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Genetic control of obesity, glucose homeostasis, dyslipidemia
and fatty liver in a mouse model of diet-induced metabolic
syndrome
DS Sinasac1,5,6, JD Riordan2,5, SH Spiezio1,5, BS Yandell3, CM Croniger4,7 and JH Nadeau1,2,7

BACKGROUND/OBJECTIVES: Both genetic and dietary factors contribute to the metabolic syndrome (MetS) in humans and animal
models. Characterizing their individual roles as well as relationships among these factors is critical for understanding MetS
pathogenesis and developing effective therapies. By studying phenotypic responsiveness to high-risk versus control diet in two
inbred mouse strains and their derivatives, we estimated the relative contributions of diet and genetic background to MetS,
characterized strain-specific combinations of MetS conditions, and tested genetic and phenotypic complexity on a single
substituted chromosome.
METHODS: Ten measures of metabolic health were assessed in susceptible C57BL/6 J and resistant A/J male mice fed either a
control or a high-fat, high-sucrose (HFHS) diet, permitting estimates of the relative influences of strain, diet and strain–diet
interactions for each trait. The same traits were measured in a panel of C57BL/6 J (B6)-ChrA/J chromosome substitution strains (CSSs)
fed the HFHS diet, followed by characterization of interstrain relationships, covariation among metabolic traits and quantitative trait
loci (QTLs) on Chromosome 10.
RESULTS: We identified significant genetic contributions to nine of ten metabolic traits and significant dietary influence on eight.
Significant strain–diet interaction effects were detected for four traits. Although a range of HFHS-induced phenotypes were
observed among the CSSs, significant associations were detected among all traits but one. Strains were grouped into three clusters
based on overall phenotype and specific CSSs were identified with distinct and reproducible trait combinations. Finally, several
Chr10 regions were shown to control the severity of MetS conditions.
CONCLUSIONS: Generally strong genetic and dietary effects validate these CSSs as a multifactorial model of MetS. Although traits
tended to segregate together, considerable phenotypic heterogeneity suggests that underlying genetic factors influence their
co-occurrence and severity. Identification of multiple QTLs within and among strains highlights both the complexity of genetically
regulated, diet-induced MetS and the ability of CSSs to prioritize candidate loci for mechanistic studies.
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INTRODUCTION
The co-occurrence of multiple metabolic risk factors is known as
the metabolic syndrome (MetS), the main characteristics of which
include, but are not limited to, impaired glucose regulation and
insulin resistance, abdominal obesity, dyslipidemia and
hypertension.1–3 Although no universal definition of human MetS
has been established, obesity is generally considered to be a key
component and severities of additional conditions typically
correlate with BMI.4 MetS substantially increases the risk of
developing several pathological conditions, including cardio-
vascular disease, type 2 diabetes, stroke, certain forms of cancer
and non-alcoholic fatty liver disease (NAFLD).2,3 Commonly
referred to as the hepatic manifestation of MetS,5 NAFLD is
characterized by lipid accumulation within hepatocytes and can
progress to more severe conditions including non-alcoholic
steatohepatitis, fibrosis, cirrhosis and liver cancer.6

Both genetic predisposition and environmental factors includ-
ing dietary composition and physical activity contribute to the
development of MetS.2,3 Its familial nature, variable prevalence
among ethnic groups and increased concordance in monozygotic
versus dizygotic twins all indicate a strong genetic component.7,8

More recently, human genome-wide association studies
have identified several sequence variants associated with features
of MetS,9 and animal models have directly demonstrated
functional roles for a multitude of genetic and environmental
factors.10 It is important not only to identify factors that contribute
to MetS but also to understand how their mechanistic effects
are influenced by context. For example, the relative phenotypic
impact of a specific genetic variant generally depends on its
interactions with environmental conditions and the broader
genetic background.11 At present, the largely unknown functional
relationships among various etiological factors underlying MetS
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make it difficult to evaluate their relative importance, and more
practically, to identify molecular targets for preventing, stabilizing
or reversing disease.
Inbred mouse strains provide a powerful resource for studying

complex traits like MetS. By minimizing the confounding effects of
a genetically heterogeneous background, they facilitate functional
investigations of the contributions of specific factors to pheno-
types of interest. With careful study design, it is readily feasible to
discover and characterize genetic, environmental and gene–
environment interaction effects, identify disease genes and infer
systems properties in simple and complex genetic conditions.12–15

