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Gene expression profile of subcutaneous adipose tissue in
BMI-discordant monozygotic twin pairs unravels molecular
and clinical changes associated with sub-types of obesity
M Muniandy1, S Heinonen2, H Yki-Järvinen3,4, A Hakkarainen5, J Lundbom5,6, N Lundbom5, J Kaprio1,7, A Rissanen2,8, M Ollikainen1,7

and KH Pietiläinen1,2,9

BACKGROUND: Subcutaneous adipose tissue (SAT) undergoes major changes in obesity, but little is known about the whole-
genome scale patterns of these changes or about their variation between different obesity sub-groups. We sought to compare how
transcriptomics profiles in SAT differ between monozygotic (MZ) co-twins who are discordant for body mass index (BMI), whether
the profiles vary between twin pairs and whether the variation can be linked to clinical characteristics.
METHODS: We analysed the transcriptomics (Affymetrix U133 Plus 2.0) patterns of SAT in young MZ twin pairs (n= 26, intra-pair
difference in BMI43 kg m− 2, aged 23–36), from 10 birth cohorts of adult Finnish twins. The clinical data included measurements of
body composition, insulin resistance, lipids and adipokines.
RESULTS: We found 2108 genes differentially expressed (false discovery rate (FDR)o0.05) in SAT of the BMI-discordant pairs.
Pathway analyses of these genes revealed a significant downregulation of mitochondrial oxidative pathways (Po0.05) and
upregulation of inflammation pathways (Po0.05). Hierarchical clustering of heavy/lean twin ratios, representing effects of acquired
obesity in the transcriptomics data, revealed three sub-groups with different molecular profiles (FDRo0.05). Analyses comparing
these sub-groups showed that, in the heavy co-twins, downregulation of the mitochondrial pathways, especially that of branched
chain amino acid degradation was more evident in two clusters while and upregulation of the inflammatory response was most
evident in the last, presumably the unhealthiest cluster. High-fasting insulin levels and large adipocyte diameter were the
predominant clinical characteristic of the heavy co-twins in this cluster (Bonferroni-adjusted Po0.05).
CONCLUSIONS: This is the first study in BMI-discordant MZ twin pairs reporting sub-types of obesity based on both SAT gene
expression profiles and clinical traits. We conclude that a decrease in mitochondrial BCAA degradation and an increase in
inflammation in SAT co-occur and associate with hyperinsulinemia and large adipocyte size in unhealthy obesity.
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INTRODUCTION
Subcutaneous adipose tissue (SAT) has an important metabolic
function in storing and mobilising energy. During obesity
development, SAT, containing adipocytes and stromal-vascular
cells that include fibroblastic connective tissue cells as well as
preadipocytes, macrophages and leucocytes,1,2 undergoes major
expansion and remodelling.3–6 Changes include an increase in
number and size of adipocytes, infiltration of adipose tissue (AT)
by immune cells and relative rarefaction of blood vessels and
neural structures.3–6

Whole-genome scale SAT transcriptomics studies have revealed
various genes and pathways associated with upregulation of
inflammation7–11 and immune response,7,8 and downregulation of
mitochondrial pathways,8,10,12 insulin-signalling13 and lipid
metabolism8 in obesity. Further, targeted SAT transcriptomics
studies comparing metabolically (MHO) healthy and unhealthy
(MUO) obese individuals have found more downregulation of

branched chain amino acid (BCAA) degradation in MUO than in
MHO group.14 In a similar study, weight gain increased lipid
metabolism and synthesis in MHO but not in MUO individuals.15

These studies suggest that although obesity affects AT gene
expression in general, the responses may vary depending on the
obese person’s metabolic health status.
Although there have been a few studies on SAT gene

expression comparing obese and lean groups or groups with
different clinical health parameters, little is known about whether
a hypothesis-free transcriptomics analysis can identify distinct SAT
gene expression profiles in obesity, which link to metabolic health.
In ordinary studies comparing obese and lean individuals, part of
the gene expression differences can be driven by differences in
genetic background. To this end, we employ a study design of
young adult MZ twin pairs highly discordant for body mass index
(BMI). This study design allows us to analyse effects of acquired
obesity independent of genetic background. We first examined
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whole-genome scale SAT gene expression differences between all
BMI-discordant MZ co-twins, that is, an effect of overweight in
general. We then clustered the twin pairs to determine whether
the effects of acquired obesity show different molecular and
clinical profiles manifesting as heterogeneity of obesity in general
population. Lastly, we verified the results in an already published
material of BMI-discordant MZ twins.10

