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The verified neighbor approach to geoprivacy: An improved
method for geographic masking
Wayne Richter1,2

Geographic information adds a powerful component to environmental epidemiology studies but can compromise subject
confidentiality. Although locations are often masked by perturbing spatial coordinates, existing masks do not ensure that the
perturbation area contains a sufficient number of valid surrogates to prevent disclosure, nor are they designed to minimize
perturbation while maintaining a specified level of privacy. I introduce a new approach to geoprivacy in which real property parcel
data with information about land use are used to develop a pool of verified neighbors. GIS (geographic information system)
processing optionally restricts the pool to residences with values of environmental variables similar to those of the subject parcel. A
surrogate is then randomly selected from the k members of the pool closest to the subject with k chosen to achieve the desired
spatial privacy protection. The method guarantees the specified level of privacy even where population density is uneven while
minimizing spatial distortion and changes to the values of environmental variables assigned to subjects. The method is illustrated
with an example that found it to be more effective than random perturbation-based methods in both protecting privacy and
preserving spatial fidelity to the original locations.
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INTRODUCTION
Environmental epidemiological studies frequently experience
tension between assuring privacy and confidentiality for indivi-
duals, particularly when personal health data are involved, and
accurately assigning environmental exposures to individuals. Put
simply, the more precisely the location of a subject’s residence is
specified, the easier it is to identify the person. In contrast, poorer
locational specificity protects identity but at the cost of decreasing
accuracy of spatial patterns and environmental information. The
growing use of geographic information systems (GIS), particularly
with the enhancements in the availability of spatial environmental
data that have been developed in recent years, places a premium
on accurate knowledge of a subject’s location by enabling
automated assignment of environmental measures to large
numbers of subjects via spatial processing. At the same time,
GIS techniques linking spatial data to digital databases can
facilitate personal identification from quite limited information, or
can enable reconstruction of addresses from even relatively crude
maps of subject locations,1,2 leading to growing concern about
personal privacy.3–6

Two basic techniques have been used to retain privacy.7,8 The
first, averaging subjects over some defined geographic area, has
substantial drawbacks including weakened ability to detect
clusters and the inability to assign environmental measures that
are not averaged over the same area. The second method, which
retains the ability to both track individual characteristics of a
subject and apply localized environmental data to each subject, is
to perturb the subject’s location to the point where the recorded
location is no longer useful in identification. The new location is

then used as a surrogate for the subject’s location. This
perturbation of coordinates was referred to as geographic
masking by Armstrong et al.7

A geographic mask operates by displacing the coordinates of
the subject’s address to another location within some defined area
reasonably associated with the actual location. Masking methods
include coordinate transformations in which each point is subject
to the same mathematical translation, random perturbation in
which each point has a randomly chosen displacement vector,
and aggregation in which a single location represents multiple
subject locations.7–10 These methods provide differing levels of
privacy protection and vary in their ability to preserve spatial
information,7 and single point aggregation may be less effective in
detecting clusters.9 Although Armstrong et al.7 concluded that
random perturbation was superior to the other classes, as long as
the displacement is not too large, a more recent review noted that
no masking method is universally accepted.8

Geographic masking confronts a tradeoff in which larger masks
provide greater geoprivacy, an individual’s right to prevent
disclosure of personal locational information,10 while losing the
environmental specificity needed in epidemiological studies.7,10,11

The ability to identify a subject in a deidentified data set can be
measured by k-anonymity, where k is the smallest number of
indistinguishable subjects in the data set.12 For spatial masking,
reidentification depends on reverse geocoding to the subject’s
address from the surrogate location.8 A good geographic mask
will ensure the specified k with respect to plausible alternate
locations while minimizing the magnitude of displacement so as
to retain spatial patterns and environmental information.
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Previously described random perturbation masks employ purely
probabilistic displacement with limited regard for the presence of
residences in the masking areas. Although the area over which
displacement occurs can be weighted by location population
density10,13,14 and restricted to environmentally similar land, the
surrogate coordinates may be in a sparsely inhabited area that
provides too few alternative addresses to provide meaningful
confidentiality. Population density weighting thus provides
probabilistic rather than definitive achievement of subject privacy.
Consider a 279 m (915 ft) buffer around a subject’s location. This
distance was used by Kwan et al.10 as the middle of three buffer
distances in their study of the effectiveness of geographic masks
because it generated a masking area equal to the average size of a
census block group in their study county; they suggested that the
census block size provided an optimal tradeoff between privacy
protection and analytical accuracy. Although many locations will
enjoy more than adequate protection from this mask, a subject
residing at the edge of a densely populated area may have only a
handful of valid neighbors (Figure 1), creating a substantial risk to
confidentiality.8 A study subject from such a location would not
receive sufficient privacy protection from the small number of
residential parcels within this standard buffer, even though nearby
residents would be well protected.
A process for more definitively preserving spatial confidentiality