Surveys of common inbred strains reveal a broad range of
phenotypic diversity for traits related to diet-induced obesity and
other metabolic conditions,16–18 implying that allelic variation
strongly influences the outcome of dietary perturbations. Quanti-
tative trait locus (QTL) mapping approaches, which identify
associations between complex traits and the inheritance of
specific allelic variants within defined genomic regions, can be
utilized to enhance understanding of these genetic determinants
of disease susceptibility.
Two commonly used inbred mouse strains, C57BL/6J (B6) and

A/J, have contrasting responses to a high-fat, high-sucrose (HFHS)
diet. B6 males develop obesity (predominantly mesenteric fat),
hypertension, hypercholesterolemia, hyperinsulinemia and
hyperglycemia,19,20 demonstrating high susceptibility to diet-
induced MetS. By contrast, A/J males are resistant to these
conditions, showing only modest phenotypic changes in response
to the HFHS diet.19,20 Diet-induced liver phenotypes are also
strikingly different. Whereas B6 males develop NAFLD character-
ized by progression to non-alcoholic steatohepatitis, fibrosis,
cirrhosis and HCC, A/J males are resistant to these conditions.21

Early genetic studies of obesity and diabetes in B6 and A/J mice,
using both traditional backcrosses and a panel of AXB/BXA
recombinant inbred strains, provided preliminary evidence for
causal genetic factors.22,23 Since then, a deeper appreciation for
the complex nature of regulatory mechanisms and interactions
influencing MetS susceptibility has emerged,24,25 indicating that
more rigorous characterization of the model system may yield
further important insights into MetS biology. A powerful approach
to identify genetic loci influencing complex quantitative traits is
the utilization of chromosome substitution strains (CSSs).26 The
B6-ChrA/J CSS panel consists of 22 inbred strains (19 autosomes,
both sex chromosomes and mitochondrial DNA), each containing
a different non-recombinant homozygous A/J-derived chromo-
some substituted onto the B6 genetic background.27 Unlike
traditional crosses that utilize populations of genetically hetero-
geneous individuals to infer the presence, location and identity of
a genetic variant, a CSS survey relies on phenotypic evaluation of
multiple genetically identical individuals from each strain. An
important distinction from other paradigms of complex trait
analysis is that mean phenotypic differences observed between
a CSS and the parental host strain (in this case B6) must be due
to at least one allelic variant present on the substituted
chromosome, without the complications of a heterogeneous
genetic background.28,29 Focused study of CSSs and congenic
strains derived from them has proven to be a particularly effective
approach to identify causal genetic variants that regulate complex
traits.30

Our previous studies focused on gene identification, functional
analyses, epistasis, transgenerational effects and systems proper-
ties in CSSs.27,31–33 In addition, detailed characterization of
two substituted chromosomes revealed unexpected genetic
complexity.34,35 In the present study, we focused on trait
relationships. After estimating the relative influences of genetic
and dietary factors and their interactions on susceptibility to 10
measures of diet-induced MetS, we examined patterns of
covariation among metabolic traits across the complete B6-ChrA/J

CSS panel and mapped QTLs on Chromosome 10 associated with
each trait.