MATERIALS AND METHODS
Subjects
The discovery phase of the study included 26 BMI-discordant (within-pair
difference, ΔBMI ⩾ 3 kg m− 2) MZ twin pairs (males n= 9, females n= 17)
recruited from two longitudinal population-based studies of Finnish twins,
FinnTwin16 (born between 1975–1979, n= 2839 pairs) and FinnTwin12
(born between 1983–1987, n=2578 pairs).16 The participants have been
described previously as has the targeted analysis of genes regulating the
mitochondria.11,12 In brief, the mean BMI difference within the twin pairs
was 6 kg m− 2, and mean age 30.2 years at the time of clinical study. The
twins were healthy, with the exception of one obese twin with inactive
ulcerative colitis (treated with mesalazine and azathioprine), and another
obese twin with T2DM (treated with metformin and insulin). The
replication set comprised 13 healthy BMI-discordant MZ twin pairs (males
n= 8, females n=5, mean BMI difference within-twin pairs = 5.25 kg m− 2,
mean age= 25.6) from an already published data set,10 obtained from
(https://www.ebi.ac.uk/arrayexpress/). Four twin pairs exist in the discovery
and replication data set but discovery data set samples were taken 6 years
after the replication data set. We obtained written informed consent from
all participants and designed the study protocol in accordance to the
principles of the Helsinki Declaration with approval from the Ethics
Committee of the Helsinki University Central Hospital.
Clinical measures were obtained as described previously (Table 1).12,17

We used dual-energy X-ray absorptiometry (DEXA)18 to measure body
composition, magnetic resonance imaging to determine body fat
distribution of abdominal subcutaneous and intra-abdominal fat, and
proton magnetic resonance spectroscopy (1H-MRS) to determine liver fat.19

We measured fasting lipids, high-sensitivity C-reactive protein (hs-CRP),
leptin, adiponectin, as well as glucose and insulin during a 2-h oral glucose
tolerance test (OGTT). The plasma BCAA (valine, leucine and isoleucine)
values were measured using a high-throughput NMR metabolomics
platform.17 We also recorded nutritional intake with a 3-day food diary,
physical activity by Baecke indices.12,20 Current daily smoking status for the
twins was assessed by questionnaire.

AT morphology
We obtained SAT biopsies via a surgical technique under local anaesthesia.
We photographed the SAT adipocytes with a light microscope and
measured the diameters of 200 cells using ImageJ.21,22

Transcriptomics analyses
We used the RNeasy Lipid Tissue Mini Kit (Qiagen, Redwood City, CA, USA)
to extract SAT RNA,12 treated it with DNase I (Qiagen) and hybridised
250 ng to Affymetrix U133Plus2.0 microarray (Affymetrix, www.affymetrix.
com) to detect gene expression.11 We normalised the expression data
using R-Bioconductor23 package GCRMA,24 and performed annotation with
Brainarray cdf version 18.25

First, we analysed whether within-pair differences for heavy/lean status
differed between males and females (by comparing the beta coefficients
using linear models for microarray analysis [limma]).26

Second, we used limma to identify differentially expressed genes within
the co-twins. P-values were corrected for multiple testing (Benjamini and
Hochberg method).27 We considered false discovery rate (FDR)o0.05 as
statistically significant. In this paired design model, as the twin pairs were
perfectly matched for sex, sex did not provide any additional information
to the model. We further examined the differential gene expression on
pathway level using ingenuity pathway analysis tool (IPA, Qiagen).

Cluster analyses
Third, we explored whether the twin pairs cluster based on within-pair
gene expression ratios (heavy/lean). We used weighted gene co-expression
network analysis (R-WGCNA)28 to perform hierarchical clustering. We then

performed moderated two-sided t-tests (limma), using sex as a covariate,
on the gene expression data to obtain differentially expressed genes
within the pairs in each cluster. In this paired design model, although the
twin pairs were matched for sex, sex distribution between the clusters
differed and was adjusted for. Next, we tested whether the original top ten
differentially expressed pathways within the 26 twin pairs were cluster-
specific using IPA’s comparison analysis. Lastly, we determined each
cluster’s pathways individually using the IPA’s canonical pathway analysis.
Fisher’s exact test P-value o0.05 was considered significant.