while minimizing the size of the masking area is therefore
desirable. This paper describes a new method of spatial masking,
the verified neighbor approach, that uses spatial processing to
randomly draw surrogate coordinates from a sufficiently large
pool of verified residential locations chosen to minimize spatial
displacement. The method helps prevent identity disclosure15 by
guaranteeing that the mask provides a specified level of

geoprivacy determined by the number of potential surrogates
while minimizing spatial distortion and optionally preserving
relevant environmental information about individuals. A specified
k-anonymity is assured by requiring that the pool achieve a
minimum size before selecting a surrogate point. At the same
time, displacement of the surrogate from the actual location is
minimized by choosing it from among the k closest neighbors,
thus reducing changes in the spatial relations among subjects and
in their environmental characteristics.
Real property parcel centroids provide a pool of valid residential

locations from which to draw the surrogate point. A GIS is used to
find the k closest residential centroids to the actual location, with k
chosen to achieve the desired level of anonymity. This sample can
be restricted to centroids that exceed a specified distance from
the subject to provide additional protection through an exclusion
zone.14 The GIS can optionally retain the subjects’ administrative
zone14 or other environmental information by restricting potential
surrogates to locations sharing spatial characteristics with the
subject. Finally, one of the qualifying centroids is selected
randomly to provide the surrogate. The centroid’s coordinates
provide the surrogate location to be used in spatial analysis and
map display. I first illustrate this method with a simple heuristic
example, and then compare the method with a random
perturbation mask using parcel centroid data from Erie County,
New York.

METHODS
The verified neighbor approach requires the geographic coordinates of
subject locations and a point data layer of publicly available property
parcel centroids with information about residential status and other

Figure 1. Parcel centroids from Erie County, New York. A potential study subject residence is shown (star) surrounded by a 279 m circular
buffer (large open circle). Residential parcels are shown with filled circles and non-residential parcels are shown with open circles; larger filled
circles are within the 279 m buffer. Heavy lines are census block group boundaries.
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variables of interest. Optionally, polygons of administrative or environ-
mental variables used for the epidemiological analysis can be used to
retain environmental characteristics in the surrogates.
The method is implemented by first determining the desired level of

spatial privacy and hence the minimum number (k) of potential residences
from which to draw the surrogate location. Second, logical selection on the
database attributes of the centroids restricts the pool of surrogates to
parcels with residences. Selection for additional attributes of interest can
also be made at this point. This step ensures that the pool of potential
surrogates contains only those locations that are plausible replacements
for the subject’s location. Next, the GIS is optionally used to assign
administrative boundary and environmental variable values to each
residential parcel centroid. Centroids with the matching values for all
variables are selected for each subject parcel. Finally, a random selection
from the k closest of these centroids is made for each subject. Subject
information from the participant can then be assigned to the surrogate
location that is then used in all subsequent spatial analysis and display.
Several choices must be made before implementing the method. The

most important of these is the privacy level to be achieved, implemented
by specifying the minimum number of surrogate locations (k). A second is
whether to exclude the subject location and other nearby locations from
the pool out of which the surrogate is chosen; exclusion can be effected by
removing centroids within a small buffer distance of the subject centroid
from the pool.14 Finally, the environmental variables that will be
specifically considered in the selection of surrogates must be chosen.

