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Improved confidence intervals for the linkage disequilibrium
method for estimating effective population size

AT Jones1, JR Ovenden2 and Y-G Wang1

The linkage disequilibrium method is currently the most widely used single sample estimator of genetic effective population size.
The commonly used software packages come with two options, referred to as the parametric and jackknife methods, for
computing the associated confidence intervals. However, little is known on the coverage performance of these methods, and the
published data suggest there may be some room for improvement. Here, we propose two new methods for generating confidence
intervals and compare them with the two in current use through a simulation study. The new confidence interval methods tend
to be conservative but outperform the existing methods for generating confidence intervals under certain circumstances, such as
those that may be encountered when making estimates using large numbers of single-nucleotide polymorphisms.
Heredity (2016) 117, 217–223; doi:10.1038/hdy.2016.19; published online 23 March 2016

INTRODUCTION

Effective population size (Ne) is an important parameter of interest to
the study of evolutionary biology as well as for monitoring species of
conservation concern. The linkage disequilibrium method is the most
commonly used genetic estimator of contemporary Ne. Its popularity
stems from its ability to make powerful estimates from single samples,
whereas the so-called temporal methods require two or more samples
from a population separated in time. The linkage disequilibrium
method is also easily accessible through several software packages,
namely the programs LDNe (Waples and Do, 2008) and NeEstimator
2.0 (Do et al., 2014).
There are a number of studies investigating the effectiveness of the

linkage disequilibrium method (Waples, 2005; Waples and Gaggiotti,
2006; Luikart et al., 2010; Waples and Do, 2010). However, there is
little work published with regard to the performance of the associated
confidence intervals. From the statistical perspective, N̂e, like any
other estimator, is a random variable with a distribution. Unfortu-
nately, the distribution of N̂e is not easy to characterize, and therefore
the exact confidence intervals are not available. The current practice is
based on a scaled χ2 distribution. However, the corresponding number
of degrees of freedom is not well defined because of the intrinsic
correlations between individual estimates of linkage disequilibrium
that are combined to estimate Ne.
For any method of generating confidence intervals at any signifi-

cance level, the true value of an estimated parameter must inevitably
fall in some proportion of confidence intervals. Ideally, for accurate
confidence intervals generated at a significance level of α, this
proportion will be (1−α) in the long run. That is to say, if a
researcher were to generate many 95% confidence intervals, they
ought to be able to expect that 95% of the time the true value of the
parameter they are estimating will lie in its interval. If the intervals are

set too narrowly then the true values will not lie in the confidence
intervals as often as they should and the certainty of the estimates will
be overstated. This is referred to as being anticonservative. The
proportion of the time that confidence intervals do actually contain
the true value of the estimated parameter is commonly referred to as
the coverage probability. Conversely, if the coverage probability is too
high the confidence interval is said to be conservative.
If confidence intervals are to be valid and useful, the coverage

probability ought to be the same as the nominal value for that
interval (that is, 0.95 for a 95% confidence interval). This ought to
hold for all values of α, not just the standard 0.05/95% case. It should
also hold for all values of any other parameters that may affect the
estimates. In the case of effective population size, these include
population size (N), number of loci (L), number of alleles at each
locus (K) and sample size (S).
A direct method to determine confidence intervals for linkage

disequilibrium estimates of population size was not provided in the
original formulation of the method (Hill, 1981). The LDNE (Waples
and Do, 2008) and NeEstimator 2.0 (Do et al., 2014) software
packages provide two methods for generating confidence intervals.
The first, referred to as the ‘parametric method’ (Waples, 2006), is
based on a technique used for confidence intervals for the temporal
method (Waples, 1989). It takes the distribution for r̂2=E r̂2