MATERIALS AND METHODS
Animal care
All animal procedures were approved by the Case Western Reserve
University Institutional Animal Care and Use Committee. Mice were housed
in one of two facilities – the Animal Resource Center or the Wolstein
Animal Facility (WAF). For the CSS survey, both facilities were used for all
strains except CSS-Mito, which was only analyzed in WAF. Because of the
higher penetrance and severity of diet-induced MetS in males,25,27,36 no
females were analyzed. For the intercross study, CSS-10 females were
crossed to B6 males to produce F1 heterosomic progeny that
were subsequently sibling mated. Resultant F2 progeny (n= 120 males)
were analyzed in WAF. Construction of the CSS-A10 congenic panel has
been described.32 For this study, all strains were analyzed in WAF. Standard
mouse diet (Diet #5010; Purina LabDiet, St Louis, MO, USA) and autoclaved
water were given ad libitum unless otherwise stated. At 5 weeks of age,
randomly selected males were switched to HFHS diet (#D12331; Research
Diets, New Brunswick, NJ, USA) for the remainder of each study (16 weeks).
Sample sizes for each experimental group (listed in Tables 1 and 2) were
determined based on statistical power calculations to provide a power of
at least 0.80, α-level of 0.05.

Markers and genotyping
Microsatellite simple sequence length polymorphism and single-
nucleotide polymorphism markers used for mapping experiments are
listed in Supplementary Table 1, along with PCR primers and restriction
endonucleases used for genotyping. All coordinates refer to the current
mouse reference genome (GRCm38/mm10).

Plasma collection and metabolite assays
At 21 weeks of age, male mice were moved to a clean cage and fasted
overnight. Each mouse was weighed and anesthetized via intraperitoneal
injection with 0.8 mg g–1 of Avertin (2,2,2,-tribromoethanol in tertiary-amyl
alcohol; Fisher Scientific, Pittsburgh, PA, USA). Nose-to-anus length was
measured to calculate BMI. Blood glucose was measured from the tail vein
using a One Touch Ultra glucometer (Lifescan, Inc., Milipitas, CA, USA).
Blood from the orbital sinus was drawn into a separation tube with gel
barrier (Statspin, Westwood, MA, USA) using a heparinized microhemato-
crit capillary tube (Fisher Scientific). Plasma was isolated and transferred to
a new tube, immediately frozen on dry ice and stored at − 80 °C until
analyzed. Plasma total cholesterol and triglycerides were measured with
colorimetric reagents and standards according to the manufacturer’s
directions (Pointe Scientific, Canton, MI, USA). Plasma insulin was measured
with a mouse ultrasensitive insulin ELISA kit according to the manufac-
turer’s directions (Mercodia, Winston-Salem, NC, USA). Homeostasis model
assessment of insulin resistance (HOMA-IR) assessment values were
calculated as follows: HOMA-IR= [fasting insulin (mU l–1) × fasting blood
glucose (mmol l–1)]/22.5 as described previously.37

Liver samples were frozen in liquid nitrogen and 100–200mg of tissue
was saponified in an equal volume by weight of 3 M KOH/65% ethanol to
convert triglycerides to glycerol and fatty acids.38 Glycerol was measured
colorimetrically using a GPO-Trinder reagent set (Pointe Scientific) to
quantify the triglyceride content of the original sample. Total liver
triglycerides were estimated by multiplying the liver triglyceride content
by total liver weight. No blinding strategy was used for these analyses.

Statistical analysis and genetic mapping
For all analyses, outliers were defined as individuals for which values for at
least 1 of the 10 measured metabolic traits exceeded three times the
interquartile range for that individual’s strain; all measures obtained from
outliers (51/879, 5.80% of mice) were excluded from further analysis. All
reported P-values were adjusted for multiple hypothesis testing using
Bonferroni correction.
Analysis of variance was performed on log2-transformed values to

identify significant effects of diet and strain, as well as their interactions, on
measured metabolic traits. The effect of each factor was calculated after
accounting for the others (i.e., type III sum of squares method) and
adjusting for animal facility to account for any location effects. To identify
trait associations in B6 and pooled CSS data sets, partial Pearson
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correlation analysis was performed on log2-transformed mean values with
adjustment for animal facility and strain using the ppcor package39 in the R
statistical software environment.40

