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Characterizing the impact of projected changes in climate and
air quality on human exposures to ozone
Kathie L. Dionisio1, Christopher G. Nolte1, Tanya L. Spero1, Stephen Graham2, Nina Caraway1,3, Kristen M. Foley1 and Kristin K. Isaacs1

The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants
both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors,
many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to
tropospheric ozone (O3) owing to potential future changes in climate and demographics was implemented by linking existing
modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air
Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by
sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O3

exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant,
we see evidence of substantial changes in O3 exposure for the most extreme change in climate. Similarly, we see increases in the
percentage of the population in each city with at least one O3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for
future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on
human exposure to O3 are much larger than the impacts of changing demographics. These results indicate the potential for future
changes in O3 exposure as a result of changes in climate that could impact human health.
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INTRODUCTION
The impact of climate change on human and environmental
health is of growing importance given historical and anticipated
changes in surface temperatures, weather patterns, precipitation,
and possibly extreme weather events. The air quality, human and
ecosystem exposures to pollution, and human and ecosystem
physiological response to pollutants are expected to be altered as
a result of changing climate. Recent integrated climate and air
quality modeling studies have demonstrated the potential for
climate-driven concentration increases in tropospheric ozone (O3)
in the Southeast United States,1 O3 and/or fine particulate matter
(PM2.5) concentrations throughout the United States,2 and O3 in
the western United States.3 In addition, while several previous
studies have evaluated the potential for changes in health impacts
resulting from climate-influenced changes to ambient US
concentration levels,4–8 to our knowledge none to date have
investigated the impact climate change may have on the levels of
air pollutants to which individuals could be exposed.
Human population exposures to air pollutants both indoors and

outdoors can be influenced by a wide range of factors in addition
to regional-scale concentrations, including local-scale meteorol-
ogy, human behavior and mobility, land-use, spatial patterns of
population density, and housing characteristics, each of which can
also be affected by changes to climate. As ambient concentrations
can exhibit significant spatiotemporal variability,9,10 modeled
population metrics of exposure (such as population medians or

the number of individuals experiencing exposure above a thresh-
old) can be impacted not only by the magnitude of the
concentrations but also by where people spend time (e.g., indoors
or outdoors), where they live (e.g., urban or suburban settings), and
other behaviors (e.g., window opening and air conditioner use).11,12

In addition, these exposures are influenced by the infiltration of
ambient pollutants into residential and other indoor environments,
which is driven (at least in part) by the rate at which the indoor air
volume overturns (i.e., air exchange rates (AERs)).13 AERs, in turn,
may depend on climate-sensitive factors, such as indoor/outdoor
temperature differentials (i.e., stack effects)14,15 and use of air
conditioning and window opening.16 Human exposure modeling
methods used by the US EPA for assessments in support of the
National Ambient Air Quality Standards (NAAQS)17 incorporate
such human activity and housing considerations into population
exposure estimates. In addition, these methods use spatially
resolved census data to generate simulated individuals,18,19

allowing for assessment of population magnitude and location
shifts. By considering potential climate-related changes in these
various factors, we model spatially resolved exposure impacts
resulting from potential climate change scenarios and quantify the
contribution of each factor to the magnitude of the impacts.
Here we focus on investigation of O3, given the degree of health

concern at its existing ambient concentration levels, the potential
for increasing emissions of O3 precursors with increasing
population density in and around urban areas, and the increases
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in temperature that would tend to increase the number of days in
a year having meteorological conditions favorable to O3

formation.20 In 2015, the US EPA revised its health-based NAAQS
for O3, lowering it from 75 p.p.b to 70 p.p.b (daily maximum 8-h
(DM8H) concentration), largely based on the expected increase in
public health protection associated with that new concentration
level for at-risk populations, particularly children and
asthmatics.17,21

In this manuscript, we demonstrate the utility of linking existing
modeling tools to assess the potential impacts of climate change
on population exposure to O3 using an integrated modeling
system that accounts for potential changes in ambient air quality
following projected scenarios of climate change. Further, we
integrate socio-demographic scenarios (changes in population
distribution, fertility, and migration) related to a range of potential
future emission pathways. We examine comparisons of population
distributions of O3 exposure for multiple scenarios of potential
changes in future climate and demographics.