� �
to be a

χ2 distribution with the degrees of freedom being equal to the total
number of ‘independent comparisons’ used in the estimation.
The second is a ‘jackknife’-based correction to this method (Waples

and Do, 2008). An approximate relationship using a reestimated
parameter is used to adjust the degrees of freedom in the χ2
distribution in the confidence interval. The rationale behind this
technique is that the true value for the degrees of freedom in the χ2
distribution used in confidence intervals is less than the total number
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of comparisons, because the comparisons are not all independent . As
such, we expect that the performance of the ‘parametric method’ and
perhaps also this ‘jackknife’-based correction will decline as the total
number of comparisons grows.
However, strictly speaking, this method is not actually a jackknife

technique as no observations (individuals) are being removed and only
predictors (loci pairs). This is illustrated by the fact that no new
calculations are needed for finding the new values, and only a
reaveraging of existing values. However, if individuals were removed
one at a time instead, the linkage would have to be recalculated for
each loci pair every time. In addition, the variance is not estimated in
the standard jackknife manner. Henceforth, we refer to this method as
‘pseudo-jackknife’. Although the pseudo-jackknife requires more
computation time than the parametric method, a full jackknife based
on individuals would require yet more.
Published confidence interval results for the parametric and

pseudo-jackknife methods (Waples and Do, 2008) show it is possible
for the confidence intervals to be insufficiently conservative and
contain fewer than the nominal proportion of values. For instance,
a nominal 95% interval may on average only contain the true value
80% of the time. These results suggest that there is room for
improvement in the performance of these confidence intervals.
Two variations of the application of the jackknife are proposed and

tested in this paper as possible improvements on the existing
techniques. To test a confidence interval method it is necessary to
know the true value of the parameter being estimated. This means that
for genetic estimates of Ne, simulated populations are required. The
simplest method to empirically test the coverage probability for a given
method of generating confidence intervals is to simulate a large
number of replicate populations with known Ne, make estimates of
this Ne and produce the associated confidence intervals, and then see
how often the (known) true value falls inside these intervals. The
proportion of intervals containing the true value will estimate the
coverage probability for that method.
There is reason to believe that current methods for generating

confidence intervals for estimates of Ne using the linkage disequili-
brium method may be suboptimal in at least some cases. Two newer
methods are proposed that may outperform the older methods and all
were tested on wide range of simulated population scenarios. The
performance of all four methods in terms of coverage probability is
examined, with the objective of recommending under which circum-
stances, if any, each of the methods should be used.

MATERIALS AND METHODS

Effective population size estimation
The original, uncorrected, formula for N̂e (Hill, 1981) is given by

N̂e ¼ 1

3ð̂r2 � 1=SÞ; ð1Þ

where S is the samples size and r̂2 is a measure of the association between alleles
at different loci. However, this formula was corrected based on empirical work
(Waples, 2006; Waples and Do, 2008), and replaced in practice by

N̂e ¼ 1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=9� 2:76r̂2

p
2ð̂r2 � 1=SÞ ; ð2Þ

for the case of random mating with a sample size 430. Similar formulae for
other cases were also given.
The linkage disequilibrium method was originally derived for the case of one

pair of loci with two alleles per locus (Hill, 1981) . Where there are more than
two alleles at a locus, the alleles must be split up and the pairwise estimates
from each allele pairs (one from each locus) must be averaged within that loci
pair before the average across loci pairs is taken. Each value of r̂2 is estimated in

practice using the Burrows’ Composite Method (Cockerham and Weir, 1977)
that is robust to deviations from pure random mating and unbiased when
corrected by a factor of S/(S− 1) (Weir, 1979). The full formula is

r̂2 ¼ S=ðS� 1ÞD½ �2
p 1� pð Þ pA � p2ð Þ½ � q 1� qð Þ pA � q2ð Þ½ �; ð3Þ

where Δ is the original Burrows coefficient, S is the sample size, p(q) is the
observed frequency of the allele at the first (second) locus and pA and pB are the
frequencies of homozygotes of the alleles at their respective loci.
In all cases we examined, r̂2 is averaged across loci pairs according to the

methodology used in the NeEstimator 2.0 (Do et al., 2014) software as based on
earlier work (Waples and Do, 2008). This global average is referred to as r2. We
do not examine the case of missing data and thus did not have recourse to the
weighting techniques that have been developed for this (Peel et al., 2013).
This averaging of many estimates gives rise to the idea of a total number of

comparisons, J, used in making an estimate. A single ‘comparison’ is the
estimate of r̂2 produced by a single pair of alleles, one each from a pair of loci.
If there are L loci and each locus i has Ki alleles then the total number of
nominally independent comparisons according to this method is

