) have been shown to have a role in
myeloid development. Terminal myeloid differentiation is partly
mediated by extrinsic signalling through the cytokines granulo-
cyte colony-stimulating factor and macrophage colony-

stimulating factor, which instruct monocyte and granulocyte
differentiation, respectively.26

The E-twenty-six- family member PU.1 is a transcription factor
expressed in early progenitor cells and is required for the
generation of both common myeloid progenitors and common
lymphoid progenitors, as well as the terminal differentiation of
macrophages and B cells. Interestingly, PU.1 possesses the rare
ability of binding to tightly packed chromatin and DNA in
nucleosome structures and induces changes in the chromatin
conformation. Thus, PU.1 acts as a priming factor (pioneer factor)
during haematopoietic maturation by generating cell-type-specific
regions of open chromatin in cis-regulatory elements that serve as
beacons for binding additional transcription factors and chromatin
remodellers. Moreover, myeloid specification is mediated by
colocalization of PU.1 with C/EBPα.27 However, this effect appears
to be dose-dependent as PU.1 and C/EBPα reciprocally regulate
the expression of one another.28–31 Specifically, C/EBPα enhances
PU.1 expression, by directly binding to the SPI1 promoter and the
− 14 kb enhancer,28,29 and represses PU.1 activity by displacing its
cofactor c-Jun.30 The PU.1:C/EBPα ratio has also been proposed to
instruct terminal differentiation of myeloid progenitor cells.
Indeed, inducible expression of PU.1 and C/EBPα in Sfpi1− /− cells
(PU.1 deficient) shows that a high PU.1:C/EBPα ratio induces
macrophage development, whereas a lower ratio directs the cells
towards granulocytic maturation.31 Furthermore, heterodimeriza-
tion of C/EBPα with the AP-1 proteins c-Jun and c-Fos weakens the
affinity for several canonical C/EBPα target genes while retaining
specificity for PU.1, ultimately leading to skewing towards terminal
monocytic differentiation.3 Hence, C/EBPα appears to affect
myeloid differentiation through several layers of regulation.
Studies aiming at investigating the specific function and

regulation of C/EBPα during differentiation have been compli-
cated by disparate results in different model systems. Studies of
lineage determination of myeloid cells have primarily been
performed in a bipotent myeloid leukaemic cell lines, and similar
experiments performed in vivo have often shown diverging
results. As an example, post-translational modifications of C/EBPα
residues are thought to induce conformational changes of the
protein that would alter the activity of the transactivation domain.
However, whereas serine 248 phosphorylation was found to
induce terminal granulocytic differentiation in myeloid cell lines,32

substitution of serine 248 to alanine in knock-in mice does not
affect terminal myeloid differentiation in young mice.33 Similarly,
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exogenous C/EBPα directs granulocytic maturation of bipotent
myeloid cell lines,34 whereas ectopically expressed Cebpa in
primary murine myeloid35 or lymphoid36,37 progenitor cells induce
monocytic maturation. Collectively, differentiation is a complex
process, dependent on an intricate network of intrinsic and
extrinsic factors, and there is a need for caution when drawing
conclusions solely based on work performed in one model system.
Thus, the ability of C/EBPα to drive context-specific differentiation
of cells in diverse tissues is not only a matter of proper dosing but
also depends upon the collaborating actions of additional
transcription factors.

NOVEL FUNCTIONS FOR C/EBPΑ IN HSCS
Although C/EBPα is mainly considered a lineage-instructive factor
crucial for myeloid differentiation, recent data has shown that it
also has an important role in haematopoietic stem cells (HSCs).
HSCs exhibits a low but robust expression of Cebpa, and
consistently Cebpa− /− mice display HSC phenotypes. Specifically,
the Tenen Lab reported that the conditional loss of Cebpa in adult
HSCs leads to an immediate expansion of functional HSCs, which
was associated with an increase in proliferation.38 Further, it was
shown that Cebpa− /− HSCs upregulated a foetal HSC gene
expression programme as well as N-Myc, and that the latter was
responsible for the increase in HSC proliferation. Using a similar
system, i.e. Mx1-Cre mediated deletion of Cebpa, we recently
showed that C/EBPα deletion was associated with a dramatic
loss in HSC self-renewal.39 In fact, Cebpa− /− HSCs were lost in
secondary recipients and Cebpa− /− bone marrow donor cells
failed to rescue irradiated mice in non-competitive serial
transplantation experiments. Further, we were able to show that

