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Body size phenotypes comprehensively assess cardiometabolic
risk and refine the association between obesity and gut
microbiota
J de la Cuesta-Zuluaga1,4, V Corrales-Agudelo1, JA Carmona2, JM Abad3 and JS Escobar1

OBJECTIVE: The gut microbiota associates with obesity and related disorders, but recent meta-analyses have found that this
association is, at best, of small effect. We argue that such analyses are flawed by the use of body mass index (BMI) as sole proxy for
disease, and explore a classification method that distinguishes the cardiometabolic health status of individuals to look for more
comprehensive associations between gut microbes and health.
DESIGN: We analyzed a 441 community-dwelling cohort on which we obtained demographic and health information,
anthropometry and blood biochemistry data that served to categorize participants according to BMI, cardiometabolic health status
and body size phenotypes. In addition, the participants donated fecal samples from which we performed 16S rRNA gene
sequencing to analyze the gut microbiota.
RESULTS: We observed that health-related variables deteriorate with increased BMI, and that there are further discrepancies within
a given BMI category when distinguishing cardiometabolically healthy and unhealthy individuals. Regarding the gut microbiota,
both obesity and cardiovascular disease associate with reductions in α-diversity; having lean, healthy individuals the most diverse
microbiotas. Moreover, the association between the gut microbiota and health stems from particular consortia of microbes; the
prevalence of consortia involving pathobionts and Lachnospiraceae are increased in obese and cardiometabolically abnormal
subjects, whereas consortia including Akkermansia muciniphila and Methanobrevibacter, Oscillospira and Dialister have higher
prevalence in cardiometabolically healthy and normoweight participants.
CONCLUSIONS: The incorporation of cardiometabolic data allows a refined identification of dissimilarities in the gut microbiota;
within a given BMI category, marker taxa associated with obesity and cardiometabolic disease are exacerbated in individuals with
abnormal health status. Our results highlight the importance of the detailed assessment and classification of individuals that should
be carried out prior to the evaluation of obesity treatments targeting the gut microbiota.
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INTRODUCTION
Obesity and its associated diseases, such as type 2 diabetes and
cardiovascular disease, are some of the most prevalent chronic
diseases worldwide, accounting for 19.3 million deaths every
year.1 While obesity research has focused primarily on nutritional,
behavioral and genetic factors,2,3 an additional element, which
affects both food intake and metabolism, has gained notoriety:
the gut microbiota, that is, the set of microorganisms that colonize
the gastrointestinal tract.4

The association between the gut microbiota and obesity has
been most studied,5 although it also exists with diabetes and
cardiovascular disease.6,7 Regarding obesity, early research
showed that the gut microbiota of obese mice is enriched in
Firmicutes and reduced in Bacteroidetes relative to lean animals.8

However, in humans this pattern has been inconsistent: some
studies show similar findings,9 others reveal no association10 or
contradict mouse studies.11 With the increase of available data,
several meta-analyses have revisited the association between
obesity and gut microbes, including analysis of α-diversity (that is,
intra-subject diversity), of the abundance of Firmicutes and

Bacteroidetes, and of the ratio of these abundances. In general,
they have found either significant associations with small effect or
no association.12–14

There are, however, two caveats with these meta-analyses. First,
they have focused on finding differences in broad taxonomic
groups (for example, Firmicutes, Bacteroidetes); while discrepancies
may exist at such level, their biological and clinical relevance is
hard to interpret because the vast diversity of these groups.
Rather, alterations in the microbiota associated with changes in
the nutritional status are observed on particular microorganisms
from lower taxonomic ranks (for example, genus, species). For
instance, Akkermansia muciniphila15 and Christensenella16 have
received attention in recent years because of their association
with reduced body mass index (BMI). Moreover, the fact that
classification models trained to distinguish lean and obese
individuals based on the abundance of the whole microbial
community tend to perform poorly,14 while the use of selected
bacterial groups increases accuracy,17 further strengthens the idea
that few microorganisms drive the disease-associated changes in
the microbiota.
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Second, these studies used BMI as their sole explanatory
variable to assess obesity. BMI is an easy-to-measure, convenient
and noninvasive tool widely used in epidemiological and clinical
contexts.18 Nevertheless, it fails to differentiate physiological,
metabolic or health status by itself, as it aggregates individuals
based only on their height and weight.19 Recent studies have
addressed this issue by further discriminating subjects according
to their cardiometabolic health status (CHS), generating a
classification that takes into account the heterogeneity in the
obesity-associated disease risk. Thus, an individual is categorized
as cardiometabolically healthy or abnormal according to a series
of clinical variables, in addition to being classified within a given
BMI category,20,21 obtaining six body size phenotypes (BSP;
Figure 1).
Classification methods that result in a more precise stratification