METHODS
An integrated methodology for estimating changes in human exposures to
O3 owing to future changes in climate and population demographics was
developed by linking existing modeling tools for climate, weather, air
quality, population distribution, and human exposure (Figure 1). Steps
involved in the integrated methodology are described below.
The US EPA’s Air Pollutants Exposure Model (APEX) version 4.5 (model

available for download at https://www.epa.gov/fera/download-trimexpo-
inhalation-apex) was used to perform the human exposure modeling
analysis.18,19 In this analysis, 12 major metropolitan areas of the United
States were analyzed. These areas were defined by their Combined

Statistical Area (CSA), and each includes between 5 and 50 counties. The 12
cities were a subgroup of study areas used in the 2014 NAAQS Health Risk
and Exposure Assessment for O3,

17 effectively representing a range of
geographic areas, with diverse urban population demographics, varying
climate, and ambient O3 concentrations that were ⩾ 75 p.p.b, the standard
at that time. DM8H human exposures to O3 were analyzed for the ozone
season (i.e., months conducive to O3 formation) specific to each CSA as
defined in the Code of Federal Regulations for ambient air quality
surveillance21 (Figure 2). A simulated population of 25,000 individuals for
each CSA was modeled, with results presented for the entire population
and also for children, defined as ≤ 18 years of age. Details of the
development of climate, air quality, and population data for input to APEX
for current and future climate change scenarios, and application of the
model, are described in the following sections.

Regional Climate and Air Quality
To simulate the effects of climate change on air quality, global climate
fields from the Community Earth System Model (CESM)22 simulations
conducted for the fifth phase of the Coupled Model Intercomparison
Project (CMIP5)23 were dynamically downscaled to 36 × 36 km2 using the
Weather Research and Forecasting (WRF) model.24 The dynamical down-
scaling techniques used in WRF have been described previously.25,26 The
WRF model generated hourly meteorological data over North America for
four 11-year periods: the years 1995–2005 (hereinafter 2000, or base case
(BCclim)) from the CMIP5 historical twentieth century experiment, and the
years 2025–2035 (hereinafter 2030) following three Representative
Concentration Pathways (RCPs).27 The data for the future period (i.e.,
2030) are assumed to be equally plausible in any given year around 2030
following that climate scenario. The three RCPs downscaled here are RCP
4.5, RCP 6.0, and RCP 8.5. In the name of each RCP, the number indicates
the radiative forcing in Watts/m2 at the year 2100, such that the higher
RCPs are more extreme global warming pathways. However, owing to

Figure 1. Integrated modeling system.
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regional and climatic variability, any given year prior to 2100 in a
cooler scenario may be warmer for a particular region than the
corresponding year in a hotter scenario, particularly early in the
twenty-first century, when the degree of divergence between the
scenarios is less pronounced.
The downscaled meteorology was used with the Community Multiscale

Air Quality (CMAQ) model28 to simulate air pollutant concentrations at a
36× 36 km2 scale over the conterminous United States. A 2030 emission
inventory was used for both the historical and future climate periods, so
that the climate impacts on air quality in each scenario could be
isolated from policy-driven emissions changes. Additional details of the
CMAQ modeling configuration can be found elsewhere.4 Hourly tempera-
ture and O3 concentrations for the 12 metropolitan regions of interest
were extracted from the grid cells of the WRF and CMAQ simulations that
were the closest match to each of the census tract centroids within
each CSA.

Population Projections
Future projections of US population distribution were obtained from the
US EPA’s Integrated Climate and Land-Use Scenarios (ICLUS) project.29 In
the ICLUS model, social, economic, and demographic storylines from the
Intergovernmental Panel on Climate Change’s Special Report on Emissions
Scenarios (SRES) were adapted for the United States.30 ICLUS provides
geographically explicit population projections for four storylines reflecting
different assumptions about changes in future fertility, mortality, and
immigration based on the adapted SRES storylines, in addition to a base
case scenario. Assumptions around each of the four storylines (A1, B1, A2,
B2, and base case (BCpop)) are presented in Table 1 and further
defined in US EPA.30 For each storyline, detailed population projections

were available for each decade from 2010 through 2100 inclusive,
for five race/ethnicity groupings, by sex, by age (yearly from 0–99), and
by Federal Information Processing Standard (FIPS) county code. For
more information on ICLUS, and to download the population projections
used in this analysis (ICLUS Tools and Datasets Version 1.3.2), see the EPA’s
website.31