Heuristic Example
The heuristic example uses a single subject location chosen arbitrarily from
a small portion of the 2004 Erie County, New York parcel centroid data16

(Figure 2). The environmental variable of interest is the water system

serving the residences.17 This area has a mix of residential and non-
residential parcels, contains parcels that do and do not receive public
water, and includes more than one water system.
The first step in applying the verified neighbor method is to extract

residential properties (Figure 2, all circles) within an initial buffer distance
of the subject parcel. An initial choice of buffer distance is made based on
the density of residences and the choice of k. It can be increased if
necessary to obtain a sufficiently large surrogate pool with the tradeoff
that greater distances will increasingly disrupt fidelity to the subjects’
spatial pattern and environmental circumstances. These residential
properties are next restricted to those with public water service
(Figure 2, all filled circles), and then to those with the same water supplier
(environmental variable) as the subject parcel (Figure 2, larger filled circles).
The distance from the subject parcel to each of these remaining qualified
parcels is determined. Parcels within the exclusion distance (50 m for
Figure 2) of the subject parcel are excluded and the k (50 for Figure 2) next
closest centroids are selected to form the pool of potential surrogates
(Figure 2, small bullseyes). A random selection from this pool determines
the surrogate location (Figure 2, large bullseye).

Comparison with Random Perturbation and Donut Geomasking
I compared the verified neighbor method with standard random
perturbation with a fixed exclusion zone and with the donut geomasking
method of Hampton et al.14 Their improvement on random perturbation
allows a minimum k to be specified, uses search radii that vary as a
function of population density, excludes locations near the subject, and
selects surrogate locations from within the same administrative boundary
as the subject.
To enable tests of spatial pattern matching, I used ArcGIS18 software to

randomly choose 100 residential real property parcel centroids from the

Figure 2. Heuristic example showing process of verified neighbor method. Each point represents a real property parcel centroid in the vicinity
of an example subject parcel (star). Symbols show successive winnowing of centroids to produce a pool of verified neighbors: non-residential
parcels (squares), all residential parcels (all circles), residential parcels with public water (all filled circles), residential parcels with the same
water supplier as the subject parcel (larger filled circles), and the 50 nearest potential surrogates more than 50 m from the subject parcel
(small bullseyes). Large bullseye shows a random selection from the verified neighbor pool that will serve as the surrogate location. Dashed
line is a water supply system boundary. Light lines show streets.
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2004 Erie County, New York parcel centroid data16 to create a set of
“subjects.” In order to evaluate cluster detection, I added another 60
centroids to create two clusters of 25 and 35 locations for a total of 160
subjects. These centroids were chosen interactively to create concentra-
tions of subjects, as might occur in a disease outbreak, over areas roughly
4500 m and 2500 m across, respectively, in two different densely
populated areas.
I created two sets of verified neighbor test data. For strict comparability

with random perturbation, I ran the verified neighbor method allowing all
residential parcel centroids to contribute to the surrogate pool. The second
set of comparisons used public water supply service areas17 as an
environmental variable, as would be relevant in an epidemiological study
of disinfection byproducts. Additionally, zip code boundaries were used to
retain other environmental and social variables that are frequently
referenced to zip codes.
Following Kwan et al.,10 I created the random perturbation data set

using a radius that would generate a circle equal in area to the mean
census block group size of the study area, 905 m. This test data set
consisted of 50 points randomly chosen using ArcGIS18 from within a
905 m radius of each subject (see Supplementary Information 1), excluding
locations within 50 m of the subject to further enhance privacy.
To choose k values based on the expected privacy provided by random

perturbation, I obtained a random 1% sample of all qualifying centroids in
Erie County, defined as residential centroids and residential centroids with
public water for the no environment variables and environment variable
cases, respectively. I then determined the number of qualifying centroids
within 905 m of each of these randomly chosen centroids, again using a
donut exclusion of 50 m. I used the 5th, 10th, 20th, 25th, and 33.3rd
percentiles of the number of centroids as k values corresponding to the
expected levels of privacy protection using random perturbation. Values of
k based on these percentiles of centroid numbers within the random
perturbation distance of 905 m ranged from 86 to 878 residential centroids
(Table 1). The percentile categories provide the proportion of subjects
expected to receive a particular level of privacy protection. For example,
5% of subjects under random perturbation would be expected to have no
more than 86 valid surrogates within 905 m. In contrast, two-thirds
(1–33.3%) of subjects would be protected with k= 878 or better. For
environmentally matched residential centroids, k for the different quantiles
ranged from 133 to 862 (Table 1).
For donut geomasking, I used the same water system and zip code

boundaries used for environment variables with the verified neighbor
method to form the administrative boundaries. I set a minimum k of 310 to
match an intermediate k value used for the verified neighbor method, and
set the maximum k to be 10 times larger following Hampton et al.14 Donut
geomasking was done in ArcGIS18 using downloaded Python code19

modified to produce 50 surrogates per subject.
I implemented the verified neighbor method using a Python script

written for ArcGIS18 (code availability: Supplementary Information ArcGIS
Script). I ran the algorithm 50 times to create test data sets comprising 50
surrogate locations per subject for each k in Table 1. The total number of
surrogate locations for all methods was over 93 000.
Comparison between methods is motivated by two considerations.

