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Metabolomic profiling of brain from infants who died from
Sudden Infant Death Syndrome reveals novel predictive
biomarkers
SF Graham1, OP Chevallier2, P Kumar1, O Türkoǧlu1 and RO Bahado-Singh1

OBJECTIVE: Sudden Infant Death Syndrome (SIDS) is defined as the sudden death of an infant o1 year of age that cannot be
explained following a thorough investigation. Currently, no reliable clinical biomarkers are available for the prediction of infants
who will die of SIDS.
STUDY DESIGN: This study aimed to profile the medulla oblongata from postmortem human brain from SIDS victims (n= 16) and
compare their profiles with that of age-matched controls (n= 7).
RESULTS: Using LC-Orbitrap-MS, we detected 12 710 features in electrospray ionization positive (ESI+) mode and 8243 in ESI−
mode from polar extracts of brain. Five features acquired in ESI+ mode produced a predictive model for SIDS with an area under
the receiver operating characteristic curve (AUC) of 1 (confidence interval (CI): 0.995–1) and a predictive power of 97.4%. Three
biomarkers acquired in ESI− mode produced a predictive model with an AUC of 0.866 (CI: 0.767–0.942) and a predictive power of
77.6%. We confidently identified 5 of these features (l-(+)-ergothioneine, nicotinic acid, succinic acid, adenosine monophosphate
and azelaic acid) and putatively identify another 4 out of the 15 in total.
CONCLUSIONS: This study underscores the potential value of metabolomics for studying SIDS. Further characterization of the
metabolome of postmortem SIDS brains could lead to the identification of potential antemortem biomarkers for novel prevention
strategies for SIDS.
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INTRODUCTION
Sudden Infant Death Syndrome (SIDS) is defined as the sudden
death of an infant o1 year of age that remains unexplained
following a thorough standardized investigation, including a
complete autopsy, examination of the death scene and review
of the clinical history.1 Each year in the United States, about 4000
infants die suddenly of no immediately obvious cause. About half
of these sudden unexpected infant deaths are due to SIDS, the
leading cause of sudden unexpected infant deaths and of all
deaths among infants aged 1–12 months.1 According to the
National Vital Statistics Report, published in December 2013, SIDS
is the third leading cause of infant death in the United States of
America, and rates for non-Hispanic black and American Indian or
Alaskan native women are almost twice than those for non-
Hispanic white women.2 There are numerous epidemiological and
physiological factors that are associated with an increased risk for
SIDS; however, these factors are still too generic to precisely
predict high-risk infants.3 Intense efforts to understand the
etiology of SIDS has led to the development of a triple-risk
model, including: (i) a vulnerable infant; (ii) a critical period of
development in homeostatic control, and (iii) an exogenous
stressor.4 The triple-risk hypothesis emphasizes the interaction of
multiple factors in pathogenesis and helps to understand why
particular infants may die at particular ages when exposed to
potential stressors.5 Despite many genetic alterations found in
SIDS, the genetic contribution still remains unclear. For example
there is a low rate of SIDS in siblings and lack of concordance in

twins suggests a modest genetic impact and emphasizes the need
for a multidisciplinary approach.6

Metabolomics, the systematic investigation of all metabolites
present within a biological system, is used in biomarker
development for many human diseases.7 This emerging member
of the ‘omics’ field is not only concerned with the identification
and quantification of metabolites but also concerned with relating
metabolite data to genes,8 proteins,9 pathways,10 physiology and
phenotypes.11 Metabolomic analysis of SIDS cases has the
potential to elucidate pathogenesis and develop predictive
biomarkers of this syndrome. Ultimately, this could assist in
SIDS-prevention efforts.
The brain has long been known to have a critical role in the

pathogenesis of SIDS.12 Although there are many regions
throughout the brain that influence arousal or respiratory and
autonomic function (for example, hypothalamus, amygdala), SIDS
research has historically focused on the brainstem.13 Combating
exogenous stressors that trigger asphyxia, hypoxia, hypercapnia,
thermal imbalance and/or cardiovascular instability require intact
brainstem defense mechanisms to protect against lethal
consequences.12 Accumulating evidence points to increased
gliosis, increased apoptotic neurons,14 activated caspase-3
immunoreactivity,15 caspase-3 immunoreactivity16 and expression
of c-jun and c-fos17 in the brainstems of infants dying of SIDS,
however, these findings are not unequivocal.18 Further, there is
compelling evidence that shows medullary homeostatic network
dysfunction as a key underlying abnormality in SIDS.19 In the
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medulla oblongata, the arcuate nucleus is formed from a group of
neurons located on the anterior surface of the medullary pyramids
that contributes to the regulation of respiration in humans. It has
been proposed that the arcuate nucleus at the ventral medullary
surface is a candidate region for central chemosensitivity in
humans and structural underdevelopment of the arcuate nucleus
was subsequently observed in SIDS cases.20 Moreover, neurotrans-
mitter abnormalities, including 5-hydroxytryptamine (5-HT),21–23