J ¼
X

i;jAL;ioj

ðKi � 1ÞðKj � 1Þ: ð4Þ

For example, with 10 loci and 15 alleles per loci, J= 8820. This is a fairly
typical result in practice.
A complication in the calculation of r̂2 is that rare alleles are known to cause

bias. That is, alleles with low observed frequencies tend to produce upwardly
biased estimates (Waples, 2006; Waples and Do, 2010). The standard method
to deal with this problem is to discard all values of r̂2 produced from allele pairs
where one or both members of the pair have an observed frequency
(proportion) below a given cutoff. This cutoff is referred to as Pcrit and is
typically in the range [0, 0.1]. This affects the confidence intervals for N̂e in
several ways. Although removing low frequency alleles reduces bias, it also
increases the variance of the estimate (Waples and Do, 2010). Removing alleles
also decreases the number of comparisons used in the calculation. The results
from two values of Pcrit are reported for this study, 0, that is with no alleles
removed at all, and 0.05, a moderately high value.

Simulated populations
The software package SimuPOP (Peng and Kimmel, 2005) was used to simulate
standardized populations with known effective population sizes for the testing
of the various confidence interval methods. The populations were individual
based, forward time simulations with discrete generations and unlinked loci.
It is known that in such simulations, the realized Ne will not match the

nominal value but will vary somewhat between simulated generations (Waples
and Faulkner, 2009). As such, for the purposes of determining whether a
confidence interval contained the true value or not, the demographic effective
population size was calculated for each case. The appropriate formula (Crow
and Denniston, 1988) is

Ne ¼ kN � 2

k� 1þ Vk=k
þ 0:5 ð5Þ

for the case of separate sexes. N is the population size, k is the mean number of
offspring per individual and Vk is the variance of the same quantity.
Fortunately, all of these parameters are easily retrieved from the simulation
data. The linkage disequilibrium method estimates the population of the
parental generation of the sampled generation. However, the linkage ‘signal’
from prior generations also persists, declining by a factor of 2 every generation.
The true value for Ne, to be compared with its estimates, is taken to be the
harmonic mean of the demographic Ne for the 4 generations before the
sampled generation, weighted by their relative contributions that halve each
generation further back in time (that is, 0.5, 0.25, 0.125, 0.0625).
The simulations encompassed a wide variety of scenarios with varying

sample sizes (S), population sizes (N), number of alleles per locus (K), number
of loci (L), allele frequency distributions and number of burn-in generations
(g). Table 1 summarizes these scenarios and also includes the associated value
of the total number of comparisons, J, believed to be the main factor in the
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decline in confidence interval performance. It reports them in terms of Jmax, the
total number of comparisons if no alleles go to extinction during the simulation
and no rare alleles are discarded, as well as a figure for how many comparisons
are actually used when a Pcrit of 0.05 is applied. This second figure is an average
across all of the replicate populations for that scenario.

Current methods
With all of the methods we initially find a confidence interval for r2. The upper
and lower bounds are then placed in either Equation (2) to produce the
equivalent bounds for Ne. The parametric method assumes the value Jr2 has a
χ2 distribution with J degrees of freedom, where J is the total number of
‘independent comparisons’ used to calculate r2, as in Equation (4). In the
simplest case of a two loci with two alleles each, r̂2=E r̂2

� �
has an approximately

χ2 distribution (Waples, 2006; Waples and Do, 2008) with a single degree of
freedom . The sum of these estimates Jr2 can be scaled to a χ2 distribution with
J degrees of freedom if all of the r̂2 are independent. Thus, a (1−α) confidence
interval for r2 is

r2J

w2J;1�a=2

;
r2J

w2J;a=2

" #
:

The notation w2J;a=2 indicates the (α/2)th percentile of χ2 distribution with J
degrees of freedom. As has been noted (Waples, 2006), this will overestimate
the true degrees of freedom as it does not account for potential correlations
between the comparisons. It is expected that this approximation will worsen as
J increases (Do et al., 2014).
The pseudo-jackknife builds on the parametric method but tries to account

for the fact that the pairs of alleles used to estimate r2are not actually
independent of each other. Multiple estimates within a pair of loci will
obviously have correlations and even if all loci are independently segregating,
loci pairs that share a member will be correlated. It is possible (Hill, 1981) to
make an approximation to the degree of freedom by J≈2/ϕ where ϕ=Var(r2)/
(r2)2 is the coefficient of variation. This approximation comes from derivation
of the simple two locus case with no covariance structure. This relationship is
used (Waples, 2006) to reapproximate J using a pseudo-jackknifed estimate of ϕ