of the surveyed population are most interesting in the study of
microbiome-associated conditions. In the particular cases of
obesity and related diseases, they may allow to better detect
the signal among the noise introduced by the sole use of BMI and
to disentangle the patterns associated with metabolic health.
Here, we analyze data from a community-dwelling cohort to
evaluate two hypotheses. (i) The incorporation of cardiometabolic
data to subdivide three categories of BMI allows a better
identification of dissimilarities in the gut microbiota. (ii) Within a
given BMI category, marker taxa associated with obesity and
cardiometabolic disease are more abundant in cardiometabolically
abnormal than healthy individuals; marker taxa are groups of
microbes that can be quantified to inform about a clinical
condition.

MATERIALS AND METHODS
Study population
Sample size was calculated following a previous study performed by the
same team.22 Accordingly, 28 subjects per BMI category were necessary to
observe significant differences in the gut microbiota at the phylum level

between lean and obese participants. Since the study considered three
BMI categories and was aimed to be replicated in five cities, the required
sample size was 420 subjects. We enrolled 441 adults in July–November
2014, with BMI⩾ 18.5 kg m− 2, living in five Colombian cities. We excluded
pregnant women, individuals who consumed antibiotics 3 months prior to
enrollment, and individuals diagnosed with the following diseases:
neurodegenerative disease; current or recent cancer (⩽1 year); and
gastrointestinal diseases (Crohn’s disease, ulcerative colitis, short bowel
syndrome, diverticulosis or celiac disease). Participants were enrolled in
similar proportions by BMI (lean, overweight, obese), city, sex and age
range (18–40 and 41–62 years). Written informed consent was obtained
from all of them before beginning the study. The Bioethics Committee of
SIU—University of Antioquia (Medellin, Colombia) approved the proce-
dures described here.

Anthropometric evaluation and blood pressure
We measured weight, height, waist circumference and four skin folds
(biceps, triceps, subscapular and ileocrestal). BMI was calculated as weight
(kg)/height squared (m2); participants were classified as normoweight
(18.5⩽ BMIo25.0 kg m− 2), overweight (25.0⩽ BMIo30.0 kg/m2) or obese
(BMI⩾ 30.0 kg/m2). Skinfolds served to calculate the fat percentage.23

Systolic and diastolic blood pressures were measured with electronic
tensiometers. Each measure was evaluated twice and the average of the
two measures was reported.

Caloric intake, physical activity, smoking and medicament use
These variables were self-reported using specific questionnaires. In the
case of the caloric intake, we carried out 24-hour dietary recall interviews
to quantify the calories in the habitual diet of participants using EVINDI 4.0
(ref.

24

) and PC-SIDE (http://www.side.stat.iastate.edu/pc-side.php). Physical
activity was measured with the international physical activity questionnaire
(IPAQ-S).25

Blood biochemical parameters
Total cholesterol, HDL, LDL, VLDL, triglycerides, glucose, insulin, glycated
hemoglobin, adiponectin and high sensitive C reactive protein (hs-CRP)
were measured in fasting peripheral venous blood using standard
techniques employed by a clinical laboratory (Dinámica IPS). Blood insulin
served to calculate the insulin resistance index using the homeostasis
model assessment (HOMA-IR).26