γ-aminobutyric acid (GABA)24 and the family of 14-3-3 signal
transduction proteins,24 were most consistently reported in the
medulla oblongata of brainstem in cases with SIDS. Thus this study
aims to evaluate the metabolomic profile of the medula oblongata
of brainstem in SIDS cases compared with controls. In doing so,
we are confident of identifying central biomarkers for SIDS and
discovering novel biochemical pathways associated with the
disease.

MATERIALS AND METHODS
Tissue samples and data acquisition
Only a limited number of specimens and tissue volume was available for
this pilot study. Tissue samples (medulla) were obtained from postmortem
SIDS cases with no co-sleeping (n= 16) and age- and gender-matched
control subjects (n=7). Tissues were obtained from the University of
Maryland Brain and Tissue Bank, which is a Brain and Tissue Repository of
the NIH NeuroBioBank. This study was approved by the Beaumont Health
System’s Human Investigation Committee (HIC no.: 2014-210). The
methods were carried out in accordance with the approved guidelines.
Details such as age, gender, race and postmortem delay can be found in
Table 1 (Supplementary Material). Samples were prepared and analyzed
using an LTQ-Orbitrap Elite (Thermo Scientific, San Jose, CA, USA) in both
positive (ESI+) and negative (ESI−) electrospray ionization modes as
previously described by Graham et al.25–27 For ESI− acquired data, the
gradient remained the same as for ESI+; however, the flow rate changed to
0.36 ml min− 1.

Data analysis
The raw data form the spectral analysis of the tissue extracts was
processed using the Progenesis QI Software v2.0 (Waters, Milford, MA, USA)
and XCMS Online (http://xcmsonline.scripps.edu/), as previously described
by Graham et al.26,27. Subsequently data were exported to Simca v14
(Umetrics, Umea, Sweden) for multivariate analysis. Quality-control
measures were employed to all data sets as previously described by
Graham et al.26,27 (see Figure 1, Supplementary Material) to ensure
chromatographic reproducibility of retention times and peak intensities. All
univariate analyses were conducted using the SAS System for Windows
version 9.3 (Cary, NC, USA) as previously described by Graham et al.26

Metabolite identifications
Using the accurate mass of precursor and fragment ions, Progenesis QI 2.0
and XCMS Online28 searched the KEGG, Human Metabolome Database29–31

and Massbank32 spectral libraries (a total of 4928 were identified from
12 710 m/z values; 5 p.p.m. tolerance). Ions of interest were fragmented at
various normalized collision energies in the high-collision dissociation cell
as previously described by Graham et al.26,27 Further, fragment intensities
were also used to search m/z cloud (http://www.mzcloud.org/; HighChem,
Bratislava, Slovakia) and MassBank for metabolite identification. The
chromatographic peak, accurate mass of the precursor ion, fragmentation
spectra for the identified metabolites and their matching fragmentation
spectra from the library are shown in Supplementary Figure S3.

RESULTS
Raw data acquired in ESI+ and ESI− modes and analyzed using
Progenesis QI revealed 12 710 and 8243 features, respectively;
following background filtration to remove noise (420% zero
values), the number of detected features were reduced to 4952 for
ESI+ and to 2310 for ESI− acquired data. Figures 1a and b display
the chromatographs of the postmortem brain extracts in both
ESI+ and ESI− , respectively. The filtered data sets were used to Ta
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produce the multivariate models. Using principal component
analysis (PCA) all acquired data were found to be highly
reproducible as evident from the tight clustering of the quality

controls (at the center of the score plot) and each individual
extract (n= 6) over the duration of the data acquisition (Figure 1,
Supplementary Material).25,26 Figure 2 displays the OPLS-DA

Figure 1. UHPLC ESI+ (a) and ESI− (b) chromatograms of the polar extract of postmortem brain tissue.

