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Fasting substrate oxidation at rest assessed by indirect
calorimetry: is prior dietary macronutrient level and
composition a confounder?
JL Miles-Chan, AG Dulloo and Y Schutz

Indirect calorimetry, the measurement of O2 consumption and CO2 production, constitutes an invaluable tool as the most common
method for analyzing whole-body energy expenditure, and also provides an index of the nature of macronutrient substrate
oxidation—namely, carbohydrate (CHO) versus fat oxidation. The latter constitutes a key etiological factor in obesity as this
condition can only develop when total fat oxidation is chronically lower than total exogenous fat intake. The standardization of
indirect calorimetry measurements is essential for accurately tracking the relative proportion of energy expenditure derived from
CHO and fat oxidation. Here we analyze literature data to show that the average fasting respiratory quotient typically shifts
from approximately 0.80 to 0.90 (indicating a doubling of resting CHO oxidation) in response to a switch in dietary CHO intake
(as % energy) from 30 to 60%. This underscores the importance of taking into account dietary macronutrient composition prior
to indirect calorimetry studies in the interpretation of data on substrate utilization and oxidation.
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INTRODUCTION
The accurate and precise measurement of energy expenditure and
substrate oxidation under resting conditions is at the epicenter of
human metabolic research. Indirect calorimetry (VO2 and VCO2

measurement) has been shown to provide a reliable, noninvasive,
and easy-to-perform measurement of energy expenditure,
while at the same time providing an index of substrate utilization.
However, the latter requires strict control of experimental
conditions in order to obtain interpretable and meaningful
respiration quotient (RQ=VCO2/VO2) values and hence substrate
oxidation rates.
From a historical perspective, the fundamental work demon-

strating the relationship between dietary composition and fasting
RQ was conducted in the second half of the 1980s and early
1990s. For example, Black1, using a room calorimeter, demon-
strated that fasting RQ in well-nourished individuals in weight
equilibrium is essentially identical to the RQ of the diet (called the
Food Quotient (FQ)). This finding of near-equality between RQ
and FQ has facilitated the application of the doubly labeled
water technique for assessing total energy expenditure in free-
living conditions, as this stable isotopic method tracks only CO2

production and hence the RQ cannot be calculated in the absence
of O2 consumption measurement. As a result, the FQ value
(as a proxy of RQ) can be substituted into the calculation of energy
expenditure with an error not exceeding ± 2%.
Recently, the need to standardize dietary intake prior to resting

energy expenditure assessment by indirect calorimetry was
questioned.2 On the basis of a review of six experimental studies
published between 1994 and 2011, the authors have concluded
that ‘strict controls of dietary intake prior to fasting indirect
calorimetry measurements may be an unnecessary burden for
study participants’. Incidentally, this proposition for simplification

adheres well to the general ‘philosophy’ of current human
nutritional research, which is to streamline methodological
procedures as much as possible. Because of the importance of
such a conclusion for human metabolic studies, we present here
an analysis of literature data pertaining to the potential impact of
prior diet composition on fasting RQ at rest.

METHODS
PubMed and Google Scholar searches were conducted in October
2014 using the following Boolean phrase and key words: (indirect
calorimetry) AND (substrate oxidation OR respiratory quotient
OR respiratory exchange ratio) AND (diet OR macronutrient).
Additional filters were used to recognize studies conducted in
humans. Furthermore, the reference lists of the relevant papers
were also examined to identify any further pertinent studies.
The search of the literature revealed 25 experimental studies
presenting data relating dietary composition to post-absorptive
substrate oxidation measured by indirect calorimetry.3–27 Given
the nature of these pertinent studies (that is, different starting
dietary compositions, test diet) and lack of available raw data, a
traditional meta-analysis was not possible.