Human Exposure
APEX version 4.5 was used to model human inhalation exposures to O3 for
the 12 US metropolitan areas. This probabilistic model simulates the
movement of individuals through space and time and their resulting
exposure in each microenvironment visited. Inputs to the APEX model
were the outdoor ambient air quality estimates output from the CMAQ
model, corresponding meteorological conditions output from the WRF
model, future projections of US population distributions from ICLUS,
and existing human time–location–activity patterns from the current
version of US EPA’s Consolidated Human Activity Database (CHAD),32,33

available at (https://www.epa.gov/healthresearch/consolidated-human-ac-
tivity-database-chad-use-human-exposure-and-health-studies-and). CHAD
survey data are used to develop a continuous time series of the locations
simulated individuals may visit, the activities performed, the time of day
these events occur, and their durations. Because the CHAD data are actual
records of human activity patterns, they fulfill an essential need of this
investigation, that is, realistically representing when time spent outdoors
corresponds with the highest O3 concentrations that could occur
throughout a day.17 Notably, for this analysis, CHAD diaries are grouped
into temperature bins representing average temperature on the day where
activity was recorded. Selection of representative human activity patterns
in our modeling includes matching of average daily temperature for the

Figure 2. Ozone (O3) seasons by metropolitan study area.

Table 1. Assumptions surrounding demographic models used to
obtain future population projections (data from Table 3-1 in US EPA30).

Storyline Fertility Domestic
migration

Net international
migration

A1 Low High High
B1 Low Low High
A2 High High Medium
B2 Medium Low Medium
Base case (BCpop) Medium Medium Medium

Table 2. Scenario pairings modeled with APEX.

Population

BCpop A1 A2 B1 B2

Climate 2010 2030 2100 2100 2100 2100 2100

BCclim 1995–2005 X X X X X X X
RCP 4.5 2025–2035 X
RCP 6.0 2025–2035 X
RCP 8.5 2025–2035 X X
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desired future day with a diary from the appropriate temperature bin in
CHAD, to ensure that temperature-dependent human activities are
correctly accounted for. Additional inputs to APEX include employment
probabilities stratified by sex and age group from the 2000 US census,
aggregated to county FIPS code, and baseline physiological data by age
and sex. Other city-specific and global APEX inputs not described herein
(e.g., employment probabilities, physiological data by age and sex) were
the same as those used in the recent NAAQS O3 exposure assessment.17

Scenarios Modeled
All comparisons of population exposure used the same CHAD, employ-
ment, and baseline physiological data for model input, as these were
assumed to be constant over the period of climate projection. Owing to
the large number of possible combinations for future climate and

population scenarios, a sampling of combined population and climate
pairings were used as key inputs to APEX (Table 2), focusing on varying
climate projections for the base case population and varying
population projections for the base case climate conditions. For the future
climate projections, the 11 available years represent equally likely
sets of meteorology and corresponding air quality concentrations, thus
all 11 climate years were modeled in each population–climate
scenario pairing chosen. The APEX model was run separately for each of
the 12 metropolitan areas, for each population–climate pairing. The
population projections for 2100 were often chosen for modeling
runs to represent the most extreme case of demographic change in the
population, as the decade-interval population projections represent
more gradual changes. In other cases, the 2010 or 2030 population
projections were chosen to more closely match the year of the climate
projections.

Figure 3. Mean O3 concentrations by city and climate scenario, for city-specific O3 seasons. Error bars represent SD of the means over the 11
representative years.
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Exposure Metrics and Statistical Analysis
The APEX model estimates the time series of exposure to O3 for each
simulated individual. APEX can calculate numerous time-averaged
exposure metrics of interest (e.g., 5 min, 1 h, etc.). Here the DM8H O3

exposure was chosen to correspond to controlled human exposure studies
that demonstrate adverse health effects resulting from 6- to 8-h O3

exposures.21,34 The estimated DM8H O3 exposures were compared against
thresholds of 60, 70, and 80 p.p.b, consistent with the levels selected as
part of the most recent O3 NAAQS review.17,34