Unsupervised hierarchical clustering of strains based on log2-trans-
formed average metabolic trait values was performed using the R package
pvclust41 with 10 000 bootstrap replications. Dendrograms were generated
after adjusting for facility using average linkage clustering and uncentered
correlation distance. Adjusted mean trait values normalized to B6 were
used to generate a heat map with Java TreeView software.42 Confidence
intervals for trait relationships to BMI were calculated based on a
multivariate t-distribution using the stat_ellipse function in the R package
ggplot2.43

A total of 120 F2 males were phenotyped for the CSS-10× B6 intercross,
and interval mapping of QTLs was performed for each trait independently
using the R/qtl software package.44 Haley–Knott regression45 was used to
calculate LOD scores (log10(1/p)), with permutation testing (n=10 000)
used to determine significance thresholds. LOD scores exceeding
chromosome-wide significance thresholds of α= 5% and 63% were used
to define significant and suggestive QTLs, respectively, as described
previously.46

RESULTS
Diet-induced metabolic traits in parental strains
We initially validated the ability of our experimental conditions to
recapitulate the reported contrasting metabolic responses of
C57BL/6 J and A/J mice to high-fat diet19–21 by comparing
metabolic phenotypes in each strain after 16 weeks exposure to
HFHS versus control diet. Ten traits related to obesity (final body
weight and BMI), glucose homeostasis (fasting blood glucose,
plasma insulin and HOMA-IR), dyslipidemia (plasma total choles-
terol and triglycerides) and hepatic steatosis (liver weight, liver
triglyceride concentration and total liver triglyceride content) were
measured in each strain on HFHS (test) and standard chow
(control) diets (Figure 1; Table 1). Trait values were similar for each
strain on the control diet. In contrast, A/J males remained lean and
insulin sensitive, had lower plasma cholesterol and resisted
steatosis on the HFHS diet compared with B6. Our results are
consistent with previous studies implicating an underlying genetic
component to these diet-induced metabolic conditions.19–21

Genetic background, dietary composition and gene–diet inter-
actions each influence MetS risk in humans.47 The relative

contributions of these factors to phenotypic differences between
our experimental cohorts were assessed with factorial analysis of
variance (Table 1). Among the identified significant effects, strain
had the largest influence on plasma triglycerides, liver weight and
total liver triglycerides, whereas diet had the largest influence on
plasma cholesterol and glucose homeostasis traits. Strain and diet
had comparable individual effects on obesity traits and liver
triglyceride concentration. Significant strain–diet interaction
effects were detected for BMI and all three liver traits.

Genetic control of diet-induced obesity and metabolic traits in CSS
panel
On the basis of our confirmation of a significant genetic
component of differential susceptibility to diet-induced metabolic
disease in the parental strains, we assessed the relative
susceptibilities to various phenotypic aspects of disease in the
complete B6-ChrA/J CSS panel. The same 10 metabolic traits were
measured in an average of 34 males for each of the 22 CSSs and
both parental strains after HFHS diet for 16 weeks. We observed a
range of phenotypes among strains with regard to the nature and
severity of metabolic disease (Table 2), indicating that genetic
contributions to diet-induced pathophysiology in this model are
likely complex. Overall, 71 significant deviations from B6 traits
were detected in the CSSs. In most (57/71) cases, phenotypes were
less severe, as expected based on the lower disease susceptibility
of A/J. Interestingly, although the parental strains did not differ for
fasting glucose or plasma triglycerides, three CSSs differed from
B6 mice for glucose levels and nine for plasma triglycerides
(Table 2). It should be noted that mice in this study were housed in
two distinct animal facilities, a fact accounted for by inclusion of
facility as a covariate in the analyses.
Unsupervised hierarchical clustering based on log2-transformed

metabolic trait values was used to examine phenotypic similarities
among CSSs, resulting in the identification of three seemingly
distinct groups (Figure 2a). Deviation from B6 for each strain and
trait was plotted as a paired heat map. The six CSSs that clustered
with B6 displayed the most severe phenotypes, whereas the least
severe phenotypes were observed in the four CSSs that clustered
with A/J; the remaining 12 strains formed a cluster with
intermediate phenotypes (Figures 2a and b).