RESULTS
We found that, among the 25 studies relating dietary composition
to post-absorptive RQ (substrate oxidation), 16 (about two-thirds)
reported statistically significant changes in post-absorptive RQ,
and hence substrate oxidation, with changing dietary composi-
tion. Detailed information about each study is given in the
Supplementary information, along with the statistically relevant
analyses. We have separated the studies into two distinct
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nutritional situations—isocaloric versus hyper-/hypo-caloric feed-
ing— as the metabolic status of the subject influences the RQ.
To obtain a bird’s eye view, graphics of the pooled studies that

fed diets differing in CHO are shown in Figure 1; Figure 1a includes
experimental studies in which the subjects were fed under
eucaloric conditions only. Regardless of statistical significance, a
clear upward trend in the relationship between the CHO content
of the diet (x axis) and post-absorptive RQ (y axis), a proxy of
substrate utilization, can be observed in all but two studies.14,19 In
addition, amplification of the effect of CHO intake on RQ
(respectively CHO oxidation) can be seen in the studies in which
a state of positive energy balance was obtained by acute
overfeeding. The effects of acute supplementation or deficit in
dietary CHO on fasting RQ are shown in Figure 1b.
A closer examination of individual studies (rather than pooled

data for each study), where each participant constituted his/her
own control, is of more interest to track interindividual variability
rather than interstudy variability. This can be also visualized
in Figure 2a: in this study,16 on feeding a baseline mixed diet

(45% CHO) to five lean men, an acute increase in the proportion of
CHO to 72% of energy intake (keeping total energy and protein
intake constant) was seen to lead to a progressive rise in post-
absorptive resting RQ. A new steady state in RQ was reached
within a week or so (data not shown).
Other results obtained in an experimental dietary intervention

study on 11 healthy women of varying BMI12 have also shown that
a change in diet composition (CHO versus fat) progressively
engenders a shift in RQ (hence in substrate oxidation) in order to
match the higher RQ of the diet (that is, the higher FQ). These
results, which are expressed as the relationship between the
percentage of energy derived from CHO and post-absorptive RQ
across two dietary phases (44.5% CHO+40.7% fat versus 54.4%
CHO+30.8% fat), showed the same trend as the data above,
although the slope response was slightly lower than that obtained
in the former (Figure 2b).

DISCUSSION
The numerous factors, both exogenous and endogenous, influen-
cing the RQ are well known and are outlined in Table 1. As far as
the exogenous factors are concerned, the ratio of CHO to fat
intake of the diet is the principal determinant.

Figure 1. (a) Relationship between exogenous carbohydrates (diet-
ary CHO expressed as % of energy intake) and post-absorptive
respiratory quotient (RQ) in 15 experimental studies with a wide
range of CHO intakes: studies under isocaloric conditions. Solid lines
indicate crossover studies (that is, same subjects receiving all dietary
interventions); dotted lines represent non-crossover, parallel studies
(that is, different individuals in each dietary group). Data are
presented as mean± s.e. *Indicates statistically significant difference
between two or more of the experimental diets. The remainder
of isocaloric studies7,11,15,20 could not be included as RQ data
was not presented in the original publication. (b) relationship
between exogenous carbohydrates (dietary CHO expressed as % of
energy intake) and post-absorptive respiratory quotient (RQ) in four
experimental studies with a wide range of CHO intakes: studies
under acute hyper- or hypo-caloric conditions. Data are presented
as mean± s.e. *Indicates statistically significant difference
from isocaloric diet. Studies involving concomitant alterations
in % dietary protein21–23 are not presented, but are summarised in
the Supplementary Information.

Figure 2. (a) Relationship between exogenous carbohydrates
(dietary CHO expressed as % of total energy intake) and post-
absorptive respiratory quotient (RQ) in five men fed two levels of
CHO: inter-individual differences of response under isocaloric
conditions (data from Schutz16). Lower panel (b): Relationship
between exogenous carbohydrates (dietary CHO expressed as % of
total energy intake) and post-absorptive respiratory quotient (RQ) in
11 women: inter-individual differences in isocaloric conditions
(data from McNeill et al.12). The average slope response is indicated
by the bold line. Note that the trend in slope response is very similar
as in Fig 2a. For details regarding inter-individual variability in study
participants, refer to the original article.12
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Overall, in this global analysis, we found a positive relationship
between %CHO in the diet and post-absorptive RQ (and hence
macronutrient oxidation) under both normo- and under/over-
feeding conditions.
In the latter situation, there was an upward shift in the slope of