Probability density function (PDF) plots and cumulative distribution
function (CDF) plots were created to examine baseline differences in the
population distribution of each individual’s maximum DM8H exposure
over a calendar year. PDF plots allow for comparison by sex, age (adult vs
children (≤18 years)), and city, while CDF plots allow for easier comparison
between two different scenarios. Bar charts were created for comparison of
the percentage of the population in each city, by age, with at least one
exceedance (i.e., at least one DM8H exposure that is above the threshold)
in a calendar year; city-specific comparisons were made for population
changes (holding climate constant) and for varying climate scenarios
(holding population constant).
All 11 equally representative years for each climate scenario were run

through the APEX model and annual exceedance counts were averaged
over the 11 runs. We summarize persons with at least three exceedance
days per year, for each concentration threshold analyzed. The percentage
change (increase or decrease) in the count of individuals with at least three
exceedances for various potential future climate or population scenarios is
defined as:

% change ¼ count for future case - count for baseline case
count for baseline case

� �
´ 100:

The ‘at least three’ exceedances value was chosen to allow for examination
of individuals who have repeated exposures above each threshold, in
addition to the comparisons described above for individuals with at least
one exposure above threshold.

RESULTS
Predicted O3 Air Concentrations
CMAQ was used to predict spatially resolved ambient O3

concentrations for the continental United States (on a
36× 36 km2 grid) for the historical base case climate scenario
(BCclim) and RCPs 4.5, 6.0, and 8.5. Eleven representative years
were simulated for BCclim (1995–2005) and each RCP (2025–2035)
as described in Methods. Detailed O3 results for RCP 8.5 (the most
extreme RCP) have previously been reported4; results (average
change from BCclim) for all three RCP scenarios for the period
May–September are shown in Supplementary Figure S1. On
average, at 2030 we see the most dramatic increase in
concentrations in Siouxland (where Minnesota, Nebraska, Iowa,
and South Dakota meet), in the Cleveland, Ohio/Lake Erie/Lake
Ontario area, and in the New York to Virginia stretch of the East
Coast (Supplementary Figure S1). Mean O3 concentrations were
calculated for each city over its individual O3 season (see Figure 2)
for BCclim and each RCP (Figure 3). Census-tract-level concentra-
tions were equally weighted in calculating the city means; the
plotted error bars illustrate the SD of the means over the 11
representative years (e.g., 2025–2035 for the RCP scenarios). LAX
had the highest overall absolute O3 concentrations over its season
(42–43 p.p.b), while ATL had the lowest. In general, the differences
in city mean between BCclim and RCPs 4.5 and 6.0 were of similar
magnitude as the year to year variability in O3 concentration,
while the magnitude of the impact at RCP 8.5 varied across cities.
Consistent with the United States May–September results, DET,
CHI, CLE, and STL had the largest increases (compared with BCclim)
in mean O3-season concentrations, while smaller increases were
also observed in BOS, PHI, and WDC.

Figure 4. Distributions of individual yearly maximum of DM8H O3 exposure by city. (a) BCclim 2005. (b) BCpop 2010.
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Predicted O3 Exposures
Although spatial trends in air quality provided evidence of
climate-based increases in O3 concentrations in some regions of
the United States (especially for RCP 8.5), consideration of spatial
distribution of the population and spatiotemporal patterns in
infiltration are also required to quantify exposure (and thus
potential health) impacts. Overall, APEX exposure modeling results
show differences in population distributions of exposure to O3

when comparing different future climate scenarios but show
minimal differences from projected changes in demographics and
geographic distribution of the population. The left panels of
Figure 4a and b show baseline differences in the population
distribution of individual adult’s annual maximum DM8H exposure
by age, sex, and city (i.e., differences for the current population
and climate scenario). Figure 4 and Supplementary Figure S2 show
a representative year from the 11 climate years, for illustration. As
an example of the variability present from the 11 climate years, for

adult females with the median exposure of 39 p.p.b. in ATL, the
standard deviation of their exposures across the 11 climate
years ranges from 3 p.p.b. to 6 p.p.b. In the total population,
differences in exposure by sex are significant, with men overall
having a greater incidence (i.e., curve shifted to the right) of high
exposures than women. Differences by sex are also seen for
children (right panel of Figure 4a and b), often with the peak
(mode) DM8H exposure being greater for male compared with
female children (likely driven by greater time spent outdoors for
male children). DM8H exposures for children also tend to be
greater than those estimated for the total population at the mid to
upper percentiles of the distribution, indicating that children
experience exposures of concern more frequently than adults.
Beyond these general comparisons, city specific differences are
evident. PDF distributions in Figure 4 show the relatively low
percentage of individuals with O3 exposures exceeding 80 p.p.b;
for this reason data are not presented at this threshold.