Body size phenotypes
To categorize participants according to their body size phenotypes, we
used the definition proposed by Wildman et al.,20 where BMI categories are
subdivided by the cardiometabolic health status of individuals using the
strict criteria implemented by Tomiyama et al.21 That is, individuals are
considered metabolically abnormal when they have ⩾ 2 of the following
conditions: systolic/diastolic blood pressure ⩾ 130/85 mm Hg or consump-
tion of antihypertensive medication; fasting triglycerides ⩾ 150 mg dl− 1;
HDL o40 mg dl− 1 (men), o50 mg dl− 1 (women) or consumption of
lipid-lowering medication; fasting glucose ⩾ 100 mg dl− 1 or consumption
of antidiabetic medication; HOMA-IR 43, and hs-CRP 43 mg l− 1. We
selected HOMA-IR and hs-CRP cutoffs that better reflect the biochemical
characteristics of the studied population.27

Gut microbiota characterization
A detailed description of laboratory and bioinformatics procedures can be
found elsewhere.7 Briefly, each participant collected a fecal sample from
which the total microbial DNA was extracted using the QIAamp DNA Stool
Mini Kit. The V4 region of the 16 S rRNA gene was amplified with primers
F515 and R806, and sequenced with the Illumina MiSeq platform.28 Raw
reads were deposited at the SRA-NCBI under BioProject PRJNA417579. We
processed amplicons using Mothur v.1.36 following its standard operating
procedure as available on November 2015. Operational taxonomic units
(OTUs) delimited at 97% identity were generated and classified using
Greengenes 13_8_99. After bioinformatics curation, the number of
sequences per individual ranged from 3,667 to 102,700, with a median
of 28,561. Analyses that required absolute OTU frequencies were
performed on sequence counts rarefied to 3,667 sequences per sample,
otherwise, the relative OTU abundance was calculated for each sample.

Figure 1. Schematic view of the classification into body size
phenotypes. BSP are obtained by subdividing each BMI category
according to the cardiometabolic health status (CHS). CHS is
obtained by considering abnormalities in blood pressure, HDL
cholesterol, triglycerides, fasting glucose, insulin resistance and high
sensitive C-reactive protein levels.
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To detect changes in the composition of the gut microbiota at fine scale,
we first defined co-abundance groups of microbes (CAGs), that is, OTUs
that are found more frequently together, hence exhibit positive
abundance correlations, and that reflect the underlying microbial
structure.29 CAGs were defined by calculating the Spearman’s correlation
coefficients between all OTUs that had median abundance ⩾ 0.01% across
all samples and by applying the hierarchical clustering with Ward’s linkage.
CAGs were validated by randomly splitting the OTU table and computing
two separate correlation matrices; the correlation between these two
matrices was tested with the Mantel test. In addition, we confirmed
correlations using SparCC,30 an alternative method for computing
correlations in compositional data. Note that CAGs are not expected to
gather microbes by their taxonomy or phylogenetic relationships (this can
occur but is not a direct consequence of the clustering). OTUs reunite
within a CAG because the presence of OTU W is positively correlated with
the presence of OTU Z (that is, they co-abound).

Statistical analyses
Mean and s.d. of health-related variables were obtained in the complete
dataset (441 individuals). We also obtained these values in the subset of
participants that did not report smoking or were under no pharmacolo-
gical treatment (to the exception of over-the-counter vitamin and mineral
supplements, phytotherapeutics and contraceptives) as a way to test the
sensitivity of results to cigarette and medicament consumption. This
subset was composed of 50% of the original participants (220 individuals);
the obese group was the one where more participants were removed
(61.4%) followed by overweight (49.1%) and normoweight (40.6%)
(Supplementary Table S1).
Linear models were fitted in the complete dataset for the collection of

variables that were not used in the BSP definition (namely, waist
circumference, body fat, LDL, VLDL, insulin, and adiponectin; non-
normally distributed variables were transformed with natural logarithm
or arcsine square-root). In this way, we estimated the goodness of fit of

Table 1. General, anthropometric and health-related characteristics of the participants by body size phenotype

Normoweight Overweight Obese

Healthy Abnormal Healthy Abnormal Healthy Abnormal

n (% within BMI categories) 91 (66%) 47 (34%) 60 (35%) 111 (65%) 21 (16%) 111 (84%)
Age (years) 36.8± 10.6 43.3± 11.8 38.4± 10.8 41.5± 10.9 43.1± 8.8 42.7± 11.1

Sex
Male (%) 45.1 46.8 43.3 56.8 28.6 48.6
Female (%) 54.9 53.2 56.7 43.2 71.4 51.4