Foremost is that every subject should receive at least the desired level of
privacy specified by k. Second, surrogates should be as close as possible to
the subjects to better maintain the spatial structure of the original data
and to minimize differences in environmental variables, both measured
and unmeasured, that influence epidemiological outcomes. I used a variety
of spatial metrics, calculated using the R statistical program,20 to make this

comparison and evaluated cluster detection with a purely spatial discrete
Poisson model21 with SaTScan.22

RESULTS
Privacy Attainment
With random perturbation, the realized privacy protection for the
160 subjects, given by the number of residences within 905 m,
varied greatly from a low of 74 to a high of 4345 with all
residential centroids and from 22 to 3973 with environmentally
matched residential centroids. Some subjects had such small
pools of potential surrogates that they did not achieve even the
smallest k, whereas over 30 subjects had insufficient surrogates at
the largest k (Table 2 and Figure 3). Meanwhile, others had more
surrogates than needed, and often many more (Figure 3).
The verified neighbor method always produced more subjects

achieving a specified privacy than did random perturbation
(Table 2). With all residences, all subjects had sufficient surrogates
at the smallest k, whereas only 6 lacked sufficient surrogates at the
largest k. With environmentally matched residences, 1 and 13
subjects lacked sufficient surrogates at the smallest and largest k,
respectively (Table 2). The donut geomasking method had 153 of
the subjects achieving the desired k of 310, compared with 155
from the verified neighbor, with the number of potential
surrogates ranging from 40 to 4508 (Figure 3).

Displacement
Subject to the constraint of achieving the desired k, maintaining
the spatial pattern of the subjects requires that displacement from
the subject to the surrogate location be minimized both for each
subject and for the subjects collectively; smaller displacements
indicate superior performance. Furthermore, directional displace-
ment is undesirable as it distorts the spatial pattern, although it
has a meaningful impact only at a large displacement distance.
The mean center of the random perturbation surrogates was

only 3 m from and not significantly different from the subjects’
center. In contrast, the mean center differed significantly from that
of the subjects for donut geomasking, and for three of five all
residence ks and all five environmentally matched residence ks
with the verified neighbor method (Hotelling’s T2 test). The
magnitude was, however, relatively modest in all cases, with a
maximum of 30 m (Table 3), indicating little importance relative to
the minimum 31 km extent of the study area. No relationship
between displacement magnitude and k is apparent (Table 3).
Surrogates chosen with the verified neighbor method generally

clustered more closely to the subjects than those chosen by

Table 1. Percentiles of all residential centroids and of residential
centroids with environment variables within 905 m of randomly
selected centroids.

Na 5% 10% 20% 25% 33.3%

Residential 3556 86b 187 500 640 878
Residential with environment
variables

2753 133 310 553 680 862

aN=number of randomly selected centroids used to determine the
percentiles. bFor example 5% of residential centroids have ≤ 86 neighbors
within 905 m, 10% have p187 neighbors, and so on.

Table 2. Number of subjects, out of 160, with sufficient surrogates for
different values of k.

Value of k

All residences 86 187 500 640 878

Random perturbation subjects
achieving k

156 154 145 141 128

Verified neighbor subjects achieving k 160 160 156 155 154

Value of k

Environmentally matched residences 133 310 553 680 862

Random perturbation subjects
achieving k

154 148 138 129 126

Verified neighbor subjects achieving k 159 155 152 151 147
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random perturbation, especially for smaller values of k, and much
closer than donut geomasking surrogates: clustering was tight for
the verified neighbor method with small k, looser but quite

apparent at large k, and only diffusely apparent if at all for random
perturbation and donut geomasking (Figure 4; see Supplementary
Information Results for Full Study Area). The vast majority of
individual verified neighbor displacement distances were closer to
the subjects than random perturbation and donut geomasking
distances, whereas a small number was much further than random
perturbation though less than the maximum for donut geomask-
ing (Figure 4; see Supplementary Information Results for Full
Study Area).
The 50 trials per method at each level of k enable statistical