Table 1. Effects of strain, diet and strain–diet interactions on MetS traits in C57BL/6 J and A/J parental strains

Chow diet HFHS diet F-statistic (df1 = 1, df2 = 63)

C57BL/6 J
(n= 17)

A/J
(n=15)

C57BL/6 J
(n= 17)

A/J
(n=18)

Strain effect Diet effect Strain–diet
interaction effect

Obesity
Final body weight (g) 27.86± 0.49 24.09± 0.70 41.14± 1.40 29.82± 0.60 75.98*** 125.90*** 9.73NS

BMI (g cm–2) 0.26± 0.00 0.24± 0.01 0.38± 0.01 0.28± 0.00 77.82*** 131.20*** 18.02*

Glucose homeostasis
Blood glucose (mmol l–1) 9.94± 0.39 9.08± 0.32 15.42± 1.04 11.82± 0.38 7.08NS 32.91** 1.34NS

Plasma insulin (pmol l–1) 60.67± 16.28 28.65± 3.50 295.84± 43.69 54.02± 6.37 16.48* 38.31** 9.48NS

HOMA-IR 4.17± 1.22 1.63± 0.21 31.91± 5.65 3.99± 0.48 17.66* 44.93** 8.40NS

Dyslipidemia
Plasma total cholesterol (mmol l–1) 2.03± 0.08 1.56± 0.05 4.39± 0.22 2.96± 0.07 63.51** 308.51*** 2.18NS

Plasma triglycerides (mmol l–1) 0.57± 0.03 0.85± 0.11 0.49± 0.03 0.96± 0.06 36.73** 0.09NS 5.06NS

Hepatic steatosis
Liver weight (g) 1.15± 0.04 0.91± 0.02 1.54± 0.09 0.86± 0.02 101.10*** 7.11NS 17.70*
Liver triglycerides (mg g–1 liver) 72.88± 5.28 62.93± 8.91 206.53± 14.09 79.00± 5.46 44.67** 56.72** 16.29*
Total liver triglycerides (mg) 82.51± 5.28 59.27± 9.22 332.24± 36.67 68.37± 5.43 80.78*** 49.86** 22.65**

Abbreviations: ANOVA, analysis of variance; df, degrees of freedom; HOMA-IR, homeostasis model assessment of insulin resistance; NS, not significant. Trait
values are listed as means± s.e.m. Log2-transformed values were used to calculate F-statistics for each factor (i.e., diet and strain) after accounting for the other
using two-way ANOVA. P-values were adjusted by Bonferroni correction for multiple hypothesis testing. *Po0.05; **Po1.0 × 10− 3; ***Po1.0 × 10− 10.
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Relationships among diet-induced metabolic traits in CSSs and B6
Scatter plots of measured trait values for each strain revealed clear
positive correlations with BMI for blood glucose, plasma insulin,
HOMA-IR, plasma cholesterol, liver weight and liver triglycerides,
but not plasma triglycerides (Figure 2c). We also found that each
cluster occupied a distinct, genetically determined physiological
space within the overall pattern of variation among the CSSs. We
next sought to determine either the B6 parental strain alone or the
CSSs as a pooled population demonstrated additional relation-
ships among MetS traits. For both B6 (Figure 3a, upper-right half)
and the pooled CSSs (Figure 3a, lower-left half), significant positive
correlations were found between all metabolic traits, with the
exception of plasma triglycerides. Overall, trait relationships for
the CSSs as a pooled population were highly similar to B6
(Figure 3b) and to those observed in humans,1–3 where
pathological conditions strongly covary.
Interestingly, however, a subset of CSSs had reduced pheno-

typic severity for some traits but not others (Figure 3c). Each strain
was categorized for the presence of obesity, insulin resistance,
hypercholesterolemia and fatty liver based on statistical compar-
isons with B6 trait values. A condition was considered absent if
values were significantly lower than B6 (Table 2). Nine CSSs shared
all four conditions with B6. A/J and CSS-8 lacked all conditions,
suggesting that A/J Chromosome 8 carries at least one QTL that
confers full resistance to diet-induced MetS. Twelve CSSs had
different combinations of conditions. CSS-7 and -17 were the only
strains that showed a single B6-like condition (hypercholester-
olemia). Among the other combinations, obesity never occurred
without elevated cholesterol, and fatty liver never occurred