Anthropometric measures
BMI (kg m− 2) 22.5± 1.6 23± 1.6 27.2± 1.3 27.6± 1.4 33.5± 2.6 34.1± 3.6
Body fat (%) 32.4± 5.3 35.2± 3.8 36.7± 4.3 37± 4.5 40.4± 3.9 41.8± 3.5

Waist circumference (cm) 78.4± 6.2 83.6± 8.4 89.5± 6.9 93.3± 6.5 103.2± 9.5 107.6± 10.2

Lipid profile
Total cholesterol (mg dl− 1) 177.9± 35.8 191.4± 43.5 185.6± 32.1 190.1± 34.7 186.3± 17 185.9± 34.2
HDL (mg dl− 1) 54.5± 15.1 44.9± 12.5 51± 13.3 39.7± 9.6 53.3± 10.8 41.6± 11.8
LDL (mg dl− 1) 108.4± 32.3 115.8± 30.3 117.7± 28.1 120.7± 32.6 112.6± 17.7 113.6± 29.1
VLDL (mg dl− 1) 19.8± 10.4 50.3± 45.0 21.9± 9.8 40.0± 18.4 23.3± 9.7 38.8± 23.2
Triglycerides (mg dl− 1) 87.6± 33.7 178.7± 164 100.6± 41.6 171.3± 88 105.6± 47.7 176.7± 107.7
Adiponectin (μg ml− 1) 8.4± 4.1 7.4± 5 7.3± 4.1 5.6± 3.3 9.1± 6.2 5.7± 2.8

Glucose metabolism
Glucose (mmol l− 1) 82.3± 6.3 91.9± 32.3 84.2± 5.5 89.6± 14.1 83.5± 6.4 97.9± 31.3
Insulin (μU ml− 1) 7.5± 2.8 10.1± 4.6 9.8± 3.1 14.2± 6.5 9.6± 2.4 21± 11.2
Glycosylated hemoglobin (%) 5.4± 0.3 5.5± 0.7 5.3± 0.3 5.6± 0.7 5.4± 0.4 5.8± 0.8
HOMA IR 2.5± 1.7 2.7± 2.2 3.3± 6 3.6± 2.9 3.3± 2.1 3.2± 2.3

Blood pressure
Systolic blood pressure (mm Hg) 113.3± 15.2 121.6± 20.5 119.8± 16.3 129.8± 17.8 125.8± 19.8 131.3± 16.9
Diastolic blood pressure (mm Hg) 72.4± 10.3 78.3± 11.7 77± 11.6 83.7± 11.7 83.9± 11.9 85± 11.3

Inflammation
hs-CRP (mg l− 1) 1.4± 1.2 2.2± 1.8 1.9± 1.5 3.9± 6 3± 4.1 5± 5.7

Other variables
Physical activity (minMET per week) 4888.3± 4163 4184± 5200.8 6065.6± 5958.7 4828± 4624.7 6824.1± 5482.3 5102.7± 7024.7
Calorie intake (kCal) 1985.7± 349.5 1996.9± 493 1943± 448.8 1950.9± 416.2 1727.1± 369.5 1868.5± 508.4

Medicament use
Yes (%) 23.1 55.3 26.7 45.0 28.6 59.5
No (%) 76.9 44.7 73.3 55.0 71.4 40.5

Smoker
Yes (%) 6.6 14.9 16.7 15.3 0 16.2
No (%) 93.4 85.1 83.3 84.7 100 83.8

Abbreviations: BMI, body mass index; WC, waist circumference; HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, very low density lipoprotein;
hs-CRP: high-sensitivity C-reactive protein; HOMA-IR, Homeostatic model assessment—insulin resistance. Data presented as mean± s.d
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models considering BMI, CHS or BSP by means of the Akaike’s information
criterion (AIC). We controlled for potential confounding (age, sex, city of
origin, calorie intake and physical activity) in all models.
For the gut microbiota, we computed α-diversity using the Shannon