Replication data set
Clinical measures of the replication data set are as described previously10

(Supplementary Table 1). However, we lacked data for insulin area under
the curve (AUC) and glucose AUC during OGTT, adiponectin and BCAA,
nutritional intake and physical activity that were measured in the discovery
data set. Within-twin pair differences in gene expression for this data set
have already been published,10 and in this study, we used the data set to
verify the cluster analysis results.

Basic statistics (discovery and replication data sets)
We used Wilcoxon’s signed rank tests in R software29 to measure means of
the clinical measurements in the heavy and lean groups. In addition, we
used one-way Anova with Tukey’s posthoc tests in R software29 to
calculate mean differences within pairs in each cluster. FDR⩽ 0.05 was
considered significant.

RESULTS
Twin pairs were highly discordant for clinical characteristics of
obesity
As reported previously,12 the lean and heavy co-twins were highly
discordant (Po0.0001) for all measures of adiposity (Table 1). In
addition, the heavy co-twins were more insulin-resistant (higher
fasting insulin and insulin AUC during OGTT), had higher levels of
low-density lipoprotein, triacylglycerol, serum hs-CRP and leptin,
and lower levels of high-density lipoprotein and adiponectin. The
lean twins had significantly higher Baecke sports indices. Most
twins were non-smokers, but three pairs were concordant and six
pairs discordant for smoking status. The replication set10 was
similar to the current data set for all clinical measures
(Supplementary Table 1). Four pairs were concordant and three
pairs discordant for smoking status. Other pairs were not smokers.

2108 genes were differentially expressed in SAT within the
BMI-discordant pairs
Altogether 2108 genes were differentially expressed (FDRo0.05)
between the lean and heavy co-twins in SAT, 945 (45%) of which
were upregulated in the heavy co-twins. Between males and
females, these genes had a correlation value of 0.899
(P-valueo0.0001) (Supplementary Figure 1). Although this
correlation was high, we decided to altogether minimise the
possible effects of sex by adjusting subsequent cluster models for
sex. Among the 2108 genes differentially expressed, the top 10
up- and downregulated genes are shown in Table 2 (full list in
Supplementary Table 2). The most upregulated gene in the heavy
co-twins was EGFL6 (fold change 8.90), which has a role in the
regulation of cell cycle, proliferation, and developmental pro-
cesses. Genes involved in apoptosis and immune response were
amongst the top 10 upregulated genes.
The most downregulated gene in the heavy co-twins, SLC27A2

(fold change 0.1848) is associated with lipid biosynthesis and fatty
acid degradation. The remaining top nine downregulated genes
are involved in lipid and fatty acid metabolism, and cell signalling
processes.
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Top ten pathways mostly associated with mitochondrial function,
lipid metabolism and inflammation
We then analysed the 2108 differentially expressed genes with
IPA's pathway analysis to obtain their biological pathways. The ten
most significant differentially expressed pathways are presented
in Figure 1. Five of these are shown in detail in Supplementary
Figures 2–6.
The top pathway was oxidative phosphorylation. Out of all the

genes in this pathway, those that were also in our differentially
expressed genes were downregulated in the heavy co-twins
(Supplementary Figure 2). The mitochondrial dysfunction pathway
included the same significantly downregulated genes as the
oxidative phosphorylation pathway and in addition, upregulated
genes GSR and CYB5R3, which are involved in mitochondrial
oxidative stress reactions (Supplementary Figure 3). Majority of the
genes in the BCAA pathways, valine degradation I (Supplementary
Figure 4) and isoleucine degradation I also encode genes that
function in the mitochondria and were downregulated in the
heavy co-twins. The genes in the glutaryl-CoA degradation
pathway (Supplementary Figure 5), all downregulated in the
heavy co-twins, participate in tryptophan and lysine degradation
and many of them are shared with the isoleucine degradation
pathway.
In addition to the pathways discussed above, the differentially

expressed pathways included triacylglycerol biosynthesis
(Supplementary Figure 6), the transcripts of which were mostly
downregulated in the heavy co-twins. Also ketogenesis and
ketolysis pathways were differentially expressed in SAT between

the co-twins. These two pathways share two genes (HADHA,
HADHB), which are also involved in the fatty acid β-oxidation
pathway30 and two genes (ACAT1, ACAT2) also involved in
isoleucine degradation (IPA). Nur77 Signalling in T-lymphocytes
and unfolded protein response pathways had both up- and
downregulated genes in our heavy co-twins. These two pathways
have a role in inflammation and ER stress, respectively, suggesting
an effect in these processes in obesity, although our data was
unable to conclusively show upregulation or downregulation.