Figure 5. Percentage of population with at least one DM8H exposure above threshold by comparison across population scenarios. (a) 60 p.p.b
exposure threshold. (b) 70 p.p.b exposure threshold.
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To examine the most extreme case of demographic changes,
we hold climate constant (BCclim 2005) and compare exposures for
the base case population scenario (BCpop 2010) with the most
extreme scenario for population change (A2 2100) (Figure 4a).
Comparison of exposures from the two different population
scenarios shows that even in the case of the most extreme
demographic change, we see minimal differences in the propor-
tion of the population experiencing particular exposures across
the full distribution of DM8H exposure levels. In comparison, when
we hold population constant (BCpop 2010) and examine differ-
ences for the most extreme change in climate (BCclim 2005 vs RCP
8.5 2025), we see evidence of substantial changes in maximum
exposure, particularly in certain cities (CLE and DET and, to a lesser
extent, NYC and PHI) (Figure 4b). Examining the CDF for the same
contrast of extreme climate change, we can see the shift in
exposure more clearly, with increased maximum DM8H exposures

under the RCP 8.5 scenario compared with the base case (e.g., CDF
curve shifts to the right for CLE, DET, NYC, and PHI)
(Supplementary Figure S2).
In Figure 5, we examine exposures under all population

projections (BCpop, A1, A2, B1, and B2) for the year 2100 with
year 2000 climate and air quality, using the percentage of the
population in each city with at least one DM8H O3 exposure above
a threshold. For comparisons of differences in exposure owing to
population changes (holding climate constant), the height of each
bar represents the mean percentage of the population with at
least one exceedance across the 11 climate years. Exposures under
different climate scenarios, holding population constant, are
presented in Figure 6.
To examine the most extreme population scenario, we use the

projected population demographics for 2100. Figure 5 shows that
although there are still city-to-city differences in the percentage of

Figure 6. Percentage of population with at least one DM8H exposure above threshold by comparison across climate scenarios. Black lines
represent the range (min. to max.) of the percentage of the population having at least one exceedance over the 11 modeled years. Thus the
black lines represent the variability in the percentage of the population with at least one exceedance that comes solely from the interannual
variability in ozone air quality owing to meteorology. (a) 60 p.p.b exposure threshold. (b) 70 p.p.b exposure threshold.
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the population with at least one exceedance per year (i.e., at least
one DM8H O3 exposure above the threshold), regardless of the
potential changes in future population demographics represented
by the A1, A2, B1, and B2 scenarios, we see minimal change in the
percentage of the population within each city with at least one
exceedance. Specifically, for all population we see a o6% and
o2% difference between maximum and minimum scenarios in
the percentage of the population with at least one exceedance for
each city for 60 p.p.b and 70 p.p.b thresholds, respectively, and for
children a o5% and o3% difference for 60 p.p.b and
70 p.p.b thresholds, respectively. For both the base case and
population change scenarios, a larger percentage of children
experience an exceedance. This holds true across all three O3

exposure thresholds (60, 70, and 80 p.p.b). By contrast, when using
the same metric to examine the percentage of the population
having at least one exceedance when population is held constant
(BCpop 2030) and climate scenarios are varied (BCclim 2000, and
RCPs 4.5, 6.0, and 8.5 2030), larger differences are evident for all
population (up to 15% and 8% difference in mean between
maximum and minimum scenarios for each city for 60 p.p.b and
70 p.p.b thresholds, respectively) and children (up to 22% and
14% difference in mean for 60 p.p.b and 70 p.p.b thresholds,
respectively), particularly for the 60 p.p.b threshold (Figure 6a).
The magnitude of impact of future climate scenarios varies by city,
with some cities seeing a very small degree of change (e.g., ATL,
HOU, LAX, SAC) and others seeing a larger degree of change (e.g.,
CHI, CLE, DET, NYC, PHI, and to a lesser extent, STL and WDC)
(Figure 6a). In those cities which see a larger variation across
climate scenarios, the mean percentage of the population with at
least one exceedance tends to increase as you move from the
base case climate scenario through RCPs 4.5, 6.0, and 8.5. Within
Figure 6 it is important to note the black bars, which represent
interannual variability in the exceedances modeled using the 11
years in each climate scenario. Though within each city the black
bars overlap each other, they still echo the trend seen in the mean
percentage of the population with at least one exceedance, which
is a trend of increase in individuals experiencing an exceedance as
we follow the increasing radiative forcing in future climate
scenarios.
In addition to the impact on the percentage of the population