index and species richness, and tested for differences among BMI, CHS and
BSP using ANOVA. In addition, linear models using BMI as a continuous
variable and α-diversity were constructed to test the interaction between
BMI and cardiometabolic health status. Where necessary, data were log-
transformed. Next, we assessed differences in β-diversity (that is, inter-
subject diversity) using the adonis function of the permutational
multivariate analysis of variance (PERMANOVA) on phylogeny-based
weighted and unweighted UniFrac matrices, as implemented in the
GUniFrac package of R.31 Also, we tested for differences in the relative
abundances of all OTUs classified as Bacteroidetes and Firmicutes, the ratio
of the relative abundances of Bacteroidetes and Firmicutes (B/F ratio), and
the abundance of CAGs among categories of the evaluated groupings
using the Kruskal-Wallis test.
Finally, we used linear discriminant analysis (LDA) effect size (LEfSe)32 to

agnostically identify microbial taxa that have a differential abundance
between normoweight and obese, between cardiometabolically healthy
and abnormal, and between normoweight-healthy and obese-abnormal
subjects. We retained OTUs that showed strong associations in the LDA
(OTUs with [log10] LDA scores ⩾ 3). While this may result in few retained
OTUs, these are more likely to be biologically relevant. In addition, a
quasipoisson generalized linear model on rarefied sequence counts33 was
fitted to test the association of individual OTUs with a median abundance
⩾ 0.001% and log(BMI) as a continuous variable. P-values were corrected
for multiple comparisons.

Code availability
The employed R code is available at https://github.com/jsescobar/bsp.

RESULTS
Disease risk is better assessed by BSP compared to BMI or CHS
In order to capture the heterogeneity of cardiometabolic disease
risk, we first classified participants according to BMI into normo-
weight, overweight and obese. These categories were then
subdivided according to the cardiometabolic health status as
either healthy or abnormal.20,21 Importantly, AIC from linear
models indicate that disease risk is better assessed by BSP than
BMI or CHS (Supplementary Table S2). The biochemical and
anthropometric characteristics of each resulting group are
summarized in Table 1. Overall, we observed that the measured
variables deteriorate with increased BMI, and that there are further
discrepancies within a given BMI category when distinguishing

cardiometabolically healthy and abnormal individuals. Cardiome-
tabolic abnormalities gathered groups with older age, at least
among normoweight and overweight. Noteworthy, women made
most of the obese healthy individuals; in general, males tended to
have more abnormalities than females (Figure 2). Self-reported
food intake and physical activity are likely biased, as evinced by
the decrease in the mean caloric intake and the increase in the
number of metabolic equivalents with BMI. Still, cardiometaboli-
cally abnormal subjects displayed lower physical activity, higher
caloric intake, and increased cigarette and medicament use
compared with healthy participants. Importantly, BSP form a
ladder-like pattern, on which each step is associated with a
different level of disease risk. This pattern is robust and is not
biased by cigarette and medicament consumption, as demon-
strated by the analysis of the subset of non-smoker and non-
medicated participants (Supplementary Table S3).

The gut microbiota associates with disease risk
To determine whether the used categorizations improve the
assessment of differences in the gut microbiota, we contrasted
several ecological indices. We first evaluated differences in α-
diversity and found that obese individuals and those with
abnormal cardiometabolic health have less diverse microbiotas,
whereas normoweight, healthy individuals have the most diverse
ones (Supplementary Table S4). We detected significant differ-
ences in the observed species richness in all evaluated groupings
(ANOVA for BMI: F2,438 = 6.51, P= 0.003; CHS: F1,439 = 10.69,
P= 0.002; BSP: F5,435 = 3.84, P= 0.004) and in the Shannon index
between BMI categories (ANOVA: F2,438 = 3.28, P= 0.04); no
differences in the latter index were found for CHS or BSP.
Furthermore, a significant CHS× BMI interaction was found when
a linear model using BMI as a continuous variable and species
richness was constructed (ANOVA: F2,438 = 6.16, P= 0.002;
Figures 3a and b). Differences in the Shannon index were not
significant, but showed the same trend (Figures 3c and d). Most
interestingly, the observed pattern is reminiscent of that obtained
with the anthropometric and biochemical variables: changes in α-
diversity are mainly explained by differences in BMI categories;
nevertheless, it is possible to further differentiate individuals
within a given category by their cardiometabolic health status,
being the loss in α-diversity exacerbated in cardiometabolically
abnormal individuals (Supplementary Table S4).
Next, we evaluated the proportion of the variance in the gut

microbiota composition explained by the body size phenotypes.