Gene expression profiling can be used in identifying obesity
sub-types
Next, we explored whether the SAT transcriptomics profiles can
characterise different forms of acquired obesity. Cluster analysis
using gene expression ratios between heavy and lean co-twins
revealed three clusters (Figure 2). The first cluster (Cluster 1) had
two, the second cluster (Cluster 2) 19 and the third cluster
(Cluster 3) five twin pairs. Because of unequal sex distribution in
the clusters (Supplementary Tables 4 and 5), sex was included as a
covariate in the cluster analysis. Cluster 1 had 413, Cluster 2 had
728 and Cluster 3 had 828 differentially expressed genes within
the twin pairs (Supplementary Table 3) (FDRo0.05). Most of the
genes were specific for each cluster with four shared genes
between Cluster 1 and 3 and 110 shared genes between Cluster 2
and 3 (Supplementary Figure 7). The clusters’ clinical character-
istics are presented in Supplementary Table 4.
We then performed IPA pathway analyses for the within-twin

pair differentially expressed genes for each cluster separately. For

Table 1. Characteristics of the 26 BMI-discordant monozygotic twin pairs

Variable Lean co-twin Heavy co-twin P-value

BMI-discordant pairs (ΔBMI 43 kg m− 2, n=26 pairs)
BMI (kg m− 2) 25.3± 0.9 31.3± 1.0 o0.0001
Body fat (%) 32.3± 1.8 41.1± 1.3 o0.0001
Subcutaneous fat (cm3) 3813.7± 416.8 6358.9± 540.4 o0.0001
Intra-abdominal fat (cm3) 790.2± 178.9 1643.7± 247.4 o0.0001
Liver fat (%) 1.12± 0.32 4.52± 0.99 o0.0001
Adipocyte diameter (μm) (n= 25 pairs)a 82.93± 9.01 97.37± 6.98 0.13
fP-glucose (mmol l− 1) (n= 25 pairs)a 5.1± 0.1 5.3± 0.1 0.17
AUC glucose in oral glucose tolerance test (mmol l− 1 h− 1) (n= 25 pairs)a 14.16± 2.71 14.85± 2.79 0.35
fS-insulin (mU l− 1) (n= 25 pairs)a 4.9± 0.5 8.5± 1.2 0.0011
AUC Insulin (mU l− 1 h− 1) (n= 25 pairs)a 87.6± 8.0 129.3± 24.6 0.031
Total cholesterol (mmol l− 1) 4.4± 0.2 4.7± 0.2 0.14
low-density lipoprotein (mmol l− 1) 2.6± 0.1 3.0± 0.2 0.14
high-density lipoprotein (mmol l− 1) 1.6± 0.1 1.3± 0.1 0.00040
Triglycerides (mmol l− 1) 0.94± 0.1 1.32± 0.2 0.014
fS-hs-CRP (mg dl− 1) (n= 25 pairs)a 2.6± 0.7 4.0± 1.1 0.065
fP-Adiponectin (μg ml− 1) 2.8± 0.3 2.2± 0.2 0.0023
fP-Leptin (mg ml− 1) 18.9± 4.1 34.6± 5.5 0.0015
Isoleucine (mmol l− 1) (n= 20 pairs)a 0.05± 0.01 0.06± 0.02 0.033
Leucine (mmol l− 1) (n= 20 pairs)a 0.08± 0.01 0.09± 0.02 0.0094
Valine (mmol l− 1) (n= 20 pairs)a 0.19± 0.04 0.21± 0.04 0.024
Total energy intake (KJs) 8532.36± 430.91 8822.3± 436.51 0.92
Protein intake (percent of total energy) 17.88± 0.96 16.71± 0.6 0.60
Fat intake (percent of total energy) 35.03± 1.3 36.06± 1.37 0.67
Carbohydrates intake (percent of total energy) 44.24± 1.46 42.93± 1.77 0.29
Alcohol intake (percent of total energy) 2.85± 1.03 4.3± 1.12 0.27
Baecke work index 2.87± 0.17 2.79± 0.17 0.88
Baecke sports index 2.88± 0.18 2.42± 0.17 0.049
Baecke leisure time index 2.88± 0.12 2.86± 0.1 0.73
Total Baecke index 8.63± 0.29 8.07± 0.28 0.12
One smokerb 3 3
Non-smokers (pairs) 17
Both smokers (pairs) 3