with at least one exposure above each threshold, we examine the
percentage change in the number of people experiencing at least
three exceedances per year compared with the base case, across
population and, separately, climate scenarios. For the different
future population scenarios, we see relatively small variations in
the proportion of the total population having at least three

exceedances 460 p.p.b O3. In comparison to the base case
(BCpop), the greatest variation overall occurs in the A1 population
scenario, with differences as large as 22% in SAC (see Table 3). The
largest changes overall were from comparisons of the A1
population scenario (low fertility, high domestic and international
migration) with the base case population scenario BCpop (medium
fertility and migration). We note that the comparison of A1 and B1
to the BCpop scenario results, with few exceptions, in decreases in
the percentage having exceedances. These decreases are largely
driven by the decrease in fertility for the A1 and B1 scenarios,
evidenced also by the notable decreases in the percentage of
children with at least three exceedances for the A1 and B1
scenarios (Table 3). By contrast, when examining changes in the
percentage of the population having at least three exceedances
across future climate scenarios, we see up to nearly a 250%
increase relative to the year 2000 base case (Table 4). Such
dramatic increases in the percentage of people with at least three
exceedances are accompanied by large absolute numbers of
individuals affected (e.g., 2394 additional people with at least
three exceedances per year in PHI at 2030 under RCP 8.5
compared with PHI base case for climate), compared with
numbers an order of magnitude lower for future population
scenarios.

DISCUSSION
Our analysis shows the impact of projected changes in climate
and air quality on human exposure to O3 are much larger than the
impacts of changing demographics for these climate and
population scenarios. Results show baseline differences in
exposure patterns and levels by sex, age, geography, and between
cities. A number of these differences can be explained by
differences in behavior and patterns of where and how different
demographic groups spend their time. Men have higher
exposures than women, which can be attributed to men spending
a larger percentage of their time outdoors (where O3 levels are
higher) than women, according to the CHAD database
(Figure 4).11,36 Similarly, children tend to have a higher mean
exposure than the total population, with male children having a
higher peak of the PDF curve than female children (Figure 4). We
attribute this to children spending a greater portion of their day
outdoors compared with adults, with male children spending
more time outside than female children.11,37 Although city-to-city
differences in exposure levels and patterns exist even at baseline,
as previously stated the change in future ambient O3 concentra-
tions appears to be the driver for changes in exposure.

Table 3. Percentage of (count) change in the number of people with at least 3 exceedances 460 p.p.b across population scenarios, compared with
base case population scenario (BCpop).

All population Children

A1 vs BCpop A2 vs BCpop B1 vs BCpop B2 vs BCpop A1 vs BCpop A2 vs BCpop B1 vs BCpop B2 vs BCpop