Figure 2. Frequency of cardiometabolic abnormalities. (a) Absolute frequency of observed abnormalities by sex (males= 212, females= 229).
(b) Relative abundance of each cardiometabolic abnormality in the complete dataset (n= 441) and by each sex.
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For this, we assessed differences in β-diversity using PERMANOVA
on weighted and unweighted UniFrac distances. For both metrics,
body size phenotypes better explained shifts in the gut microbiota
than either BMI or cardiometabolic health status alone. The
proportion of the variance explained by BSP (weighted: R2 = 0.017,
P= 0.015; unweighted: R2 = 0.014, P= 0.007) was almost twice that
of BMI (weighted: R2 = 0.010, P= 0.001; unweighted: R2 = 0.007,
P= 0.002) and more than twice that of CHS (weighted: R2 = 0.007,
P= 0.002; unweighted: R2 = 0.004, P= 0.003). Sensitivity analyses
on α and β diversities using the subset of participants that did not
smoke or consume medicaments showed similar results as the
complete dataset (Supplementary Figure S1; Supplementary
Tables S4 and S5).
Analyses of β diversity indicate that the gut microbiota of

individuals categorized by different methods is, as a whole,
somewhat different. However, since changes at this level are small
(explaining ~ 1.5% of the total variance), we next assessed
differences associated with obesity and cardiovascular risk at finer
scales. We first tested whether differences in Firmicutes and
Bacteroidetes were responsible of the above differences, and
found small yet significant differences in the abundance of
Bacteroidetes and the B/F ratio by BMI (P= 0.04 in both cases;
Supplementary Table S4). We found no significant differences in
phylum-level microbial markers between cardiometabolic status
or body size phenotypes.
Next, we looked into changes in specific networks of co-

abundant microbes.29 The gut microbiota of our cohort forms the
following five CAGs (Supplementary Figure S2). (i) The Pathobiont-
CAG aggregated OTUs of Escherichia coli, Enterobacter hormaechei

and several genera of opportunistic bacteria that contribute to
various diseases under specific environmental conditions. (ii) The
Lachnospiraceae-CAG consisted of OTUs from the Lachnospira-
ceae, Ruminococcaceae and Clostridiaceae families, including
Faecalibacterium prausnitzii, as well as Actinobacteria such as
Bifidobacterium adolescentis, Collinsella aerofaciens and Actino-
myces sp. (iii) The Akkermansia-Bacteroidales-CAG comprised
Akkermansia muciniphila, OTUs of the Bacteroidales and Clostri-
diales orders, and two Deltaproteobacteria (Bilophila and Desulfovi-
brio). (iv) The Prevotella-CAG included OTUs of Prevotella,
Coriobacteriaceae and Erysipelotrichaceae. (v) Finally, the
Ruminococcaceae-CAG gathered the archaeon Methanobrevibac-
ter, many microbes of the Ruminococcaceae family, including the
genus Oscillospira, and other Clostridiales such as Dialister. The
complete list of OTUs gathering within each CAG is given as
Supplementary Table S6.
Interestingly, the median abundance of the Lachnospiraceae-

CAG and Pathobiont-CAG significantly increased with BMI and was
higher in abnormal than healthy individuals according to CHS,
although significance was only reached for the Pathobiont-CAG in
the latter classification. In contrast, the abundance of the
Akkermansia-Bacteroidales-CAG and Ruminococcaceae-CAG sig-
nificantly decreased with BMI and was lower in healthy
than abnormal individuals, though the difference was only
significant in the Ruminococcaceae-CAG. The prevalence of
the Prevotella-CAG tended to increase with BMI and to be higher
in cardiometabolically abnormal than healthy individuals, but
with no statistical significance (Figures 4a and b). Similar
trends were seen when classifying individuals by body size