Figure 2. (a) The scores plot for data acquired in electrospray ionization positive (ESI+) mode displaying the separation between the two
sample groups (blue squares= controls; red circles= Sudden Infant Death Syndrome (SIDS)). (b) The results of the permutation analysis for the
model build using ESI+ acquired data (green circles= R2; blue squares=Q2). (c) The scores plot for data acquired in ESI− mode displaying the
separation between the two sample groups (blue squares= controls; red circles= SIDS). (d) The results of the permutation analysis for the
model build using ESI+ acquired data (green circles= R2; blue squares=Q2). A full color version of this figure is available at the Journal of
Perinatology journal online.
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scores plots for the data acquired in ESI+ (Figure 2a) and ESI−
(Figure 2c) modes. The OPLS-DA plot in Figure 2a was produced
with one orthogonal and three latent components; R2 = 92.9 %
and Q2= 89.3 %. Complete separation between controls and SIDS
data was visualized from the score plots, and as the R2 and Q2
values would suggest, excellent clustering of the data was
observed. Figure 2c displays the OPLS-DA plot for data acquired
in ESI− mode. As previously, complete separation was observed
between the two groups producing a model with R2 = 96.4 % and
Q2= 92.4 %, denoting excellent clustering of the data. The model
was developed using one orthogonal component and three latent
components. Figures 2b and d display the results of the
permutation testing (n= 999) for both sets of data acquired in
ESI+ and ESI− , respectively. The results of these permutation tests
demonstrate the accuracy of both models. The criteria to which
the validity of each model is critiqued include: all Q2 values to the
left must be lower than the original points to the right and the Q2
regression line must intersect the y axis below zero.26,33

Following the development of the multivariate models, the
filtered data were analyzed to determine whether a small panel of
predictive biomarkers was capable of discriminating SIDS
brains from controls. All the data from both modes of acquisition
were uploaded to the Metaboanalyst (http://www.metaboanalyst.
ca)34–36 and analyzed using the Biomarker option. This function
developed a variety of models based on the top 5, 10, 15, 25, 50
and 100 features. For both ESI+ and ESI− data, we found that the
model’s predictive ability did not increase with 415 features
being used to develop the models. These 15 features were
analyzed to determine whether they were indeed statistically
significantly different between SIDS and control samples. Tables 1
and 2 display the results of the univariate analyses for both ESI+
and ESI− data, respectively. Each individual feature was inspected
manually to determine the validity of their chromatographic peak
in a number of pooled samples. Some peaks were deemed to be
noise and removed. This reduced the number of peaks used to
build the predictive models from 15 to 9 (one removed by the
Metaboanalyst software, n= 8) for the ESI+ data and from 15 to 5
for the ESI− data (one removed by the Metaboanalyst software,
n= 4). The results of the receiver operating characteristic (ROC)
analysis for all the models using a variety of features is displayed
as Figures 2a and b (Supplementary Material) for ESI+ and ESI−
data, respectively.
Using the top nine features from the ESI+ acquired data, it was

shown following cross validation (model developed using 2/3 of
the data and blindly tested using the remaining 1/3) that five
features produced the best model. Following an ROC analysis, it
produced an AUC of 1 CI: 0.9995–1) and a predictive accuracy of
97.4 % when differentiating between SIDS and control post-
mortem brain extracts (Figures 3a and b, respectively). Of the top
five features for the ESI− acquired data, three variables produced
the best model following an ROC analysis with an AUC of 0.866 (CI:
0.767–0.942) and a predictive accuracy of 77.6 % following cross-
validation (Figures 3c and d, respectively). Permutation testing
using 1000 repeat analyses were performed and yielded a P-value
of 1.21E− 05 and 2.10E− 04 for both ESI+ and ESI− , respectively.
These significant P-values indicate the observed differentiation
achieved by both panels of features was not coincidental.
Tables 1 and 2 list the putative identifications (level 2 reporting

according to the Metabolomics Standards Initiative37) for the
features of interest acquired in ESI+ and ESI− modes, respectively.
Of the 15 variables, 5 were confidently identified (2 for ESI+ and 3
for ESI− ) matching library fragmentation patterns with experi-
mental data. Figure 3 (Supplementary Material) displays the
chromatographic peak, precursor ion accurate mass, fragmenta-
tion spectra for the identified metabolites and their matching
fragmentation spectra from the library. An additional four features
(3 for ESI+ and 1 for ESI− ) were putatively identified using their
accurate masses to search online libraries. The remaining sixTa
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potential biomarkers remain unidentified following a comprehen-
sive process of identification. The fragmentation pattern for all the
features is available as Table 1 (Supplementary Material). An
additional model was created using a combination of the identified
metabolites from both models. Supplementary Figure S4a displays
the ROC analyses using the relative levels of L-(+)-ergothioneine,
nicotinic acid, succinic acid, adenosine monophosphate (AMP)
and azelaic acid. The ROC analysis produced an AUC=0.798
(CI: 0.71–0.885) following 100 independent cross validations
and had a predictive power of 70.6 %. However, when we
further tested the model using permutation analyses we found it
to be not statistically significant (P-value= 0.078; Supplementary
Figure S4b).