Abbreviations: AUC, area under the curve; BMI, body mass index; fP, fasting plasma; fS, fasting serum; hs-CRP, high-sensitivity C-reactive protein. aData not
available for all pairs. bThe number indicates which twin is the smoker. Wilcoxon’s rank sum test was used to compare values of the lean versus the heavy
co-twin. Data represent mean with s.e.
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some pathways, IPA was able to (via z-scores) conclusively show
upregulation/downregulation. Among the pathways that differed
between the co-twins in Cluster 1 (Figure 3a), none reached
significant z-scores. In Cluster 2 (Figure 3b), most of the top 10
pathways were involved in mitochondrial functions (two pathways
were downregulated and one upregulated in the heavy co-twins).
In Cluster 3, the significant pathways (Figure 3c) were strongly
upregulated in the heavy co-twins and involved in immune
response.
Then, we checked how the original top 10 pathways (Figure 1)

obtained in the analysis on all 26 twin pairs behaved in each
cluster. IPA's comparison analysis revealed that compared to
Cluster 1, the other two clusters’ pathways had more affected
genes (Supplementary Figure 8). In Cluster 3, Nur77 signalling in
T-lymphocytes (inflammation) and valine degradation were more

prominent than in Cluster 1 or 2. Compared to Cluster 1 and 3,
Cluster 2 had more affected genes in the mitochondrial pathways.

Replication data set reveals similar patterns as the study data set
for cluster 3
To validate the robustness of these clusters, we repeated the
cluster analysis on previously published data on BMI-discordant
MZ twin pairs. Owing to a very small replicate data set, we
considered nominal P-values o0.05 as significant. The differen-
tially expressed genes on the replication data set revealed three
clusters (Supplementary Figures 9 and 10) which we then analysed
for the pathways (Supplementary Figure 11).
The pathways in Cluster 1 (Supplementary Figure 11a) and

Cluster 2 (Supplementary Figure 11b) were not clearly similar to
Cluster 1 and Cluster 2 of the study data set. However, like in the
study data set, the replication data set showed upregulation of
immune and inflammatory response for Cluster 3 (Supplementary
Figure 11c). The results from the replication data set
(Supplementary Figure 12) showed a general consistent pattern
across the three clusters whereby, as we move from Cluster 1 to 2
towards Cluster 3, the representation of genes responsible for
immune/inflammatory response increase.

Inflammatory response and BCAA degradation significantly
different in cluster 3 in both data sets
We then selected a few pathways of interest to closely compare
the clusters in both data sets. We selected two mitochondrial
pathways (oxidative phosphorylation and BCAA degradation) and
two inflammatory pathways (humoral immune response and
inflammatory response) because of their top appearance either in
the study or replication data set. We found that for both data sets
(Figure 4 and Supplementary Figure 12) Cluster 2 and 3 showed
higher enrichment for BCAA degradation and Cluster 3 for
inflammatory response in the heavy co-twins compared to
Cluster 1.

Figure 1. Top 10 biological pathways for the differentially expressed genes within 26 BMI-discordant monozygotic twin pairs. The numbers
above the bars represent the genes belonging to the respective pathways (IPA). The left y axis represents the percentage of overlap between
the study data set and the known genes belonging to the respective pathways. The y axis on the right displays the − log of P-value, calculated
by Fisher's right-tailed exact test showing increased significance. A − log(P-value) of 1.3 is indicative of P-value of 0.05. The bars show the
percentage of upregulated (dark grey) and downregulated (light grey) genes in the heavy co-twins in the study data set. The white blocks
represent the genes belonging to the pathway but which did not reach significance.