Figure 3. Association between BMI and α-diversity metrics with and without adjusting for CHS. (a, b) Species richness, (b, c) Shannon index.
Dashed vertical lines represent BMI class cutoffs. Regression lines are shown.
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phenotypes (Figure 4c). While statistical significance was
not reached in all cases, it is clear that the median abundance
of CAGs follows a stepped pattern, whose direction depends
on the association of a given CAG with variables informing
about obesity and cardiovascular health. Similar results were
obtained in the analysis of the relative abundance of the most

abundant OTUs of each CAG instead of the whole CAG
(Supplementary Table S7).
Finally, we found a strong correspondence between the analysis

of individual OTUs (LEfSe and GLM) and results by CAGs
(Supplementary Table S8). OTUs classified as Methanobrevibacter,
Oscillospira, Dialister, Clostridium hathewayi, Propionispora hippei,

Figure 4. Boxplot of relative abundance of each co-abundance group (CAG) using the three evaluated categorizations. (a) BMI, (b)
cardiometabolic health status, (c) body size phenotypes. P-values from Kruskal–Wallis tests.
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02d06 (Clostridiaceae) and unclassified Christensenellaceae, among
others, most of which belong to the Ruminococcaceae-CAG and
Akkermansia-Bacteroidales-CAG, are associated with beneficial
health states. On the other hand, detrimental categories are
associated with OTUs clustered into the Pathobiont-CAG and
Lachnospiraceae-CAG, such as E. coli, Streptococcus sp., Blautia sp.,
Gemmiger formicilis and SMB53 (Clostridiaceae).

DISCUSSION
BMI is the tool par excellence to diagnose obesity.1 There is a
strong association between high BMI and cardiovascular disease,
hypertension, glucose intolerance, type 2 diabetes and
dyslipidemia.34 However, it has been demonstrated that BMI has
a low discriminatory power to distinguish body fat and lean
mass.35 While flawed, its ease of use and pervasiveness make it
reasonable to expect BMI to still be used in the years to come.36 It
is possible, nevertheless, to compensate some of the problems
associated with BMI by incorporating measurements that provide
complementary information,20 such as the approach herein
implemented.
The BSP classification considers the non-uniformity of disease

risk associated to BMI categories by further discriminating
individuals by cardiometabolic health,21 and permits the indivi-
dual assessment of groups of particular interest, such as the
cardiometabolically healthy–obese phenotype37 or the establish-
ment of reference values by considering ‘truly healthy’ individuals,
such as the cardiometabolically healthy–normoweight. The
method is not without flaws, however. Body size phenotypes
have not been standardized; clinical baseline values might vary
among populations; the clinical cutoffs are to some extent
arbitrary, making borderline values difficult to treat; and BSP
prevalence depends upon the number of alterations required to
classify individuals as cardiometabolically healthy or abnormal.21

In addition, this method requires measurement of additional
clinical variables. Despite these limitations, we underscore the
heterogeneity of cardiovascular risk within the different categories
of BMI, demonstrating that BSP better assess disease risk
compared with BMI or CHS, as demonstrated by AIC-based model
selection, and highlight hidden groups of individuals. Approxi-
mately 34% of normoweight individuals were cardiometabolically
abnormal, while 35% and 16% of overweight and obese
participants were cardiometabolically healthy, respectively. Hence,
the BSP categorization has the advantage of providing informa-
tion about both the health and nutritional status of individuals,
calling for more sophisticated methods for assessing cardiometa-
bolic disease risk, as this is clearly not appropriately gauged by
BMI alone.
We observed a tiered pattern in the measured variables, with

the tendency to reach detrimental values with increased BMI and,
within a BMI category, with abnormal cardiometabolic health. Our
sensitivity analysis suggests that this pattern is not much affect by
the cigarette and medicament consumption. Interestingly, differ-
ences within a given BMI category were also evidenced in the
caloric intake and physical activity indicators. Although these two
self-reported variables suffer of social approval bias,38 which we
corroborated with higher physical activity and lower caloric intake
in obese compared to normoweight subjects, it is nonetheless
noteworthy that, when considering each BMI category separately,
we consistently observed values that better reflected the status of
the individuals in the context of energy balance.