without insulin resistance. By contrast, insulin resistance and
hypercholesterolemia did not depend on co-occurrence of any
other condition. Through this analysis, we identified CSSs that are
either fully resistant to MetS or to specific MetS conditions. These
strains can be used to study the genetic and functional basis for
resistance, as well as the molecular and physiological links
between MetS conditions.

Mapping Chr10 QTLs associated with MetS trait susceptibility
We analyzed associations between inheritance of specific loci on
Chr10 and trends in metabolic traits for both an intercross
between B6 and CSS-10, where Chr10 was the only segregating
chromosome, and a panel of CSS-10-derived congenic strains
carrying distinct homozygous A/J-derived segments of Chr10. The
intercross approach identified a single significant QTL peak for
plasma cholesterol level (LODmax = 3.28, 114 Mb), and several
additional peaks passed the suggestive threshold (Figure 4): body
weight (LODmax = 1.39, 98 Mb), BMI (LODmax = 1.74, 111 Mb), blood
glucose (LODmax = 0.99, 93 Mb), plasma insulin (LODmax = 2.13,
83 Mb; LODmax = 1.79, 129 Mb), HOMA-IR (LODmax = 1.69, 83 Mb;
LODmax = 1.49, 129 Mb), plasma cholesterol (LODmax = 1.19, 48 Mb),
plasma triglyceride (LODmax = 2.15, 49 Mb), liver weight (LODmax =
2.08, 111 Mb) and total liver triglycerides (LODmax = 1.16, 68 Mb;
LODmax = 0.94, 112 Mb). Given our observation of inter-relatedness
among traits (Figure 3) and the dependence of some measures on
others (e.g., HOMA-IR is calculated from glucose and insulin levels),
overlapping peaks between QTL maps are expected and cannot
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be interpreted as evidence for a direct link between a particular
Chr10 locus and multiple metabolic traits.
The detailed findings for a panel of 10 congenic strains derived

from CSS-10 were published elsewhere,32,48 but are summarized
here in the context of the present study. In brief, we located a total
of 19 QTLs – four for diet-induced obesity (Obrq9, 126 Mb; Obrq10,
120 Mb; Obrq11, 90–93 Mb; Obrq12, 74–83Mb), two for liver

triglycerides (Ltgq1, 58–68Mb; Ltgq2, 120–126Mb), four for blood
glucose (Gluq1, 68–92 Mb; Gluq2, 92–104 Mb; Gluq3 120–126Mb;
Gluq4, 126 Mb), two for plasma insulin (Insq1, 104–130 Mb; Insq2,
92–104 Mb), three for HOMA-IR (Homaq1, 126 Mb; Homaq2,
104–118Mb; Homaq3, 82–103Mb) and four for plasma cholesterol
(Pcholq1, 126 Mb; Pcholq2, 102–126Mb; Pcholq3, 82–103Mb;
Pcholq4, 67–89 Mb). The significant plasma cholesterol QTL
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identified in our F2 cross (114 Mb) overlaps with the previously
identified Pcholq2 genetic variant.48 In our experience, finding
more genetic variants with CSSs and congenic surveys than with
segregating crosses is not unusual.31,32

Reproducibility of results
During the course of this work, we generated and characterized
three independent cohorts for each parental strain (pilot study,
CSS panel and mapping study) and two independent cohorts for
the CSS-10 strain (CSS panel and mapping study). To assess the
reproducibility of our results, we repeated the unsupervised
hierarchical clustering analysis used to define the three distinct
strain clusters (Figure 2a) with the inclusion of each repeated
cohort as a separate entry. This analysis showed that independent
cohorts of the same strain clustered tightly together in a
dendrogram that closely resembles that of the original CSS panel
(Supplementary Figure 1), indicating high reproducibility and
thereby increasing confidence in our experimental results.