ATL − 9% (−4) 0% (0) +11% (+5) +9% (+4) − 32% (−6) +21% (+4) − 32% (−6) +11% (+2)
BOS − 18% (−37) +10% (+20) − 17% (−34) 0% (−1) − 27% (−22) +28% (+23) − 27% (−22) +4% (+3)
CHI − 15% (−274) − 3% (−48) − 1% (−13) +9% (+164) − 34% (−218) +17% (+107) − 27% (−172) +6% (+38)
CLE +6% (+52) +5% (+39) − 1% (−10) − 1% (−9) − 13% (−38) +21% (+63) − 21% (−63) − 2% (−5)
DET − 14% (−145) +2% (+17) − 9% (−95) +2% (+26) − 31% (−135) +19% (+80) − 32% (−139) 0% (−2)
HOU − 21% (−22) +4% (+4) − 6% (−6) +8% (+9) − 41% (−23) +7% (+4) − 30% (−17) +7% (+4)
LAX − 15% (−481) +10% (+340) − 11% (−364) +2% (+63) − 30% (−357) +27% (+312) − 26% (−309) +2% (+25)
NYC − 5% (−153) +1% (+18) − 3% (−79) +1% (+38) − 24% (−232) +17% (+165) − 23% (−227) 0% (+3)
PHI − 13% (−251) +8% (+140) − 12% (−231) − 1% (−15) − 29% (−212) +23% (+169) − 29% (−216) − 2% (−16)
SAC − 22% (−2) +0% (0) − 22% (−2) +11% (+1) 0% (0) 0% (0) 0% (0) 0% (0)
STL − 11% (−62) +6% (+32) − 10% (−59) +1% (+5) − 29% (−86) +18% (+55) − 29% (−87) 0% (−1)
WDC − 19% (−94) +6% (+32) − 11% (−55) +4% (+18) − 29% (−60) +20% (+42) − 27% (−56) +5% (+10)
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Across the future climate projections, we see a trend of
increasing mean percentage of the population having at least one
exceedance per year as we move from the year 2000 climate base
case to the year 2030 under RCPs 4.5, 6.0, and 8.5 (Figure 6).
Further, though there are differences in the extent of increases
between cities, Table 4 shows an almost universal trend across all
cities of an increasing percentage of the population with at least
three exceedances when comparing 2030 climate scenarios to
2000. We note that the cities having the largest increases in
exceedances are the cities with the largest increases in ambient O3

concentrations (Figure 3, Supplementary Figure S1). The cities
where we saw the largest increase in exceedances for future
climate scenarios were CHI, CLE, DET, NYC, PHI, and to some
degree, BOS and WDC. Comparing the areas of largest increase in
ambient O3 concentration to the cities modeled using APEX
(Figure 2, map), we also note that none of the 12 cities modeled
overlap Siouxland, the area with the most dramatic ambient O3

increases, indicating that we may not have captured the cities that
may be of most concern in this analysis. Finally, we note that
though the trend is toward an increasing number of exceedances
under higher global warming scenarios, the interannual variability
in ambient O3 concentrations using meteorology downscaled
from CESM is carried through to the exposure results from APEX
(Figure 6, black bars).
As noted, the future scenarios of population change appear to

have minimal impact on O3 exposure across all metrics of
exposure assessed. This may be because demographic change is
inherently slow, thus even across 100 years the impact of changes
in fertility, mortality, and migration may be dwarfed by the scale of
change in O3 concentration (noting areas of 3–5 p.p.b increase in
O3 concentration in Siouxland) (Figure 3, Supplementary
Figure S1). As noted above, though the changes in ambient O3

concentration appear to be driving changes in exposure, there
may be additional behavior change in the population that may
impact exposure change (in either direction) that is not being
captured here. Namely, changes in temperature may have an
impact on the behavior of the population, particularly with respect
to the amount of time spent outdoors. Owing to the current
method for matching temperature-dependent activities in APEX
using relatively large temperature bins, the comparatively small
changes in temperature modeled by the WRF model may not
significantly affect the activity pattern data selected to represent
the simulated individuals in the population.
In this work, the influence of climate on both AER and human

activity patterns were propagated to the exposures indirectly, that
is, both AER and human activity diaries are selectively sampled

based on temperature predicted from the climate modeling.
However, climate may ultimately impact these factors in more
direct ways. For example, time spent outdoors could be influenced
by ambient temperatures, precipitation, humidity, extreme
weather events, and air quality averting behaviors. AER distribu-
tions will be influenced by housing stock turnover, construction
rates, distribution of new home types, and heating/cooling
methods. Further work can be carried out to more explicitly
explore potential impacts of these factors and incorporate results
into exposure estimates. For example, mechanistic models of AERs
that explicitly incorporate housing and climate factors have
recently been integrated into EPA human exposure models12,38;
these methods will be useful in refining climate-relevant AER
predictions.
Results shown have the potential to further inform policy