Microbiota and health
Body size phenotypes allow detailed examinations of the gut
microbiota in the studied cohort. The gut microbiota has been
associated with obesity and cardiovascular health,39 albeit with
small effect sizes.14 While our results show that the proportion of

the variance in the gut microbiota explained by any of the
explored categorizations is low, the use of BSP allows better
distinguishing dissimilarities in the microbial community, confirm-
ing our first hypothesis. The fact that differences in the overall
community are small reinforces the idea that changes in the
abundance of a reduced number of taxa highly associated with
different clinical markers are the drivers of this divergence.
We tested whether differences in the gut microbiota were due

to shifts in well-known taxonomic groups; while we found
changes in the abundance of Bacteroidetes and in the Bacter-
oidetes/Firmicutes ratio associated with BMI, the magnitude of
these differences is small. In contrast, our more comprehensive
approach using networks of microbes gives greater insight into
the biological association between disease risk and gut micro-
organisms. In particular, higher risk was associated with higher
prevalence of the Pathobiont-CAG whereas lower risk was
associated with higher prevalence of the Akkermansia–Bacteroi-
dales–CAG and Ruminococcaceae–CAG. The Pathobiont-CAG and
Lachnospiraceae-CAG were associated with cardiometabolic dis-
ease and obesity; members of said consortia have been previously
shown to be linked with these conditions. For instance,
Enterobacter and Escherichia, both Gram-negative opportunistic
pathogens members of the Pathobiont-CAG, may be key in
obesity as lipopolysaccharide induces inflammation and endotox-
emia, resulting in obesity and insulin resistance.40 Likewise, some
members of Lachnospiraceae have been shown to be associated
with diabetes and obesity.41 On the other hand, OTUs composing
the Akkermansia–Bacteroidales–CAG and Ruminococcaceae–CAG
have been linked to improved health outcomes. Akkermansia
muciniphila has become one of the main targets of research and
intervention in the human gut,42 as it has been consistently linked
with metabolic health and leanness.43 Similarly, other members of
this CAG, such as Alistipes and Bacteroides from lean mice, quickly
invade the microbiota of co-housed obese mice;44 members of the
Ruminococcaceae-CAG, such as Methanobrevibacter, Oscillospira
and Dialister are associated with lower BMI45–47 and weight
reduction.48 Analyses by OTUs showed strong agreement with
those obtained with CAGs, corroborating that CAGs are valuable
tools that thoroughly capture the complex and multivariate nature
of the gut microbiota.29

A key parameter linking health and the gut microbiota is α-
diversity. A healthy microbiota is thought to be characterized by
high microbial and gene diversity, presumed to reflect ecosystem
stability and resilience.17,49 In agreement with our second
hypothesis, we found a significant reduction in species richness
with BMI, with a similar tendency for the Shannon index, and
diminished values of these indices in subjects with abnormal CHS.
These results are consistent with previous studies showing that
individuals with higher metabolic risk have less diverse
microbiotas.17,50 Differences in α-diversity within a given BMI
category (or any other targeted condition for that matter) should
be taken into account, as the success of gut microbiota
interventions, particularly dietary interventions, are dependent
on the baseline α-diversity.51,52 In mice, it has been shown that a
diet low in microbiota-accessible carbohydrates induces the
depletion of multiple microbes, resulting in a progressive loss of
diversity over generations. Furthermore, the sole reintroduction of
these carbohydrates into the diet does not restore the gut
microbiota to its original state.53 Similarly, diet-induced weight
loss and stabilization interventions in humans can improve health-
associated parameters but their efficiency is diminished in
individuals with lower gene richness.50

Interestingly, the values observed when comparing the
α-diversity between body size phenotypes echoes the ladder-
like pattern formed by the anthropometric and biochemical
variables. This was also observed in the abundance of several of
the microbial consortia evaluated here. Of the four CAGs that
significantly differ between BMI categories, two also differ by CHS.
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This may indicate that, while the association between the
Akkermansia–Bacteroidales–CAG and Lachnospiraceae–CAG with
markers of cardiovascular disease is driven by their association
with the nutritional status, the Pathobiont–CAG and Rumino-
coccaceae–CAG are associated with cardiovascular health
beyond BMI.
In synthesis, it is clear that catchall methods undertaken to

tackle the increasing incidence of obesity and associated diseases
have been largely ineffective. Our results highlight the importance
of refined classification methods that appropriately gauge
individual disease risk. The use of body size phenotypes, or
similar approaches that disentangle obesity and cardiometabolic
disease, seems of particular importance in the context of gut
microbiota-based personalized nutrition and medicine.
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