Cebpa− /− HSCs displayed a marked increase in markers of DNA
damage and apoptosis. Finally, using chromatin immunoprecipita-
tion and sequencing analysis in HSCs and multipotent progenitor
cells, we demonstrated that C/EBPα bound to genes destined for
expression later during myeloid differentiation. As these regions
are considered inaccessible in HSC/multipotent progenitor cells,
this could potentially reflect the ability of C/EBPα to function as a
pioneer factor.
Recently developed Cebpa reporter mouse lines, driven by the

entire endogenous Cebpa regulatory regions or a +37 kb myeloid-
specific enhancer, have also been informative with respect to the
function of C/EBPα in HSCs.40,41 In both lines, only a fraction of
long-term HSCs express Cebpa (4–20%), suggesting that Cebpa
expression marks a minor subset of LT-HSCs. Interestingly, one of
these reports demonstrated that essentially all reconstituting
activity was found in the Cebpa-expressing compartment,
suggesting that C/EBPα is indeed essential for long-term HSC
function, at least during haematopoietic reconstitution.40

The above-mentioned discrepancies between the Cebpa− /−

phenotypes reported by our group and the Tenen group may
reflect, in part, differences in the timing of analysis relative to the
polyinosinic:polycytidylic acid-mediated activation of the Mx1-Cre
driver. Specifically, because of the earlier time point generally used
in the Tenen report, their analyses are focused on the effects of
Cebpa deletion in actively cycling HSCs as a consequence of the
impact of interferon signalling on HSCs.42 Indeed, loss of Cebpa in
this scenario may convert adult HSCs to a more foetal-like state as
suggested by the Tenen group.38 In any event, both reports clearly
demonstrate the importance of intact C/EBPα function for the
proper control of HSC numbers and functions.
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Figure 2. The role of C/EBPα in normal haematopoietic differentiation. (a) The haematopoietic hierarchy showing the expression of Cebpa.
Expression data is indicated in colour (low green; red high) and derives from http://servers.binf.ku.dk/hemaexplorer/.103 (b) The function of
C/EBPα in cellular plasticity exemplified by the transdifferentiation of B/T cells towards monocytes induced by overexpression C/EBPα as well
as by the enhancement of induced pluripotent stem cell (iPSC) generation, similarly mediated by overexpression C/EBPα (see main text for
additional details).
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C/EBPΑ LEVELS OR FUNCTION IS PERTURBED IN HUMAN AML
AML is a clonal disorder that arises through the acquisition of
genetic and epigenetic alterations ultimately leading to changes
in the transcriptional wiring of the leukaemic cells and/or loss of
cell identity. In line with this, mutations in transcription factors and
epigenetic regulators with roles in normal haematopoietic
development are among the most frequent aberrations detected
in human AML patients.43,44

Mutations in CEBPA in human AML were first reported by Pabst
et al.45 and have later been described in numerous studies.46–55

CEBPA mutations mainly fall into two classes. The first class
involves the C-terminal part of C/EBPα, and consistently these
mutations interfere with the DNA-binding and/or dimerisation
properties of the protein.56,57 The second class is located in the
5′ end of the gene and frequently disturbs the open reading
frame. Most of these mutations reside between the two ATGs
initiating the respective synthesis of the p42 and p30 isoforms,
and, consequently, lead to the exclusive expression of the p30
isoform from the affected allele.
CEBPA mutations in human AML have been shown to be either

mono- or biallelic. Monoallelic CEBPA mutations are associated with
a plethora of other genetic lesions and are generally heterogeneous
with respect to gene expression and prognosis.49,58–60 In contrast,
biallelic CEBPAmutant AML constitutes a distinct subtype associated
with good prognosis and was recognised as such in the recent
World Health Organisation classification.61 Further support for this
comes from gene expression studies, which also classify biallelic
CEBPA mutant AML as a distinct disease entity.48,49,58–60,62 Biallelic
CEBPA mutant AMLs preferentially combine an N-terminal mutation
on one allele (sustaining the expression of p30 only) with a
C-terminal mutation on the other (deficient in dimerization/DNA
binding).54 As C/EBPα functions as a dimer, this implies that the only