DISCUSSION
Understanding how genetics, diet and other environmental
factors collectively contribute to the development of human
metabolic disorders is an important but challenging task,
especially given the need to deal with genetic and environmental

heterogeneity in a statistically robust manner.49 Along with the
established environmental influences of nutrition and physical
activity,2,3 there is a growing appreciation for the involvement of
other factors including social circumstances50 and gut microbes,51

adding to the systems-level complexity. Despite these challenges,
significant progress is being made. In 2007, the first robust
evidence was provided of a link between human metabolic health
and a common genetic variant.52 Since then, dozens of additional
genes have been identified as regulators of human MetS-
associated conditions.9,53 As with many other multifactorial
conditions in humans, however, most MetS genetic variants have
to date eluded discovery,54 and the ways that genetic and
environmental factors interact to modulate susceptibility remain
poorly characterized.
A complementary approach to human studies takes advantage

of spontaneous, induced, genetically engineered and naturally
occurring variants in mouse models, where both genetic and
environmental factors are more readily controlled.55 Genetically
engineered mouse models in particular have been valuable for
characterizing molecular functions involved in diet-induced
metabolic disease.56,57 However, the extent to which targeted
activations or deficiencies recapitulate the heterogeneous condi-
tions associated with MetS in humans is unclear. Dietary
interventions with the inbred B6 and A/J mouse strains constitute
an exceptional model for MetS because of their inherently
divergent responses to high-fat diets, with B6 but not A/J showing
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many features of MetS including insulin resistance, obesity,
dyslipidemia and fatty liver disease (Figure 1, Table 1, see also
Surwit et al.,20 Hill-Baskin et al.21 and Surwit et al.22).
In the present study, we examined several questions concerning

diet-induced metabolic disease in the B6-A/J mouse model. We
first assessed the relative contributions of strain (genetics), diet
(environment) and their interactions on a set of MetS-associated
traits (Table 1). It is interesting to note that while diet-induced
responses differed significantly among strains (Table 1), a wide
range of phenotypic severity was observed in susceptible B6
individuals (Figure 1). This result highlights the complex, multi-
factorial nature of metabolic physiology, even within a genetically
homogeneous population under carefully controlled experimental
conditions. We found that plasma triglyceride level was primarily
influenced by strain. This result is consistent with recent large-
scale human studies demonstrating high heritability of plasma
triglycerides, as compared with other MetS components.58,59 In
contrast, obesity (final body weight, BMI), plasma cholesterol,
insulin resistance (fasting blood glucose, plasma insulin and
HOMA-IR) and fatty liver disease (liver weight, liver triglycerides

and total liver triglycerides) were multifactorial, with both strain
and diet contributing significantly to variation. Thus, as in human
MetS,47 various combinations of genetic and environmental
effects, together with their interactions, influence the develop-
ment of particular diet-induced conditions in this model.
In humans, many traits related to MetS show characteristic

patterns of covariation, with obesity in particular representing a
major predictor for several comorbidities.3,4 Similarly, B6 and the
CSSs as a pooled population displayed extensive phenotypic
covariation in this study, with strong positive correlations
identified between all measured traits except plasma triglycerides
(Figures 2c, 3a and b). These patterns may indicate the existence
of physiological interdependencies among the covarying traits or
a shared dependence on a separate, potentially unmeasured
parameter. However, such functional interactions are challenging
to demonstrate definitively in humans. While our study was not
designed to establish causality, we were able to demonstrate
highly significant phenotypic associations under conditions
designed to minimize confounding effects. Along with the
recapitulation of phenotypes and associations occurring in
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humans, the strict control that can be achieved with the B6-ChrA/J