assessment of the observed pattern in two ways. Displacement
distance assesses how far on average a surrogate location is from
its subject and provides the maximum potential displacement.
The displacement of the mean center of potential surrogates,
determined by the average of the surrogate X and Y coordinates,
provides the expected displacement as well as a displacement
distance weighted assessment of directional bias.
For random perturbation, the overall mean and maximum

displacement distances for the individual subjects were 605 m and
905 m, as expected given the generating process. These distances
were 1157 m and 11 971 m for donut geomasking (Table 3). Mean
verified neighbor displacement distances for all residences ranged
from 169 at k= 86 to 473 at k= 878, whereas means for
environmentally matched residences ranged from 217 at k= 133
to 509 at k= 862 (Table 3). The random perturbation distances
averaged from 25% to over five times further from the subjects
than these verified neighbor distances. As expected, the mean
increased with greater k as it became necessary to search further
from a subject to find sufficient surrogates. All differences
between the means of verified neighbor results and the random
perturbation and donut geomasking means were significant
(Dunnett’s T3 test, appropriate for multiple comparisons with
unequal variances and unequal sample sizes, on displacement
distances log transformed to approximate normality, Po0.001).
Although the maximum displacement increased with k and was
always greater than the random perturbation maximum (Table 3),
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Figure 3. Number of potential surrogates (k) for each of 160 subjects
generated by random perturbation using a perturbation distance of
905 m and exclusion distance of 50 m and for donut geomasking
with a minimum target k= 310, plotted from highest to lowest
number of surrogates. Solid curve: random perturbation using all
residential centroids; black dotted curve: random perturbation using
residential surrogates with environment variables; red dotted curve:
donut geomasking. Horizontal lines show the five k levels used for
the verified neighbor method. Solid: residential centroids (red= 86,
green= 187, blue= 500, cyan= 640, magenta= 878); dashed: resi-
dential centroids with public water (red= 133, green= 310, blue=
553, cyan= 680, magenta 862). For example, with random
perturbation 140 subjects attained, and 20 failed to attain, a k of
640 residential centroids, as seen by the intersection of the solid
curve at the x axis position of rank order 140 with the second solid
line from the top, representing k= 640.

Table 3. Results of surrogate selection for all residences and for environmentally matched residences.

Verified neighbor

k for all residences RP 86 187 500 640 878

Mean center displacement (m)a 3 8* 14* 9 9 14*
Mean displacement distance (m) 605 169 243 363 410 473
Standard deviation of displacement distance 211.4 156.3 224.7 259.0 272.5 310.0
Maximum displacement distance (m) 905 1423 2110 2212 2365 2398
Percent of subjects with net displacementb 4 43 46 47 44 50
Net displacement distance, lower quartile (m) 55 15 24 42 45 48
Net displacement, distance upper quartile (m) 98 61 91 145 170 191
Percent of subjects with significant directionc 4 43 43 52 46 49

Verified neighbor

k for environmentally matched residences DG 133 310 553 680 862

Mean center displacement (m)a 28* 14* 26* 20* 25* 30*
Mean displacement distance (m) 1157 217 301 399 456 509
Standard deviation of displacement distance 809.8 221.6 220.3 267.8 312.1 333.6
Maximum displacement distance (m) 11971 2133 2258 1798 2086 2400
Percent of subjects with net displacementb 79 52 59 69 58 74
Net displacement distance, lower quartile (m) 240 23 31 61 66 79
Net displacement distance, upper quartile (m) 696 96 176 242 272 343
Percent of subjects with significant directionc 74 49 55 68 64 69

Abbreviations: DG, donut geomasking with minimum k= 310; RP, random perturbation. a*Significant at Po0.02 by Hotelling’s T2 test, otherwise not
significant. bPercent of Hotelling’s T2 tests significant at Po0.05. cPercent of Rayleigh tests significant at Po0.05.