C/EBPα dimers able to bind DNA will be p30/p30 homodimers in
AML with this combination of mutations. The remaining biallelic
CEBPAmutant AMLs either combine two N-terminal mutations or an
N-terminal mutation with a frameshift/nonsense mutation in the
central part of CEBPA. As the latter mutations encode C/EBPα
variants lacking the basic region leucine zipper domain, these
combinations will result in the formation of p30/p30 homodimers as
the only C/EBPα entities capable of binding DNA. Hence,
these findings underscore the importance of both the presence of
the p30 isoform and lack of functional p42 isoform in CEBPAmutant
AML (Figure 3).
Biallelic CEBPA mutant AML exhibits a distinct secondary

mutational spectrum that sets this class aside from other AML
subtypes.54 Although this subtype frequently exhibits mutations in
well-known leukaemic players such as ASXL1, RUNX1 and TET2,
these events are clearly under-represented when compared with
other AML subtypes. On the other hand, mutations in WT1 and, in
particular, GATA2 are highly enriched in biallelic CEBPA mutant
AML, suggesting a specific collaboration between these lesions
and mutated CEBPA.54 Interestingly, this pattern is also recapitu-
lated in the rare cases of familial CEBPA mutant AML involving
families of heterozygous carriers of N-terminal CEBPA mutations.63

Here, progression to AML is associated with acquisition of a
C-terminal mutation on the remaining CEBPA allele as well as with
frequent lesions in GATA2 or WT1.64 Collectively, these findings
demonstrate that biallelic CEBPAmutant AML constitutes a distinct
AML entity.
The involvement of C/EBPα in human AML is not restricted to

CEBPA mutant AML. Methylation of the distal CEBPA promoter was
shown to correlate inversely with the expression levels of CEBPA,
but did not have any prognostic value in normal karyotype AML.65

However, the finding that CEBPA promoter methylation and
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Figure 3. Differential actions of the p42 and p30 isoforms of C/EBPα. (a) Generally, the p42 isoform is more abundant than the p30 isoform in
normal cells. Hence, the most prevalent C/EBPα entities are p42/p42 homodimers (as indicated by size). The presence of the TAD1 domain
allows this isoform to interact with, and repress the activity of, E2F family members, which is key to its ability to repress proliferation. (b) In
biallelic CEBPA mutant AML, the selective loss of functional p42 leads to the preferential formation of p30/p30 homodimers. (c) The potential
molecular consequences of p42/p42 or p30/p30 expression (see main text for additional details).
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mutations in the coding region of CEBPA are mutually exclusive
implies that these events perturb similar cellular pathways. This is
reinforced by the clustering of the transcriptional profiles derived
from human CEBPA silent and biallelic mutant AML.66

Oncogenic driver proteins have also frequently been impli-
cated in downregulating the expression of CEBPA in AML. One
example is AML-ETO (t(8;21)), which downregulates the expres-
sion of CEBPA, most likely by interfering with an autoregulatory
loop sustaining its expression.67,68 At the post-transcriptional
level, RNA-binding proteins such as hnRNP E2 and calreticulin
expressed in blast crisis chronic myeloid leukaemia and
AML1-MDS1-EVI (t(3;21))/ -MYH11 (inv16) in AML, respectively,
have been shown to interfere with the translation of the CEBPA
mRNA.69–72 Finally, a number of oncogenic lesions also interfere
with the function/levels of the C/EBPα protein (reviewed in
Mueller and Pabst73). One particularly interesting case is the role
of TRIB2, which was found to be overexpressed in a distinct
subtype of AML frequently harbouring mutations in NOTCH1.74,75

TRIB2 is a potent oncogene and its overexpression in mouse
haematopoietic stem and progenitor cells results in AML. Gene
expression analysis further revealed that the TRIB2-high human
AML clustered with biallelic CEBPA mutant AML, suggesting that
they operate in similar pathways.75 Indeed, TRIB2 was found to
mediate the degradation of the p42 isoform of C/EBPα leading
to a skewed ratio of p42/p30, resulting in the preferential
formation of p30/p30 homodimers. This, in turn, explains the
resemblance between biallelic CEBPA mutant and TRIB2-high
AML.74,76 Collectively, these findings demonstrate that a large
fraction of human AMLs converges at downregulating the
level and/or interferes with the function of C/EBPα, thereby
unambiguously classifying it as a key myeloid tumour.