Figure 2. Cluster tree for the twin pair ratios of gene expression data
(n= 14 665 genes). Cluster 1 had a total of 274 differently expressed
genes (139 upregulated, 135 downregulated), Cluster 2 had 728
differently expressed genes (290 upregulated, 438 downregulated)
and Cluster 3 had 828 differently expressed genes (503 upregulated,
325 downregulated) within the twin pairs. Twin pair ratios (n= 26
BMI-discordant pairs) for the gene expression were used for the
cluster analysis.
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Cluster 3 was associated with high-fasting insulin levels and
adipocyte diameter
We then performed multiple group comparison analysis to
ascertain clinical measurements differences in the three clusters.
The results of the discovery data set (Supplementary Table 4)
showed that differences between the heavy and leaner co-twins
were larger for Cluster 3 than in Cluster 2 for fasting insulin levels
(Bonferroni-adjusted P= 0.041) and adipocyte diameter (adjusted
P= 0.045). The replication data set also showed that within-pair
differences of fasting insulin were larger in Clusters 3 (adjusted
P= 0.02) and 2 (adjusted P= 0.005) than in Cluster 1
(Supplementary Table 5). The within-pair differences in other
obesity-associated clinical parameters did not differ between the
three clusters.

DISCUSSION
This study reveals two fundamental changes in the SAT
transcriptomics profiles of heavy versus lean co-twins of BMI-
discordant MZ twin pairs: a downregulation of mitochondrial and
upregulation of inflammatory pathways. The most pronounced
differences between the co-twins were observed for oxidative
phosphorylation and BCAA (especially valine and isoleucine)
degradation pathways, suggesting an effect on mitochondrial
function in obesity. Also, an effect on inflammation in the heavy
co-twins was observed, although not nearly as prominent as the
mitochondrial finding.
In addition, our extended hierarchical clustering analyses of

gene expression of heavy/lean twin ratios revealed that the
transcriptomics profiles defined three patterns of acquired obesity.

Figure 3. The top 10 pathways of the clusters based on the within-twin pair differences in gene expression. Differentially expressed genes for
each cluster (FDRo0.05, n= 274 for Cluster 1, n= 728 for Cluster 2, n= 828 for Cluster 3) were entered into IPA to produce the pathways.
(a) Cluster 1, (b) Cluster 2 and (c) Cluster 3. The y axis displays the − log of P-value which is calculated by Fisher's exact right-tailed test. A-log
(P-value) of 1.3 is indicative of P-value of 0.05. The percentage of upregulated (dark grey) and downregulated (light grey) genes in the heavy
co-twins in the data set is represented. The white blocks represent the genes that belong to the pathway according to IPA analysis but did not
reach significance. For some pathways, IPA was able to conclusively provide activation scores: (z-scores which show statistical significance of
the observed number of ‘activated’ and ‘inhibited’ genes; o0: inhibited, 40: activated). z-scores 42 or o − 2 are considered significant. For
Cluster 2, IPA predicted the following pathways to be downregulated (EIF2 signalling (z=− 2.309) and the following pathways to be
upregulated: mTOR signalling (z= 0.378) and IL-8 signalling (z= 1.414). For Cluster 3, IPA predicted the following pathways in Cluster 3 to be
upregulated: CD28 signalling in T-helper cells: (z= 2.688), TREM1 signalling (z= 4.123), B-cell receptor signalling (z= 3.128), role of pattern
recognition receptors in recognition of bacteria and viruses (z= 4.00), role of NFAT in regulation of the immune response (z= 3.578), iCOS-
iCOSL signalling in T-helper cells (z= 2.309).
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Our results suggest that in Cluster 1, the transcriptional differences
between the heavy and leaner co-twins were more benign, but
that in Cluster 2 and 3, the intensification of mitochondrial
downregulation was seen, and finally, in Cluster 3, a clear
inflammatory pattern in the heavy co-twins. Many of these results,
especially those of Cluster 3, were verified in a previously
published replication data set of BMI-discordant MZ twin pairs.10