model makes it useful for defining and dissecting causal MetS
relationships with clinical relevance.26,27 A notable advantage of
the model is its ability to generate a range of phenotypes among
individual strains and even uncouple distinct pathological aspects
of MetS (Figure 3c). The present study identified considerable
interstrain variability for fasting glucose and plasma triglycerides
despite a lack of significant difference between parental strains
(Table 2), implying that multiple genetic variants control the
response of these traits to the HFHS diet or, in the case of plasma
triglycerides, possibly independent of diet (Table 1). Findings such
as these provide a unique opportunity to dissect complex genetic
regulatory networks underlying the development of specific
pathological traits and determine their interdependencies.
Replication has emerged as a major challenge in human genetic

studies. Although more rigorous study designs are possible with
animal models, variation among substrains and vagaries in
environmental factors such as season, diet lot and bedding can
lead to difficulties in reproducing the results among independent
studies. We previously tested reproducibility among three CSS
diet-induced obesity surveys in two different mouse facilities at
Case Western Reserve University,31 finding that only 3 of 69 tests
failed to replicate, and thus demonstrating that our methods are
highly reproducible. Repeated cohorts in the present study also
showed high reproducibility (Supplementary Figure 1). Tests for
reproducibility are rarely undertaken with other mouse genetic
reference populations, so assessing the relative merits of CSS
surveys is not possible. Nevertheless, control of genetic back-
ground in CSSs together with rigorous husbandry conditions leads
to strong reproducibility.
By comparing HFHS diet-associated metabolic traits across the

B6-ChrA/J CSS panel and parental strains, we identified 71
significant deviations from B6 conferred by substitution of a
single chromosome (Table 2). While this information is useful as a
starting point for deciphering the genetic basis of MetS, the
ultimate goal is to map specific genes and polymorphisms that are
important in determining susceptibility to MetS and its defining
pathologies. CSS panels have considerable additional utility in this
regard through the use of linkage crosses and congenic strains
derived from individual CSSs.26 To demonstrate this point in the
context of the present study, we performed more detailed
mapping studies with CSS-10. This strain was chosen because it
clusters with A/J based on overall phenotype (Figure 2a), yet
differs significantly from B6 for only insulin resistance and fatty
liver (Figure 3c), a result that suggests the presence of multiple
QTLs regulating distinct traits. We mapped 20 significant QTLs
affecting MetS traits on Chr10, one in the CSS-10 × B6 intercross
and 19 in the CSS-10 congenic strains (Figure 4, see also Shao
et al.32 and Shao et al.46). In addition, studies are required to
definitively identify the gene(s) within these QTLs contributing to
the observed phenotypes. However, candidates may be prioritized
based on overlap with other mapping studies or human genome-
wide association studies data. For example, the human ortholog of
Hmga2 (within the genomic regions defined by QTLs Obrq10,
Ltgq2, Gluq3, Insq1 and Pcholq2) has been associated with
development of type 2 diabetes,60 as has the TSPAN8-LGR5 locus
(mouse orthologs contained in Insq1, Homaq2 and Pcholq2).61 On
the basis of their connection to human metabolic dysfunction,
these genes represent logical candidates for follow-up studies. We
have also recently shown that subcongenic and subsubcongenic
strains derived from CSSs can reveal many additional genetic
variants with remarkably strong and non-additive phenotypic
effects, a property we refer to as 'fractal genetics'.33 Despite this
extraordinary genetic complexity, we showed that underlying
genetic variants could be readily identified. Studies like these
demonstrate proof of concept that systematic characterization of
precisely defined CSS disease models is a highly effective method

of identifying genetic variants with functional importance in
various pathologies.
We provide here a comprehensive characterization of high-fat

diet-associated metabolic health in the complete B6-ChrA/J CSS
panel. The precisely defined genetic composition of each inbred
strain, along with their variable susceptibilities to conditions
relevant to human MetS, provides a unique and powerful
opportunity to decipher some of the genetic complexity under-
lying this ubiquitous condition. In addition to demonstrating the
suitability of the B6-ChrA/J mouse model for studying MetS traits
relevant to human disease, our study provides a preliminary data
set that will be useful for future targeted studies aimed at
identifying genes involved in determining MetS susceptibility and
severity.
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