THE REQUIREMENT FOR C/EBPΑ IN AML DEVELOPMENT
Despite the numerous pathways by which C/EBPα levels and
functions are perturbed in human AML, cases with a complete lack
of C/EBPα have yet to be reported.77 This is consistent with the
lack of leukaemia development in Cebpa− /− mice and suggests
that in addition to its well-established tumour-suppressive
function, C/EBPα may actually also be required for the develop-
ment of AML.78 Consistently, forced expression of the fusion
oncogene BCR-ABL in Cebpa-deficient murine foetal liver cells
results in erythroleukaemia instead of the chronic myeloid
leukaemia, which normally arises in this setting.79 These findings
formed the basis of a model where the block in myeloid
differentiation upstream of the GMP leads to a failure of
Cebpa− /− progenitors to reach a stage of myeloid identity, which
may be a prerequisite of leukaemic transformation.
We have recently put this model to the test by assessing the

requirement of C/EBPα in MLL-ENL-mediated transformation.80

Here we find that C/EBPα is absolutely required for the initiation of
MLL fusion-driven AML and that even deletion of Cebpa at the
GMP stage completely abrogates transformation. These findings
suggest that it is not the lack of myeloid identity per se that
underlies the requirement for C/EBPα in AML development, but
more likely its ability to collaborate with MLL-ENL (and perhaps
other fusion oncogenes/transcriptional regulators) in initiating the
expression of a transcriptional programme required for leukaemic
transformation. Strikingly, the deletion of C/EBPα in already
established MLL-ENL-driven leukaemias had absolutely no impact
in terms of the expression of this transcriptional programme
and/or the properties of the leukaemic cells.
The demonstrated requirement for C/EBPα in the development

of myeloid leukaemia was recently revisited.81 Consistent with the
findings detailed above, leukaemic transformation mediated
by MLL-AF9 was found to be strictly dependent on the presence
of C/EBPα, whereas already established AMLs were refractory
to C/EBPα loss. Interestingly, when mice transplanted with

MLL-AF9-expressing Cebpa− /− progenitors were subjected to
hydrodynamic injection of interleukin-3 and granulocyte–macro-
phage colony-stimulating factor-encoding vectors, Cebpa− /− AML
readily developed. As interleukin-3 and granulocyte–macrophage
colony-stimulating factor mediate formation of GMPs in a
C/EBPα-independent manner (in a process termed emergency
granulopoiesis82), the authors concluded that leukaemic transfor-
mation was dependent on the formation of GMPs and not C/EBPα
per se. However, as emergency granulopoiesis upregulates the
expression of Cebpb and is abrogated by Cebpb knockdown, it is
likely that C/EBPβ may functionally substitute C/EBPα as has
indeed been reported earlier.82,83 Also, the report fails to explain
why Cebpa− /− GMPs are refractory to leukaemic transformation.80

The findings reported above raise the possibility that C/EBPαmay
act as a so-called pioneer factor that facilitates access/remodelling at
key regulatory elements, thereby enabling access of other factors
such as MLL-ENL. Once these elements are remodelled, C/EBPα is no
longer required for the function of these regulatory elements,
consistent with the lack of phenotype of removing C/EBPα in
already established AML.80 Consistent with this notion, C/EBPα has
been reported to collaborate with HOXA9 in HOXA9-dependent
AML.84 The function of C/EBPα as a potential pioneer factor also
appears to extend to non-haematopoietic systems, specifically
adipocyte differentiation, where C/EBPα was demonstrated to
facilitate the binding of the adipogenic master regulator peroxisome
proliferator-activated receptor-γ to compacted chromatin.85 This
property of C/EBPα was dependent on its SWI/SNF interaction
domain, which has also previously been found to be essential for
C/EBPα-mediated myeloid differentiation.86

Collectively, several lines of evidence suggest that, in addition
to its tumour-suppressive function, C/EBPα is also required for the
development of AML, most likely through its ability to collaborate
with other transcriptional regulators and by promoting chromatin
remodelling.