DISCUSSION
To our knowledge, this is the first study applying metabolomics
and using high resolution mass spectrometry (HRMS) to
biochemically fingerprint postmortem SIDS brain tissue versus
matched controls. Using ESI+ and ESI− acquired data, two
predictive metabolomic models were developed that differen-
tiated SIDS subjects from controls. The fit and clustering of the
models were excellent, with Q2 and R2 values for both models
⩾ 90 %. Furthermore, the predictive accuracies of the models
using the top 5 and top 3 features for both the ESI+ and ESI−

acquired data were exceptional, with 97.4% and 77.6% predictive
accuracy, respectively.
The biomarker panel identified using ESI+ acquired data

performed much better when differentiating between the two
sample groups than the data acquired in ESI− mode. Of the five
features, only one (230.0958m/z) did not reach statistical significance
(Po0.05; false discovery rate (FDR)o0.05) when analyzed using
univariate techniques. However, as is the case with the predictive
models, the issue of statistical significance is not the most important
one (Supplementary Figure S5a). A feature can be important to the
model but yet not reach statistical significance. In an instance such as
this study, it can be difficult to detect differences between groups
with small cohorts. In addition, the adjusted P-values are the
minimum of two quantities, one of which depends on the number of
features in the set. Altman and Bland38 famously noted that absence
of evidence is not evidence of absence. In other words, a non-small
P-value does not ‘prove’ that there is no difference; rather the data
does not allow you to reasonably exclude the possibility of no
difference.38 This holds for the ESI− recorded data; one of the top
ranked variables (199.0370 m/z; no. 6 VIP) did not prove to be
statistically significantly different (Po0.05; FDRo0.05) between the
two groups, yet it was found to be important for the development of
the statistical model (Supplementary Figure S5b).
Of the 15 features to be identified as important for each of

the respective models, only 5 were confidently characterized by

Figure 3. (a) ROC curve for the data acquired in ESI+ mode using the top five features (AUC= 1 (CI: 0.995–1)). (b) The predicative ability of all
the models created using a varying number of features with ESI+ data, with five features providing the best predictive model following cross
validation (97.4%). (c) The ROC curve for the data acquired in ESI− mode using the top five features (AUC= 0.866 (CI: 0.767–0.942)). (d) The
predicative ability of all the models created using a varying number of features with ESI− data, with four features providing the best
predictive model following crossvalidation (77.6%).
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matching the fragmentation patterns with those freely available
online (http://www.mzcloud.org/; HighCHem; Figure 3,
Supplementary Material). Of these 5 confidently identified metabo-
lites, nicotinic acid, also known as niacin or vitamin B3, is a water-
soluble vitamin whose derivatives such as NADH, NAD, NAD+ and
NADP have essential roles in energy metabolism, biosynthesis, DNA
repair and respiratory burst (http://www.HMDB.ca). However, in this
study the relative levels of nicotinic acid were found not to be
statistically different between case and control postmortem brain
tissue specimens. L-(+)-ergothioneine is a sulfur-containing amino
acid that is widely distributed throughout both the animal and plant
kingdom, yet its physiological function has yet to be clearly
characterized.39 Ergothioneine is believed to be a strong neuropro-
tectant. Aruoma et al.40 demonstrated its neuroprotective effect in
an in vivo excitotoxicity system where cell loss was reduced from
81% in ganglion cells and 43% of non-ganglion cells to 44% and
31%, respectively, when treated with ergothioneine as opposed to
N-methyl-D-aspartate. However, as the levels of ergothioneine were
upregulated in the postmortem brain extract from SIDS infants, we
cannot hypothesize as to its role in SIDS.
Succinic acid and its anion, succinate, are components of the

citric acid cycle capable of donating electrons to the electron
transfer chain (http://www.HMDB.ca). Succinic acid is produced
from succinic semialdehyde by succinic semialdehyde dehydro-
genase (SSADH) in the mitochondrial matrix; it has been reported
to affect the central nervous system degradation of the
neurotransmitter GABA.41 SSADH deficiency is an autosomal
recessively inherited disease and is considered to be an under-
recognized and potentially manageable neurological disorder.42,43