(Waples and Do, 2008). With L loci the total number of loci pairs is L(L− 1)/2.
Each pair is removed one at a time and fi ¼ Varð̂r2�iÞ=ð̂r2�iÞ2 is computed in
each case, ϕi being the coefficient of variation calculated using r̂2�i, the estimate
of r2 all but the ith pair of loci. The sample variance is used to estimate r̂2�i

� �
,

rather than the jackknife variance formula. These are then averaged

J 0 ¼ 2=f0 ¼ 2
1

C

XC
i¼1

fi ¼ 2
1

C

XC
i¼1

Varð̂r2�iÞ
ð̂r2�iÞ2

,,
ð6Þ

and the new estimate of J is given by J′= 2/ϕ′. The (1−α) confidence interval
for r2 is then

r2J 0

w2
J
0
;1�a=2

;
r2J 0

w2J 0 ;a=2

" #
:

Owing to the idiosyncratic nature of the pseudo-jackknife procedure, it may
not correctly account for the correlations between loci as expected. It is even the
case that J’ is sometimes higher than J (see Figure 3).

New methods
The limitations of the previous methods directly lead to the application of a
standard jackknife technique (Efron and Gong, 1983). The linkage r2�i is r2

recalculated with the ith individual removed from the data set. The mean of
these r2�i is then taken, that is,

r2ð�Þ ¼
1

S

XS
i¼1

r2�i ð7Þ

Using a normal distribution for r2 could be problematic as r2 cannot take
negative values. One solution is to perform Fisher’s transformation on each of
the r2�i, that is, take

z�i ¼ tanh�1 r2�i

� � ð8Þ

Table 1 Summary of the various simulation scenarios used to evaluate the various methods

Scenario Jmax Population size (N) Sample size (S) Number of loci (L)

Number of alleles

per locus (K)

Burn-in

generations (g) J, Pcrit 0.05 Ne, Pcrit 0.00 Ne, Pcrit 0.05

1 45 200 200 10 2 10 45 176.7 176.7

2 45 1000 100 10 2 10 45 994.1 994.1

3 190 200 100 20 2 10 190 222.2 209.3

4 190 500 100 20 2 10 190 550.8 550.8

5 1225 500 200 50 2 10 1225 500.1 500.1

6 2415 500 100 70 2 10 2415 590.4 496.0

7 3645 200 50 10 10 50 676.8 238.4 192.9

8 3645 200 50 10 10 50 726.4 251.9 192.8

9 3645 200 50 10 10 20 2848.7 251.1 200.4

10 3645 200 200 10 10 10 3644.6 254.8 199.5

11 4005 200 200 90 2 10 4005 270.3 192.8

12 15 390 1000 50 20 10 50 2858.2 1085.5 1085.5

13 15 390 1000 100 20 10 10 14 765 1047.0 1042.9

14 15 390 200 200 20 10 10 15 389.3 270.9 190.3

15 37 240 1000 100 20 15 10 20 513.6 1062.1 1059.2

16 37 240 1000 100 20 15 10 25 236.7 1091.0 1001.2

17 37 240 200 200 20 15 10 30 407.8 251.9 192.8

18 99 225 1000 50 50 10 50 3078.7 1012.8 1012.8

19 99 225 1000 200 50 10 10 99 219.7 1058.3 1055.3

20 195 615 1000 50 70 10 20 18 347.9 1018.7 1018.7

This table summarizes the various simulation scenarios used to evaluate the various methods. Each scenario consists of 1000 replicates of population with the same population size (N), sample size
(S), number of marker loci (L), number of alleles per locus (K) and number of burn-in generations (g). Jmax is calculated from the initial number of alleles and loci using Equation (4). The column
‘J, Pcrit 0.05’ is the mean number of comparisons used when Pcrit is set at 0.05. This figure is an average across replicate populations.
The last two Ne columns report the harmonic mean estimate of Ne for the stated Pcrit levels. It can be seen that there is less bias in the Pcrit=0.05 case.
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and their mean to be

z ¼ 1

S

XS
i¼1

z�i ð9Þ

Then, a confidence interval for z based on the normal distribution can be
constructed as z7F�1

a=2
cSE, that is,

z � F�1
a=2

cSE; z þ F�1
a=2

cSEh i
;

where F�1
a=2 is the inverse standard normal function evaluated at (α/2) and, cSE,

the jackknife standard error (Efron and Gong, 1983) is given by

SE ¼ S� 1

S

XS
i¼1

z�i � zð Þ2
( )1=2

ð10Þ

The confidence interval can then be transformed back for r2 as

tanh z � F�1
a=2

cSE� �
; tanh z þ F�1

a=2
cSE� �h i

;