THE PROMOTION OF LEUKAEMIC TRANSFORMATION BY
MUTATIONS IN CEBPA
Mutations in CEBPA are associated with leukaemic transformation,
but how does these mutations mediate their effect? Mouse
models have been instrumental in the efforts to answer this
question, and the first Cebpa mutant lines, where an AML-like
disease was reported, harboured mutations in the basic region of
C/EBPα. Specifically, these mutations abrogated the interactions
with members of the E2F family of cell cycle regulators without
interfering with the ability of C/EBPα to bind DNA.9 These animals
developed a number of conditions ranging from neutropenia,
over myeloproliferation to an AML-like syndrome with limited
peripheral involvement, presumably mediated by the acquisition
of secondary mutations.87 Although similar mutations were not
identified in human AML (in the patient studies that followed),
these findings underlined the importance of C/EBPα-mediated
repression of E2F activity in protecting against aberrant
myelopoiesis.
As discussed above, the most common group of CEBPA

mutations in human AML leads to the expression of the p30
isoform of C/EBPα. Consistently, knock-in mice homozygous for an
allele of Cebpa that exclusively express this isoform (CebpaN/N) all
succumb to full-blown AML within the first year of their lives.88

Remarkably, but consistent with data from retroviral transduction
models, the leukaemic stem cells in these models are residing in
a population of committed progenitors,89 thus challenging
the previous dogma that leukaemic stem cell were residing in
the HSC compartment.90 Indeed, recent efforts characterizing the
cellular compartments that harbour oncogenic driver mutations in
human AML have confirmed that the cell-of-origin, and conse-
quently the leukaemic stem cell, is residing in populations
downstream of HSCs.91,92
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Following the characterisation of the CebpaN/N strain, the Nerlov
group developed a mouse line where they combined the CebpaN

allele with an allele expressing a C-terminal mutation unable to
bind DNA (CebpaC), thereby mimicking the most frequent
combination of mutations in CEBPA mutant AML.93 The N/C
combination promoted leukaemic development with a shortened
latency as compared with the N/N combination, and this appeared
to be conferred by an expansion of the HSC compartment in the
preleukaemic state. Such an expansion may favour the acquisition
of secondary mutations in downstream populations, thus leading
to a faster developing AML.
As discussed above, both the N/N and the N/C combinations are

predicted to lead to the formation of p30/p30 homodimers as the
only C/EBPα entity capable of binding DNA. So what underlie the
differences in latencies between N/N and N/C murine leukaemias?
One potential explanation could be that, although the C-termin-
ally mutated C/EBP variants are unable to bind DNA, they may still
bind to C/EBP-interacting proteins such as PU.1 and/or SWI/SNF
complexes.94 Thus, the expression of the CebpaC allele could
potentially reduce the amount of C/EBP activity in the cell, thereby
reducing the ability of other C/EBPs to rescue the effects of
expressing the aberrant C/EBPα variants.
Recently, a more advanced model of CEBPA mutant AML was

constructed by combining the CebpaN/C mice with mutations in
tyrosine kinase FLT3.95 FLT3 mutations are frequent in human AML
and are found in combination with biallelic CEBPA mutations,
although not enriched in this subtype.54 Consistent with its
leukaemogenic role, FLT3 mutations further accelerate disease
development in CebpaN/C mice, underlining the importance of
developing more refined models of CEBPA mutant AML. In
particular, it would be interesting to combine the current model
with mutations in GATA2 and WT1, both of which are particularly
enriched among biallelic CEBPA mutant cases.54

Both mouse and patient studies clearly indicate a central role
for the p30 form of C/EBPα in the development of AML and
suggest that the formation of p30/p30 homodimers are crucial in
mediating oncogenic transformation. It is well established that
loss of C/EBPα-mediated E2F cell cycle control, either by the
expression of basic region mutant/p30 isoforms of C/EBPα or
through its complete loss, leads to a block in myeloid differentia-
tion. However, the differences in the ability of these genetic
aberrations to support leukaemic development suggest that the
role of C/EBPα in cell cycle progression is not the only factor
governing the tumour suppressor functions of WT C/EBPα.
Being a transcription factor, it is likely that the normal gene