Children who have been diagnosed with SSADH deficiency have
been shown to display ataxia, seizures, psychomotor retardation,
language delay and hypotonia.44 From our analyses, we report
significant differences in the levels of succinic acid between those
infants who died from SIDS and control cases. Postmortem brain
from SIDS patients were identified as having significantly lower
levels of succinic acid as opposed to controls (P= 0.0268;
FDR= 0.016). One hypothesis could be energy metabolism, and
in particular, the TCA cycle is directly related to SIDS or another
hypothesis could be that the failure to degrade secondary
metabolites of GABAergic and 5-HT systems in the brain has
contributed to the syndrome. The idea that GABAergic and 5-HT
systems are associated with SIDS is not a new theory, Broadbelt
et al.45 report that GABAA are abnormal in SIDS infant and that
SIDS is a complex malady in the medulla that involves deficits in
the GABAergic and 5-HT systems. Moreover, succinic acid is known
to be the end product of the methylmalonic acid pathway, which
is also known to be essential for myelin synthesis. Perturbations in
myelin synthesis could lead the underdevelopment of conduction
velocity in neuron cells that could possibly cause vulnerability to
such aforementioned defense mechanisms.12 In addition to
succinic acid, we also found and confidently identified serotonin
to be significantly lower (Po5E− 06; FDR= 5E− 05; data not
presented) in SIDS postmortem brain extracts. This evidence
would support our hypothesis that the potential difficulty to
degrade secondary metabolites of GABAergic system and
serotonin itself may be directly linked with SIDS.
AMP is a nucleotide that is found as a monomer in RNA.

Nucleotides such as AMP are directly involved in a number of
major metabolic functions, such as energy metabolism and
allosteric regulation. They perform functions such as activated
intermediates, physiological mediators and cellular agonists and
are considered important structural components of coenzymes.46

AMP have also been reported to be involved in the reversal of
malnutrition and starvation-induced immunosuppression47 and
the enhancement of T-cell maturation and function.48 Moreover,
AMP is a metabolite of cyclic AMP, a well-known secondary
messenger in many excitatory neurotransmitter signal transduction
pathways, including glutamic acid (secreted in response to

chemoreceptor stimulation during hypoxia).49 In this study, we
found levels of AMP to be at significantly lower levels in SIDS
postmortem brain extracts as opposed to controls. Increased need
for cyclic AMP triggered by hypoxia could explain the lower levels
of AMP in infants with SIDS. The mechanism of the immune-
enhancing activity of nucleic acids/nucleotides is still not clear;
however, based on its role in energy production one could
hypothesis, as for succinic acid, that energy production and
mitochondrial malfunction could be directly related to SIDS.
Azelaic acid is a naturally occurring dicarboxylic acid that

possesses antibacterial, keratolytic, anti-inflammatory, comedoly-
tic and antioxidant activity.50 In this study, we found axelaic acid
to be at lower concentrations in SIDS postmortem brain extracts
as opposed to controls. The reason for this remains unclear, but it
could be directly related to its antibacterial, anti-inflammatory and
strong antioxidant capabilities, which have been reported to be
linked with SIDS previously.51,52 However, the link between
infection and SIDS remains unclear.
An additional four ions of interest were identified based on their

accurate mass; however, the online spectral libraries do not contain
these compounds to enable us to confidently assign their identities
other than putatively. The remaining six continue to be unidentified
following a comprehensive search of the all the available libraries.
To this end, we have made all the fragmentation patterns acquired
for each of the individual ions available in Supplementary Material
(Table 2). This is one of the inherent problems with untargeted
metabolomics; although it remains the strongest method of
identifying novel metabolomic biomarkers of interest, identification
will continue to be difficult owing to limited spectral libraries.

CONCLUSION
This study applies a previously reported method for the
metabolomic profiling of postmortem brain25–27 capable of
differentiating SIDS from controls. To the best of our knowledge,
this is the first reported study to apply HRMS to the biochemically
profile postmortem human brain from infants who have died from
SIDS, further emphasizing the uniqueness of this current report.
Employing a panel of five and three ions (ESI+ and ESI− acquired
data, respectively), we produced statistical models with high
predictive accuracy underscoring the power of HRMS and
metabolomics for studying SIDS. As with most untargeted
metabolomic experiments, one of the major drawbacks is that
we were not able to positively identify all the features of interest.
However, we have identified 60% of the features in which we are
interested and proposed some previously unreported mechanisms
for their biochemical involvement in SIDS. Additional studies
encompassing larger sample cohorts will facilitate the develop-
ment of statistical models with increased predictive power while
enabling our group to continue our ongoing efforts to identify the
remaining biomarkers in our panels. Increasing the heterogeneity
of the sample population by selecting from a variety of different
sources will also allow us to validate our findings as reported
herein. This metabolomics approach has the potential to
contribute to the generation of new hypotheses related to SIDS,
which at present is poorly understood. Further, it could help
uncover timely innovative therapeutic targets to help treat those at
greatest risk of dying as a direct result of this severe syndrome.
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