Computationally, this is quite intensive compared with the previous method;
however, the total time for a single estimate is still relatively short.
Although the sample distribution of r2 remains largely unknown (Golding,

1984; Ethier and Griffiths, 1990; Hudson, 2001; Schaid, 2004), there is some
theoretical basis (Hill, 1981) that this distribution is approximately χ2 and using
a normal distribution for the confidence interval may be an inappropriate
approximation. Suppose r̂2=E r̂2

� �
can be approximated by w2J =J with J to be

determined. Clearly, the mean is matched as one. By matching the variance we
again have the ‘best’, J= 2/ϕ, f ¼ Varðr2Þ=ðE r̂2

� �Þ2. To obtain an estimate of
ϕ, we will use the jackknife estimate of the variance ðdVarÞ and also the jackknife
mean r2ð�Þ for the mean E r̂2

� �
. This produces confidence intervals of the form

r2ð�ÞJ
�

w2J�;a2
;
r2ð�ÞJ

�

w2J� ;1�a
2

" #
:

J* is calculated as

J� ¼ 2=f� ¼ 2
dVar
r2ð�Þ
h i2 ¼ 2 r2ð�Þ

h i2 S� 1

S

XS
i¼1

r2�i � r2ð�Þ
� �2

( ),,
ð11Þ

It is possible for Equation (2) to produce negative estimates of Ne. Standard
practice (Do et al., 2014) is to take these estimates to be infinite. When the
upper bound of an estimate is infinite this is equivalent to failing to reject the
implicit null hypothesis in the linkage disequilibrium method at a significance
level commensurate with the confidence level chosen. The hypothesis is that the
population has the same value of r2 as an infinite-sized ideal population–0–
and is therefore indistinguishable from it based on the sample estimate. For the
purpose of confidence intervals, any negative estimate of Ne is taken to be an
extremely high positive number.

RESULTS

It was found that the jackknife systematically overestimated the
variance. This is a common issue with jackknife estimates of the
variance (Efron and Stein, 1981). It is possible to compensate using a
second-order jackknife procedure (Efron and Stein, 1981); however,
this becomes computationally intense for large samples sizes. As it
appeared that the level of the effect was extremely consistent across the
parameter space used for the simulations, a simple empirical correc-
tion factor was developed. This factor was arrived at by looking at the
unadjusted coverage for the normal distribution method, with
Pcrit= 0.05 to minimize potential bias, and calculating the normal
distribution value for these quantiles. Averaged across all runs, the
coverage for the 95% normal confidence intervals was ∼ 98%,
corresponding to a normal distribution value of 2.326, rather than
the expected 1.96. That is,
F�1

0:99=F
�1
0:975 ¼ 1:96=2:326 ¼ 0:84: Once the jackknife standard

errors were reduced by 0.84, the coverages for both the normal and

χ2 variants of the method were much improved. Although the
correction factor used is somewhat crude and lacks a theoretical basis,
it appears to work consistently across the parameter space of simulated
populations.
The coverage results for 95% confidence intervals for each of the

methods after this adjustment are shown in Figures 1 and 2, as well as
Table 1. The newer methods can be more conservative, but their
performance does not drop off as the number of comparisons
increases as the existing methods do.
One notable trend that was visible in the data is that as the number

of comparisons used in the calculation of r2 increased, the worse the
coverage was. This is to be expected as it is known these are not truly
independent and the older jackknife method is only an adjustment to
the assumption of independence. Although the newer methods also
decline in their performance, the effect is far less drastic. Figures 1 and
2 clearly illustrate this effect. The difference between Figures 1 and 2 is
the value of Pcrit used. It can be seen that all methods generally
perform better when rare alleles are discarded, but the new methods
do not decline in performance as much when Pcrit= 0.05.
The three methods based on χ2 have an associated number of

degrees of freedom. This implicit degrees of freedom value is simply J
for the parametric method. For the pseudo-jackknife this is the
recalculated value, J’. In the case of the jackknife χ2 it is J*, the value
for the degrees of freedom determined from the jackknife variance.
The decline in performance of the older methods is likely due to the
fact that degrees of freedom used in these confidence intervals are too
high. Figure 3 shows that as the number of comparisons increase, the
pseudo-jackknife degrees of freedom follows that of the parametric