Verified neighbor approach to geoprivacy
Richter

113

© 2018 Nature America, Inc., part of Springer Nature. Journal of Exposure Science and Environmental Epidemiology (2018), 109 – 118



it was less sensitive to k because some subjects had few close
neighbors.
The mean center of each subject’s surrogates provides a

subject-by-subject assessment of how closely surrogates match
the original locations. Ideally, the mean displacement would be
zero, indicating the expectation that a surrogate’s location is not
biased with respect to its subject. With random perturbation, only
6 (4%) subjects, about the number expected by chance, had a
significantly displaced (Po0.05) mean center. In contrast, with the

verified neighbor method the percent of subjects with a
significantly displaced mean center ranged from 43 to 74, with
the percentage generally rising as k increased (Table 3). Donut
geomasking performed more poorly with 79% of subjects
significantly displaced (Table 3). Although substantial numbers
of subjects had verified neighbor surrogates that were displaced
on average, the lower and upper quartiles of net displacement
distance (Table 3) show that displacements tended to be small
and compared favorably with random perturbation for the smaller

Figure 4. Subset of the project area showing subjects (brown) with 50 surrogates per subject from random perturbation within a 905 m radius
(blue), donut geomasking with k= 310 (violet), the verified neighbor method with k= 86 (green), and the verified neighbor method with
k= 878 (red). See Supplementary Information results for full study area.
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ks, while becoming bigger and comparing less favorably with
larger k (Figure 5). In contrast, three-fourths of donut geomasking
subjects had surrogates with appreciable displacement averages
over 240 m (Table 3) and many had large mean displacements in
excess of 500 m (Figure 5). Although a small mean displacement,
even if statistically significant, should have only a limited adverse
effect on the spatial pattern formed by the surrogates, greater
numbers of large displacements are more likely to cause
disruption.
Approximately 40–70% of subjects with verified neighbor

surrogates and 74% of subjects with donut geomasking had a
significant surrogate directionality (Rayleigh test, Po0.05),
whereas only 4%, as expected by chance, of subjects with random
perturbation had a significant test (Table 3). Directionality will
substantially alter spatial patterns only if the displacement is large
so it is meaningful at the larger values of k and particularly for
donut geomasking.

Spatial Pattern Matching
Ripley’s K function,23,24 calculated with the R package spatstat,25

assesses the dependence among points based on the distribution
of all interpoint distances evaluated over a range of distance
scales. Comparisons of the K function show how well different
methods of surrogate selection approximate the spatial pattern of
the subjects at different spatial scales. The verified neighbor
method more reliably approximated the subjects’ K function for
the smaller ks and for distances below ∼ 1000 m for all ks than did
either random perturbation or donut geomasking, as indicated by
a closer match of the surrogate mean to the subjects’ result and
narrower confidence region centered on the subjects’ function.
Donut geomasking performed least well at all distances (Figure 6
and Supplementary Information 2). Verified neighbor surrogates
based on larger pool sizes had higher K function values at larger
distances (Figure 6), indicating greater clustering that is probably
due to non-random population density as the search distance
required to attain a sufficient pool size increases. This tendency
toward clustering was enhanced when matching on environment
variables (Supplementary Information 2).

Cluster Detection
SaTScan identified the two clusters in the subjects. All 550 SaTScan
runs on random perturbation and verified neighbor surrogates
identified the same two clusters, though random perturbation and
verified neighbor with higher k values frequently switched the
primary and secondary clusters. The donut geomasking method
also identified the same two clusters but 2 of the 50 runs also
identified a small third cluster distant from the other two.
Verified neighbor runs with smaller k matched the subjects’

primary cluster closely. Performance degraded with larger k, was
worse for random perturbation, and even poorer for donut
geomasking (Table 4, Figure 7 and Supplementary Information 3).
Relative to the 12 block groups in the subjects’ cluster, verified
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Figure 6. Calculated K function for subjects (solid lines; identical for all six panels), estimated mean K function for surrogates (dashed lines, not
visible in some panels due to coincidence with the solid line for subjects), and limits of the simultaneous confidence region of the surrogates’
K function (dotted lines) for random perturbation and different pool sizes using the verified neighbor method without environment variables.