Both the study and the replication data sets showed increased
fasting insulin levels in the heavy twins of Cluster 3 than in the
other clusters, perhaps suggesting that the defined AT transcrip-
tomics profiles associate with development of the insulin-resistant
phenotype in acquired obesity. In the discovery data set, the intra-
pair difference in adipocyte size was also larger in Cluster 3.
In the first part (analysis of 26 twin pairs) of the study, we

identified 2108 differentially expressed genes between the heavy
and lean co-twins. These genes mapped to several mitochondria-
and inflammation-related pathways. For the mitochondria-related
pathways, genes from our data set were mostly downregulated in
the heavy co-twins. For inflammation-related pathways, some
genes from our data set were downregulated and some
upregulated, in the heavy co-twins. Similar results were observed
in the replication data set: mitochondrial oxidative pathways,
especially BCAA catabolism, were downregulated together with
upregulation of a number of inflammatory pathways in the heavy
co-twins.10 Mitochondrial downregulation (mitochondrial DNA
copy number, mRNA and protein expression) in obese SAT was
also observed in a series of targeted analyses performed for the
same twins as in the current study.21 A couple of other studies also
suggest lower expression of genes encoding mitochondrial
proteins in SAT in overweight subjects.8,31 Studies also show that
mitochondrial respiration in human fat cells is significantly
reduced with increasing BMI.32,33

Although the triggering events for the mitochondrial down-
regulation in obese fat are not known, it can be assumed that in

energy overload, ATP production by cytosolic processes such as
glycolysis are activated and mitochondria are needed less.
Insufficiency of mitochondrial catabolism was noted for both fatty
acids and BCAAs. It should also be noted that although
ketogenesis and ketolysis appear as two significant pathways,
these processes occur in the liver and thus showed up in our data
set probably because of the shared genes with fatty acid oxidation
and BCAA catabolism.
Altogether with overall oxidative phosphorylation, the most

significantly enriched pathway in our heavy co-twins was BCAA
degradation. The cluster analyses revealed that downregulation of
mitochondrial and BCAA degradation-related pathways worsened
towards the higher clusters 2 and 3, suggesting that these
processes are related to a metabolically more disadvantaged
obesity. We consider these as the most novel results of our study.
BCAAs (valine, leucine and isoleucine) are essential amino acids
catabolised by BCAT1 in the cytosol and thereafter by a number of
genes in the mitochondria. We specifically show a significant
downregulation of the mitochondrial genes, and interestingly, a
twofold upregulation of the cytosolic BCAT1 (Supplementary
Table 3). Similar findings have been reported in other studies.31

Blood BCAA levels have been reported as increased,34–36 and
BCAA breakdown product alpha-ketoisocaproate as decreased
along with decreased AT BCAA catabolism activity in obesity.10

Unfortunately, our measured levels of valine, leucine and
isoleucine did not show any significant differences between the
Clusters, which could be because of lower statistical power owing
to missing data for some of our twins. However, studies by other
researchers suggest that the decrease in AT BCAA catabolism does
contribute significantly to circulating BCAA levels37,38 and that the
gene expression of the BCAA catabolism enzymes in obesity is
downregulated in AT, but not in liver nor muscle.39 Increased
BCAA levels have not only been correlated with insulin
resistance36,40–42 but also predict future risk of T2DM.34,41 Here
we show that, in what we assume as the more advanced stage of
metabolic dysfunction in SAT, the decrease in BCAA catabolism
pathways is more pronounced and associated with higher fasting
insulin levels in the heavy co-twins. Previously, we showed that
reduced BCAA catabolism in obesity correlates with a paradoxical
reduction of adipogenesis pathways in SAT, and perhaps thereof,
with accumulation of liver fat.10 Interestingly, quite recently,
isotope studies in adipocytes demonstrated that BCAA catabolism
improves adipocyte differentiation.43 With decreased BCAA
catabolism in obesity, SAT may fail to enlarge adequately,43 which
in turn may favour deposition of ectopic fat and subsequent
effects on insulin sensitivity.44 Thus, our study provides a
mechanistic link (reduction in mitochondrial catabolism of BCAAs)
for the association between circulating BCAA and the risk
of T2DM.
For reasons that are incompletely understood, downregulation

of mitochondrial pathways and upregulation of inflammatory
pathways in SAT often coexist.10,11 In the present study, we noted
the co-occurrence of these phenomena, but only in the higher
clusters. Because mitochondrial ‘dysfunction’ only appeared in
Clusters 2 and 3, and inflammation only in Cluster 3, these clusters
possibly represent the metabolically more disadvantaged obesity.
The order of causation remains unknown: it is possible that the
mitochondria fail first as a reaction to overload of incoming
energy (Cluster 2 and 3), and because the adipocytes are no
longer viable, in a later stage (Cluster 3), inflammatory cells clear
the dying adipocytes. Alternatively, inflammation in AT may
hamper mitochondrial function.45–48