Figure 1 The observed coverage probability for nominal 95% confidence
intervals plotted against the number of comparisons, J, used in the
calculation. No rare alleles are discarded (Pcrit=0). The new methods (filled
shapes), although often overconservative, hold up better than the existing
ones (hollow shapes) when J is extremely high. Note the log scale on
the x axis.
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quite closely in a linear relationship, whereas those calculated from the
jackknife appear to be proportional to the square root of the number
of comparisons. This is likely because of the fact that comparisons
between pairs of loci are not all independent, as each will share a locus
with a large number of other pairs. It appears that the true degrees of
freedom is approximately proportional to the square root of J
(Figure 3), rather than the number of comparisons itself. As L and J
become very large, we will have varðr2Þ in the order of L instead of
J (see example 15.7.1 in Lemann and Romano, 2005). This indicates
Jr2 can be approximated by w2J� , where J* is in the order of OJ or L.
It was found that apart from J and Pcrit, none of the other

parameters had a significant effect on the confidence intervals. Results
are only shown for a 95% confidence interval but a wide range of α
values were examined and the performance does not vary notably
between them.
As a rule of thumb, it is recommended that when the number of

comparisons (J) is 45000, the newer methods ought to be preferred.
Two examples of typical data sets that would exceed this number of
comparisons are 110 single-nucleotide polymorphisms (SNPs;
J= 5995) and 8 microsatellite loci with 15 alleles each (J= 5488). In
addition, they may be of use at lower values of J when more
conservative confidence intervals are desired or computational time
constraints are not an issue.

DISCUSSION

When the number of comparisons used is high, the new confidence
interval methods perform better than the methods currently in use,

but can be overconservative even when the jackknife variance is
corrected.
It should also be possible to introduce an empirical correction based

on the trend toward decreasing coverage probability as the number of
independent comparisons used to calculate the interval increases, in
addition to the uniform reduction of the jackknife variance already
applied. This would allow both the overconservative intervals at low
values of J and the decline in performance at higher values to be
corrected for. However, as this is not the only factor that may affect
the coverage accuracy, this would likely overfit the intervals based on
limited examples used and thereby reduce robustness.
The newer methods would be of use when making estimates with

large numbers of SNPs as J would be extremely high. For 200 SNPs
there would be 39 800 comparisons, well into the region where the
newer methods perform better. For 2000 SNPs there would be almost
4 million comparisons, well beyond the parameter space explored by

Figure 2 The observed coverage probability for nominal 95% confidence
intervals plotted against the number of comparisons, J, used in the
calculation. Alleles with observed frequencies o0.05 have been removed
(Pcrit=0.05). The performance of the new methods do not drop off as J
increases as much as the Pcrit=0 case. This figure corresponds to the data
shown in Table 2.

Figure 3 The number of degrees of freedom calculated for each of the
two jackknife methods against the nominal J value taken from the actual
number of comparisons. The pseudo-jackknife values appear approximately
proportional to the number of comparisons J. The true jackknife values
appear to be proportional to the square root of J, a simple linear regression
fitted to square root of the implicit degrees of freedom for the true jackknife
is shown for illustration (dotted line). In the case of the parametric method
the number of degrees of freedom is simply J, and hence the value lies
exactly on the top dashed line.
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this study. However, when large numbers of SNPs are used on
unmapped genomes, the amount of physical linkage is unknown and
this would likely be of greater concern. One downside of the new
methods is the additional computational effort required. Jackknife
confidence intervals will take approximately S times longer than the
existing methods, where S is the sample size. As the time taken to
compute estimates also increases with J, it is likely the extra time may
be burdensome in some cases.
The new methods allow one to be very sure of the bounds of an