Table 4. SaTScan cluster identification performance.a

Method Primary in
subjects’
clusterb

Secondary in
subjects’
clusterc

Total in
subjects’
cluster

Outside
subjects’
cluster

Random
perturbation

4.8 4.2 8.9 6.8

All, k= 86 10.7 0.0 10.7 0.7
All, k= 187 10.1 0.0 10.1 0.5
All, k= 500 8.9 0.5 9.5 1.2
All, k= 640 8.8 0.6 9.4 0.8
All, k= 878 7.2 1.7 8.8 1.6
Donut
geomasking

4.9 6.4 11.3 17.2

Env, k= 133 10.2 0.0 10.2 0.5
Env, k= 310 10.1 0.0 10.1 0.9
Env, k= 553 8.8 0.0 8.8 2.0
Env, k= 680 7.6 1.1 8.7 2.2
Env, k= 862 7.9 1.3 9.2 3.7

Abbreviations: All, verified neighbor with all residences; Env, verified
neighbor with environment variables. aTable entries are the mean number
of block groups, based on 50 runs, associated with the cluster matching
the subjects’ primary cluster of 12 block groups. bMean number of
subjects’ block groups in the primary cluster of the method. cMean number
of subjects’ block groups in the secondary cluster of the method.
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neighbor results for k≤ 310 averaged over 10 block groups in the
primary cluster always correctly identified the primary cluster, and
averaged fewer than one block group outside the subjects’ cluster.
Verified neighbor results with higher k obtained an average of ∼ 9
of the subjects’ block groups, usually got the correct primary
cluster, and averaged 1 to 4 block groups outside the subjects’
cluster. Random perturbation found an average of ∼ 9 of the
subject’s block groups. Compared with the verified neighbor
method, random perturbation averaged one to two fewer of the
subjects block groups at smaller k and about the same number at
larger k. However, it obtained the correct primary cluster only
about half the time, averaged three to six more block groups
outside the subjects’ cluster than the verified neighbor runs
(Table 4), and showed a marked tendency to a diffuse and
expanded cluster (Figure 7). Donut geomasking results were even
more diffuse, averaging 17 block groups outside the subjects’
cluster, triple or more the number from the other methods, with a
strong tendency to include block groups outside those identified
for the subjects.
To quantify the match to the subjects’ primary cluster, I used

non-metric multidimensional scaling on the frequency with which
any block group was identified as part of the cluster. Donut
geomasking was most distant from the subjects, about twice as far
as random perturbation, which was next most distant. Verified
neighbor results were all closer with small k closest to the subjects,
large k closer to random perturbation, and runs with environment
variables tending to be closer to random perturbation than were
non-environment variables for similar or somewhat larger k
(Figure 7).

DISCUSSION
The scientific community is seeing increasing calls for sharing of
data, both to ensure replicability and reliability of results and to
leverage research investments by enabling additional use to be
made of expensive or unique data.5,26 Funding agencies27,28 and
journals29 require that data be made available to others. How do
we meet these sharing requirements while fulfilling our promises
of confidentiality and obligation to protect privacy?

The verified neighbor method simultaneously minimizes spatial
displacement, thereby maximizing data utility, and provides a
guaranteed maximum spatial disclosure risk for every subject by
ensuring that every subject has k valid potential surrogates or
providing notification when a subject does not achieve k.
Furthermore, it avoids the undesirable placement of a surrogate
in an uninhabited area.30 In both regards it outperformed the
other methods that neither minimized information loss due to
spatial distortion nor managed worst case rather than average
disclosure risk. In the empirical comparison, the verified neighbor
method outperformed random perturbation with respect to
fidelity to the spatial pattern of the subjects at the lower and
middle ranges of tested privacy protections, while tending to do
somewhat worse at the highest tested levels, and outperformed
donut geomasking at the same level of k (Tables 3 and 4).
Moreover, at the levels of specified privacy protection, random
perturbation failed to provide the desired spatial confidentiality
for ≥ 10% of the subjects. At all levels of privacy protection, the
verified neighbor method more closely matched the spatial scan
statistic21 results of the subjects than did random perturbation
and donut geomasking.
The privacy protection afforded by random perturbation varied

widely among the subjects, spanning nearly two orders of
magnitude from inadequate to more than needed (Figure 3)
and failing a substantial proportion of subjects at large k. Which
subjects received inadequate protection and to what extent
would ordinarily be unknown. At the same time, many subjects
with adequate privacy protection were displaced further than
necessary, disrupting spatial patterns and potentially weakening
the association with environmental variables. Donut geomasking,
while doing better than random perturbation at achieving the
desired k, did so with even greater damage to spatial patterns and
frequent overshooting of the desired k. Testing several aspects of
random perturbation with donut masking,14 Clifton and Gehrke31

similarly found wide variation in estimated k, including instances
of poor protection, as well as some large errors in environment
measures. These defects are inherent in probabilistic methods.
The verified neighbor method provided more subjects than did

random perturbation with the specified privacy protection at
every value of k (Table 2) and outperformed donut geomasking at