The inflammatory pathways enriched in Cluster 3 of the study
data set were mainly involved in B and T-helper cell activation,
indicating that infiltration of these cell types in the SAT is
increased in the heavy co-twins of Cluster 3 but not in the other
clusters. Why the inflammatory response seen in the present study
is mainly of lymphocyte origin remains an open question. It is

Figure 4. Pathways of Clusters 1–3 compared for selected functions.
Differentially expressed genes for each cluster (FDRo0.05, n= 274
for Cluster 1, n= 728 for Cluster 2, n= 828 for Cluster 3) were entered
into IPA to compare the selected pathways. The y axis displays the
− log of P-value which is calculated by Fisher's exact right-tailed test.
A-log(P-value) of 1.3 is indicative of a P-value of 0.05.
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possible that factors produced and secreted by adipocytes and/or
macrophages enter the circulation and activate lymphocytes.49

Alternatively, lymphocytes may precede macrophage infiltration
in obese AT presenting an early inflammatory stage that may
itself modify the number and the activation state of AT
macrophages.50–53 It is also possible that the true inflammatory
response of AT involves a complex mixture of cell types and
cellular events, as has been seen in other recent obesity studies.54

Activation of the inflammasome pathway in Cluster 3 heavy co-
twins in our study also points to a general inflammatory activation.
To see these molecular differences from a clinical perspective,

we then analysed the clinical differences between twin pairs. The
results (Supplementary Table 4) showed that Cluster 3 differed
from Cluster 2 and 1 for fasting insulin levels and adipocyte size,
suggesting that the heavy co-twins in Cluster 3 had a more
marked insulin resistance along with larger adipocytes compared
to their co-twins than the heavy co-twins in the other two clusters.
The coexistence of mitochondrial pathway downregulation, large
adipocyte size, inflammatory pathway upregulation in SAT and
higher circulating levels of insulin in the heavy twins in Cluster 3
suggests that these phenomena may be biologically connected.
Interestingly, large adipocytes have also previously been sus-
pected to be linked to mitochondrial downregulation21 and
inflammation in AT,55 and mitochondrial dysfunction and low-
grade inflammation co-occur in insulin-resistant subjects’ AT.56

However, the mechanisms underpinning these connections
require further studies.
The MZ co-twin study represents perhaps the best controlled

study design available in humans because of the complete or
close match for genes, age, gender, and intrauterine and
childhood environment. As the genetic background is identical
in each pair, acquired factors must account for the BMI
discordance. With only six twin pairs discordant for smoking
(both leaner and heavier co-twins being smokers), we cannot
draw any conclusions about the effects of smoking on obesity.
Alternatively, having leaner co-twins with higher Baecke sports
index, hints at the possible positive effects of exercise. Food
diaries, subject to significant underreporting especially by over-
weight people, did not reveal any differences between the co-
twins.57

While comparing such matched groups of lean and heavy
individuals has multiple advantages, there are also limitations.
Despite extensive screening of nationwide cohorts, we only
identified 26 BMI-discordant young adult twin pairs. Also, the
independent contributions of the different SAT cells (stromavas-
cular cells and adipocytes) to the results cannot be determined. In
addition, measuring the transcripts levels does not necessarily
translate to levels of functional proteins. This cross-sectional study
also doesn’t allow us to determine cause and effect. The twins
may begin to exhibit different molecular and clinical symptoms
with age or varying stages of obesity. The relatively low number of
subjects per cluster also provided lower statistical power. Because
Cluster 1 had only two twin pairs, no definitive conclusions may be
drawn regarding this cluster. Also in the replication data set, the
number of twin pairs is low. The clusters themselves may
represent different genetic populations, a hypothesis worth
studying in the future in larger data sets.
In conclusion, there are elements of mitochondrial down-

regulation and activation of inflammation and immune response
in the SAT transcriptomics profiles in acquired obesity, and these
changes may be specifically related to a certain subgroup or sub-
groups of obese persons. Our results highlight that not all
obesities are the same. Accordingly, identifying obesity sub-types
and profiling them using clinical traits and gene expression
may facilitate improved diagnostics and personalised obesity
treatment.
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