estimate. They would be good to used when certainty is desirable in
addition to cases where the number of comparisons used is very large.
The normal jackknife technique is preferable over the χ2 jackknife
technique as it is simpler and performs almost identically. In spite of
the improvements, none of the techniques produce perfect results, and
there is a notable amount of unexplained variance in coverage
performance, especially in cases where estimates may be biased.
This paper does not look at some other issues that affect estimates

of effective population size, such as missing data-related issues.
Missing data can arise for a number of reasons. Although the methods
used in this paper do employ the standard weighting of subestimates
by number of alleles (Waples, 2006; Peel et al., 2013) for variance
reduction, it does not include simulated missing data. It is assumed
the weightings for this can be applied independently. However, the
problems that arise in the confidence intervals as the number of
comparisons increases, which is also related to the number of alleles,
may mean there is potential for interaction effects between these two
factors.
It also does not look at the issue of age-structured populations. Age

structure is known to effect point estimates of Ne, and there has been a
great deal of recent work in this area (Waples et al., 2011, 2014;
Waples and Antao, 2014). It is a possibility that the confidence
intervals may also be affected; however, it is unlikely to be the case.
The greatest cause of uncertainty in Ne estimation, Pcrit, is also

examined only in part. On the whole, values of Pcrit do not seem to
have large effect on confidence interval accuracy, except when J is
high. It is likely that a higher number of comparisons can compound

the biasing effect of rare alleles. The choice of Pcrit can make a large
difference to the conclusions drawn, especially when working with real
data sets. When chosen appropriately (Waples and Do (2010) includes
a detailed study of the effects of Pcrit level on Ne estimates) it does not
appear to significantly impact the coverage accuracy of confidence
intervals for any of the methods.
Although the coverage results were reported as a single figure, the

split between confidence intervals that fail by being too high and too
low are not even. More intervals fail by being too low, rather than too
high, across all methods. This occurs in spite of the linkage
disequilibrium method having a small upward bias. The mapping of
‘negative’ estimates to infinity skews the distribution; an infinite upper
bound is, of course, never too high. It is believed that the distribution
of intervals that do not contain the true value are symmetric when
considered in terms of r2; however, as the true value of r2 is not as
precisely known as that of Ne, this issue remains unclear. Whether or
not this issue is of concern in practice would depend on the context.
It is the goal of the authors to incorporate the new methods for

generating confidence intervals for the linkage disequilibrium method
into a user friendly software package in the future.
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Table 2 Summary of coverage results for the various methods based on a standard 95% confidence interval and using a Pcrit of 0.05

Scenario Parametric J Pseudo-jackknife J’ Jackknife-χ2 J* Jackknife-normal

1 0.944 45.0 0.920 203.2 0.937 54.6 0.926

2 0.949 45.0 0.937 52.2 0.950 48.8 0.934

3 0.944 190.0 0.938 201.9 0.944 199.1 0.934

4 0.962 190.0 0.956 3271.6 0.954 203.8 0.948

5 0.960 1225.0 0.959 1251.4 0.958 1264.6 0.956

6 0.930 2415.0 0.925 24 864.6 0.930 2313.0 0.932

7 0.868 676.8 0.929 450.4 0.952 388.6 0.952

8 0.880 726.4 0.944 474.5 0.958 392.8 0.952

9 0.880 2848.7 0.944 1625.5 0.958 392.8 0.952

10 0.951 3644.6 0.930 3953.8 0.958 3513.0 0.950

11 0.935 4005.0 0.931 4069.0 0.936 3908.1 0.940

12 0.836 2858.2 0.913 1633.6 0.956 1387.8 0.958

13 0.722 14 765.0 0.736 12 013.2 0.916 5831.4 0.907

14 0.905 15 389.3 0.898 16 359.4 0.939 12 277.6 0.939

15 0.669 20 513.6 0.672 29 964.6 0.952 4978.7 0.956

16 0.825 25 236.7 0.831 19599.8 0.969 8491.5 0.970

17 0.846 30 407.8 0.868 28 527.6 0.974 12 041.9 0.974

18 0.694 3078.7 0.813 1896.4 0.949 5137.8 0.943

19 0.741 99 219.7 0.730 104 310.6 0.915 39 720.8 0.916

20 0.592 18 347.9 0.723 11 055.6 0.954 7350.3 0.955

The coverage and degrees of freedom values are averages taken across all replicate populations for a particular scenario. These data are also shown graphically in Figure 2.
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