regulatory properties of WT C/EBPα are affected not only by the
complete loss of all C/EBPα isoforms but also by the preferential
expression of p30/p30 homodimers that is observed in AML. Loss
of C/EBPα was recently shown to lead to the upregulation of
Cebpg, both in CEBPA-silenced AML and in murine Cebpa− /− stem
and progenitor cells.96 Interestingly, knockdown of Cebpg in both
these systems promoted neutrophilic differentiation demonstrat-
ing that C/EBPα-mediated repression of Cebpg has a role in the
differentiation arrest induced by its loss in both CEBPA-silenced
AML and during normal myeloid differentiation. Moreover,
C/EBPα has also been shown to repress the expression of Sox4,
a supposed oncogene in several cancer types.66 Strikingly, not
only did knockdown of Sox4 inhibit the increased self-renewal and
lack of myeloid differentiation observed in Cebpa− /− murine stem
and progenitors but it also extinguished the self-renewal of
leukaemic stem cells derived from murine CebpaN/C AML.
Consistent with these findings, Sox4 expression was found to be
upregulated in both human CEBPA-silenced AML and in human
CEBPA mutant AML. Finally, overexpression of CebpaC in a bone
marrow transplantation model has recently been shown to repress
the expression of Csf1r.97 However, a potential tumour suppressor
function of Csf1r was not supported by its overexpression in the
CebpaC overexpression setting. On the contrary, accelerated AML

development was observed. The extent to which this reflects this
particular model is not clear, but the potential functional
interaction between C/EBPα and CSF1R in AML warrants further
investigation.
These examples aside, we know very little about global

differences between p42/p42- and p30/p30-mediated transcrip-
tional regulation, and a challenge for the future will be to address
this issue using genome-wide approaches. Specifically, are we able
to find genes that are deregulated through loss of p42 binding,
and/or does p30 bind to sites that are also occupied by p42 in
normal progenitors? Or do p42 and p30 generally share the same
binding patterns, only differing in their ability to control the
expression of the cognate genes? Indeed, given the recent
demonstration of the selective binding of p30/p30 dimers to
WDR5, differential cofactor binding of the two C/EBPα isoforms
should be investigated further.98 Such approaches will lead to the
identification of genes controlling leukaemic properties and
potentially to genes that could be targeted therapeutically.

C/EBPΑ AS A PIONEER FACTOR AND A REGULATOR OF CELL
IDENTITY
Throughout this review, we have described several instances
alluding to the ability of C/EBPα to drive rearrangements of closed
chromatin (Figure 4). These examples include the binding of
C/EBPα to myeloid lineage-affiliated genes in HSCs/multipotent
progenitor cells, the ability of C/EBPα to mediate the binding of
peroxisome proliferator-activated receptor-γ to compacted
chromatin in mouse embryonic fibroblasts and the requirement
for C/EBPα for MLL fusion proteins to access chromatin during
AML development.39,80,85 Moreover, C/EBPα has been found to
mediate robust transdifferentiation of both T and B cells into
macrophages, that is, a process involving major rearrangements of
both chromatin and gene expression patterns.36,99–101 However,
most strikingly, C/EBPα has been shown to enhance (4100-fold)
the ability of the four Yamanaka factors to reprogramme B cells to
induce pluripotent stem cells in a process mediated, in part, by the
epigenetic regulator TET2.100,102

Collectively, these findings suggest that C/EBPα possesses some
unique properties allowing it to interact with compacted
chromatin in processes with importance for normal differentiation
and for the development of cancer. Molecularly, these properties
have been associated with its ability to recruit SWI/SNF complexes
and to induce the expression of TET2. A task for the future will be
to understand the underlying mechanisms of C/EBPα-mediated
chromatin remodelling in the different settings outlined above.

CONCLUDING REMARKS
Here we have reviewed the current knowledge on C/EBPα in
normal and malignant haematopoiesis. Strikingly, whereas the
p42 isoform of this apparently uncomplicated transcription factor
acts as a tumour suppressor in AML, it is equally required for the
development of at least one subtype of this disease. The relative
balance between context-dependent actions of C/EBPα in AML
should be addressed in future studies. An equally important
question to address is how the truncated p30 isoform of C/EBPα
promotes AML. Does it bind selectively to some target genes, does
it interact differently with various cofactors and/or does it perturb
the functions of other bZIP transcription factors by heterodimer-
ization? Finally, the exact mechanisms by which C/EBPα functions
in HSCs and during myeloid differentiation still need to be fully
established. Addressing all these questions has the potential of
uncovering the mechanisms by which C/EBPα governs AML
development and may thus potentially uncover novel targets for
therapeutic intervention in AML with C/EBPα involvement.
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