this relationship depending on excess energy intake over energy
requirement. This steeper slope is explained by the surfeit
absolute CHO intake, increasing glycogen storage, enhancing
insulin secretion and stimulating de novo lipogenesis. Note that
the flexibility of RQ is enormous during extreme CHO overfeeding,
increasing post-absorptive values from 0.77 while on a low CHO
diet/high fat diet (to deplete glycogen stores) to an RQ much
above 1.0 (approximately 1.15), a ‘non-physiological’ value
explained by the process of net de novo lipogenesis.28 Indeed,
the conversion of part of the exogenous CHO into fat (which
generates a theoretical RQ of 2.75) is very powerful for increasing
the overall ‘physiological’ RQ.
Although the majority of literature data demonstrate a clear

upward trend in the relationship between dietary CHO content
and post-absorptive RQ, not all studies reported a significant
relationship between the two. It is possible that several of these
‘no-effect’ studies may be explained as being false negative.
Indeed, failure to find a statistically significant effect of macro-
nutrient intake on RQ may be due to several factors:
a) large inter-individual variability resulting from a parallel study

design, with the control group not comprising the same subjects
as the ‘active’ group10,22; b) an insufficient duration (o30min
continuous measurement) of indirect calorimetry measurement—
that is to say, failure to reach a physiological steady state or a
ventilatory disequilibrium such as an induction of hyperventilation

state14; c) a dietary intervention not being long enough to
stabilize the RQ7,13; d) the magnitude of change (delta) in dietary
macronutrient ratio not large enough for substrate oxidation
to adjust sufficiently to attain a steady state and/or to pick up
the small anticipated effect on substrate oxidation.7,10,15,21 Finally,
it is important to note that in two studies that failed to show an
upward trend in the relationship between % dietary CHO and
postprandial RQ, key methodological information was not
provided, such as the duration of resting energy expenditure
measurements and length of fasting.14,19 Furthermore, the
study by Van Herpen et al.19 estimated energy and nutrient
intake retrospectively rather than fully controlling it per se, and
Roust et al.14 utilized a mouthpiece and nose clip rather than a
ventilated hood system, with measurements being taken in the
evening. Caution should be taken when interpreting studies
utilizing a mouthpiece and nose-clip system, as this apparatus has
been shown to elicit hyperventilation29–33 and increased CO2

production34, and hence may elevate RQ. Although Roust et al.14

used a practice session to acclimatize the participant, and those
who were ‘unable to relax during the measurements, as
manifested by unusually high post-absorptive minute ventilation
rates and respiratory quotients’ were excluded, the order of
the diets was fixed and as such a learning effect cannot be
ruled out.

PERSPECTIVES AND CONCLUSIONS
In conclusion, evidence to date indicates that the nature of dietary
macronutrient composition does affect post-absorptive substrate
oxidation in subsequent resting conditions. In contrast, there is no
evidence that slight variations in macronutrient food composition,
prior to measurement by indirect calorimetry, influence the post-
absorptive resting energy expenditure under isocaloric conditions.
Taken together, results pertaining to the magnitude of RQ in the
post-absorptive state at rest may well be providing us with
valuable information concerning a subject’s qualitative dietary
intake and metabolic status, with a high CHO/low fat utilization
(high RQ) suggesting a greater proportion of CHO to fat in the
diet (high FQ). However, one of the major difficulties in RQ
measurement and interpretation is technical: accurately determin-
ing RQ by indirect calorimetry is not an easy task as this quotient is
very sensitive to slight errors in the numerator (VCO2) and in the
denominator (VO2). Even worse, these errors may occur in
opposite directions, further amplifying the error in the resultant
RQ and FQ calculation. As precise RQ measurement is essential to
accurately calculate the rate of substrate oxidation, the proposed
suggestion to abandon the control of food intake prior to indirect
calorimetry measurements (at least the standardization of the last
meal on the previous day) is questionable. This clearly emphasizes
the need for researchers to obtain complete and accurate
information regarding participants’ diets prior to investigations
of whole-body substrate utilization. Alternatively, another
approach (often used) is to feed the patients under supervision
in the laboratory or under metabolic ward conditions 24 h per day.
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