Random
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Verfied Neighbor
Pool Size = 86

Verfied Neighbor
Pool Size = 187

Verfied Neighbor
Pool Size = 500

Verfied Neighbor
Pool Size = 640

Verfied Neighbor
Pool Size = 878
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Figure 7. SaTScan results for the primary cluster identified for the subjects. Left side: each of the six panels is a heat map of the number of
times out of 50 a block group was included in the primary cluster; the red line shows the block groups in the cluster determined for the
subjects. Verified neighbor panels are without environment variables. Right side: one-dimension non-metric multidimensional scaling of the
number of times a block group was in the primary cluster.
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the same k. A strength of the method is that subjects with less
than the specified k are readily identifiable, enabling a decision
about how to manage their privacy. These situations can be
treated by removing the subject from display, data sharing or
analysis, relaxing the match on environmental variables, shrinking
the exclusion donut, or accepting a known reduction in privacy
protection. Sensitivity analysis in which the effect of different
options is examined analytically can help choose among these
options.
The comparative study makes explicit the tradeoff between

privacy protection and fidelity to the original spatial pattern. The
degradation in spatial fidelity as k increased is a direct
consequence of the need to go farther afield in sparsely
populated areas to obtain a sufficiently large pool size from
which to draw a surrogate. The subjects in these areas are, of
course, least likely to achieve the targeted privacy protection,
precisely because of the low population density. Allshouse et al.,32

in an evaluation of donut geomasking, suggested tripling targeted
k values to account for population heterogeneity and a
subsequent study found that a 15-fold factor was actually
necessary,33 but doing so would lead to greater distortions in
the spatial pattern.
Requiring fidelity to non-spatial characteristics of the environ-

ment exacerbates the tradeoff. Using environment variables
provided fewer subjects with the desired level of privacy,
increased distortion of the spatial pattern, and obtained a poorer
match to SaTScan results than did verified neighbor runs without
environment variables at similar k levels. The disparity was
greatest at larger k because an increasing proportion of spatially
suitable subjects are excluded due to mismatch on other variables.
In addition, use of environmental or administrative boundaries
may bias the surrogate locations with respect to other,
uncorrelated variables. The conflict between privacy protection,
retaining the spatial relationships of the subjects, and maintaining
fidelity to subjects’ environmental characteristics is intrinsic. How
it is resolved will depend on the specifics of the research situation.
The verified neighbor method delivered the desired degree of

spatial privacy protection while minimizing displacement of
masked locations and consequent distortion of the geographic
pattern of the original locations. The targeted level of spatial
privacy protection must, however, be chosen in conjunction with
other available potentially identifying information. It is now
possible to identify or greatly narrow the pool of possible
individuals from a small number of attributes.26,34,35 This
possibility was among the motivations for choosing the relatively
generous ks tested here. If, as is likely when making research data
available, other information accompanies the spatial data, the
spatial anonymity will need to be increased, perhaps considerably,
over what is necessary with purely spatial considerations. Methods
for determining a suitable level of geographic masking in the
context of other potentially available data require additional
attention.
An assumption of this study is that of one residence per

centroid. For spatial k-anonymity, where the risk to privacy is from
reverse geocoding8 and the goal is to prevent determining a
subject’s address from surrogate coordinates, realized k is not
affected by multi-family properties. Given that k-anonymity is
achieved with k− 1 alternatives, the effect of multi-residence
parcels is an increase in realized k at the individual level.
As with any method, several limitations and caveats apply. Most

important, the verified neighbor method cannot be applied
without geospatial parcel data coded with residential status.
Although parcel data may not be universally available, both open
source36 and commercial parcel37 data can be obtained. An
alternative to centroids, though computationally more intensive,
would be to base the pool of surrogate centroids on the point of
neighboring residential property boundaries closest to the
subject. These points will be closer to the subject’s location and,

particularly in rural areas with large properties, should provide
greater spatial fidelity than centroids. The verified neighbor
method, by heavily weighting surrogate locations by population
density, may bias these locations with respect to environmental
factors not accounted for. Finally, the verified neighbor method,
like other new geographic masking methods,33,38 has seen only
limited testing. Researchers may find it helpful to evaluate the site-
specific performance of more than one procedure before making
a choice.
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