decisions and serve to emphasize the key elements of ozone
exposure affected by alternate climate scenarios for consideration
by public health professionals as well as regulators. Though we
see variability around future exposure scenarios owing to
variability in the climate scenarios, the trend of increasing
percentage of the population experiencing exposures of concern
as the degree of radiative forcing in 2100 increases (i.e., as you
move from RCP 4.5 to RCP 8.5) has health implications. Further
analysis would need to be undertaken to determine the health
impact on particularly sensitive subgroups of the population,
including asthmatics, of the increasing level and number of days
per year individuals may experience exposures of concern. In
addition, future research may include modeling cities located in
the area of highest ambient O3 increase (i.e., in Siouxland); based
on results presented here we would expect populations living in
Siouxland to experience the largest increases in the exposure
metrics analyzed. These results would need to be combined with
data on the number of people living in this area of the country
(cities in Siouxland have a much lower population than, for
example, NYC or LAX) to determine the relative public health
impact nationwide.
Additional future work could include an alternative approach

for modeling human behavior (compared with drawing from
historical human activity pattern data), which may allow account-
ing for behavioral changes owing to smaller differences in
temperature. An approach for matching temperature-dependent
activities that allowed for finer temperature bins may increase the
extent to which behavioral changes impact the modeled
exposures. For instance and depending on the geographic area,
increases in outdoor temperature may lead an individual to either
decrease or increase the amount of time they spend outdoors,

Table 4. Percentage of (count) change in the number of people with at least 3 exceedances460 p.p.b across climate scenarios, compared with base
case climate scenario (BCclim).

All population Children

RCP 4.5 vs BCclim RCP 6.0 vs BCclim RCP 8.5 vs BCclim RCP 4.5 vs BCclim RCP 6.0 vs BCclim RCP 8.5 vs BCclim

ATL − 13% (−7) 0% (0) +73% (+40) − 17% (−4) +8% (+2) +92% (+22)
BOS +29% (+59) +69% (+141) +175% (+358) +31% (+27) +54% (+47) +169% (+147)
CHI +9% (+191) +21% (+439) +75% (+1570) +9% (+68) +18% (+134) +77% (+571)
CLE +69% (+496) +74% (+528) +249% (+1785) +73% (+201) +65% (+179) +239% (+658)
DET +36% (+399) +55% (+607) +175% (+1929) +28% (+130) +45% (+208) +133% (+622)
HOU +23% (+26) +26% (+30) +35% (+40) +37% (+23) +32% (+20) +42% (+26)
LAX +7% (+246) +7% (+223) +17% (+594) +6% (+81) +6% (+73) +18% (+229)
NYC +22% (+607) +25% (+667) +89% (+2402) +26% (+241) +21% (+202) +75% (+702)
PHI +25% (+472) +23% (+426) +129% (+2394) +27% (+205) +21% (+156) +105% (+793)
SAC 0% (0) +10% (+1) +60% (+6) 0% (0) +50% (+1) +100% (+2)
STL +13% (+75) +12% (+66) +92% (+528) +11% (+34) +13% (+39) +89% (+265)
WDC +31% (+166) +19% (+103) +162% (+880) +41% (+98) +18% (+44) +166% (+395)
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leading to lower or higher O3 exposures, respectively. Alternative
approaches to modeling human activity may allow us to represent
averting behavior patterns that result from public health
campaigns designed to inform those at increased health risk
owing to pollutant exposures such as the Air Quality Index.39

Further, activity patterns could be developed to represent recent
cultural changes in activity patterns, such as children spending
more time indoors performing technology-based activities and
less time outdoors, also potentially impacting exposures. In
addition, though climate-driven changes in emissions of hydro-
carbons from vegetation were considered in air quality modeling,
we did not consider the impact of other climate-sensitive emission
sources. In particular, wildfires are projected to become more
prevalent in a warmer future, particularly in the western United
States, and the associated emissions from wildfires would be
expected to increase O3 concentrations downwind.
In conclusion, we note that future changes in climate and

associated human exposures have the potential for informing
public health assessments, dependent upon future levels of
increased radiative forcing, which are shown to increase
population-based exposures of concern. This, taken together with
analyses showing that, even in the most extreme cases of
demographic change, future population change is predicted to
have a relatively small impact on O3 exposures, supports the
conclusion that future changes in climate and air quality will drive
future changes in human exposure to O3.
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