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Fine-scale landscape genetics of the American badger
(Taxidea taxus): disentangling landscape effects and
sampling artifacts in a poorly understood species

EM Kierepka and EK Latch

Landscape genetics is a powerful tool for conservation because it identifies landscape features that are important for maintaining
genetic connectivity between populations within heterogeneous landscapes. However, using landscape genetics in poorly
understood species presents a number of challenges, namely, limited life history information for the focal population and
spatially biased sampling. Both obstacles can reduce power in statistics, particularly in individual-based studies. In this study,
we genotyped 233 American badgers in Wisconsin at 12 microsatellite loci to identify alternative statistical approaches that can
be applied to poorly understood species in an individual-based framework. Badgers are protected in Wisconsin owing to an
overall lack in life history information, so our study utilized partial redundancy analysis (RDA) and spatially lagged regressions to
quantify how three landscape factors (Wisconsin River, Ecoregions and land cover) impacted gene flow. We also performed
simulations to quantify errors created by spatially biased sampling. Statistical analyses first found that geographic distance was
an important influence on gene flow, mainly driven by fine-scale positive spatial autocorrelations. After controlling for geographic
distance, both RDA and regressions found that Wisconsin River and Agriculture were correlated with genetic differentiation.
However, only Agriculture had an acceptable type I error rate (3–5%) to be considered biologically relevant. Collectively, this
study highlights the benefits of combining robust statistics and error assessment via simulations and provides a method for
hypothesis testing in individual-based landscape genetics.
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INTRODUCTION

Landscape genetics has become an increasingly important tool for
conservation and management by identifying landscape factors that
influence genetic connectivity across heterogeneous landscapes. Loss of
genetic connectivity across landscapes can depress genetic diversity
and potentially increase extinction risks (Epps et al., 2005; Dixo et al.,
2009; Clark et al., 2010; Ernest et al., 2014), so landscape genetics can
provide information to help understand and potentially mitigate the
effects of land cover change in natural populations (for example,
fragmentation, habitat loss, anthropogenic disturbance; Segelbacher
et al., 2010). To understand how landscape heterogeneity may impact
genetic connectivity within a focal species, researchers typically
utilize field studies (for example, habitat selection or occupancy) to
develop landscape resistance models. This method of hypothesis
development has been successful in landscape genetics, and multiple
studies have shown that important landscape features in field studies
such as land cover (Goldberg and Waits, 2010; Garroway et al., 2011),
climatic conditions (Row et al., 2014) and anthropogenic barriers
(Blanchong et al., 2008; Latch et al., 2011) also strongly influence gene
flow. When field data corroborates correlations from landscape
genetics (for example, avoided habitats also prevent gene flow;
Shafer et al., 2012), meaningful conclusions about genetic connectivity
can be drawn and used to develop sound conservation and
management plans.

Although landscape genetics has certainly proven to be a robust
technique for species with extensive field data (for example, Cushman
et al., 2006; Schwartz et al., 2009; Shafer et al., 2012), application to
poorly understood species can be difficult. Ideally, investigators should
develop specific hypotheses about how landscape heterogeneity
impacts gene flow in a focal species within the study area and
parameterize resistance models accordingly (for example, Balkenhol
et al., 2009; Anderson et al., 2010). For many species, however, we lack
information about processes that might affect gene flow such as
habitat preferences, distribution and population structure within a
specific study area. Most commonly, expert opinion has been used as a
proxy for relevant field data (Zeller et al., 2012) despite criticism over
decreased accuracy (Pearce et al., 2001; Clevenger et al., 2002),
inherent biases and inability to assess accuracy in expert opinion
(Spear et al., 2010; Zeller et al., 2012). One potential solution to relying
on expert opinion in poorly understood species is to employ
alternative statistical methods that do not require extensive parame-
terization of landscape resistance models.
Ordination and regression methods (for example, Legendre and

Legendre, 1998; Fortín and Legendre, 2010; Wang, 2013) have two
main advantages that could alleviate problems associated with a lack of
relevant field data. First, these methods offer considerable flexibility in
the type of landscape and genetic variables that can be evaluated,
negating reliance on a priori parameterization of landscape resistance
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hypotheses. Furthermore, ordination and regression techniques are
considered more robust than correlation statistics (for example,
Mantel tests; Fortín and Legendre, 2010), and therefore, may limit
type I or II errors (Balkenhol et al., 2009; Kierepka and Latch, 2015).
Recent studies have demonstrated the utility of ordination and
regression techniques for detecting complex, interacting influences
on gene flow within continuously distributed, well-studied species but
have applied these techniques in a population-based framework (that
is, between genetic clusters, Reding et al., 2012; or between sampled
areas, Blanchong et al., 2008; Robinson et al., 2012). Extending such
methods to poorly understood species within a single study area or
population requires individual-based approaches that can simulta-
neously test biologically relevant patterns in gene flow as well as
disentangle landscape effects from spurious statistical correlations.
All individual-based landscape genetic statistics, even ordination

and regression techniques, are likely to suffer from some degree of
error owing to spatially biased sampling (that is, sampling individuals
in accessible areas or opportunistically; Storfer et al., 2007). Multiple
statistics in landscape genetics already have elevated type I error rates
(that is, false significance; Balkenhol et al., 2009; Graves et al., 2013;
Guillot and Rousset, 2013), and with spatially biased sampling further
creating non-random genetic variation (Schwartz and McKelvey, 2009;
Oyler-McCance et al., 2013), authors need a method to prevent
erroneous conclusions about gene flow. Gene flow simulations provide
a means of replication within a single landscape and control over
processes that result in observed genetic variation (for example,
Epperson et al., 2010; Landguth et al., 2010) and thus can quantify
how often statistics falsely identify focal landscape factors as significant
(that is, type I error rates for each landscape factor). By quantifying
type I errors using gene flow simulations, investigators can better
understand how landscape heterogeneity impacts gene flow in poorly
understood species and separate those effects from sampling artifacts.
The American badger (Taxidea taxus) is one of the most poorly

understood mesocarnivore species in North America. Badgers inhabit
treeless habitats across much of central and western North America,
but much of their life history is unknown due to their nocturnal,
semifossorial life style. Field investigations have occurred in badgers
(for example, British Columbia, Apps et al., 2002; Ohio, Duquette and
Gehrt 2014; Wyoming, Messick and Hornocker 1981), but few
commonalities exist owing to high variability in ecological traits, such
as abundance, territoriality and habitat selection. This variability is
particularly concerning because differences in life history also create
disparate patterns in gene flow across landscapes and spatial scales
(Short Bull et al., 2011; Zeller et al., 2012) making development of
landscape resistance models in understudied species difficult. In this
study, we focused on badgers in Wisconsin, an area where population
characteristics such as abundance, habitat preferences and movement
behavior are unknown. Combined with the unavoidable spatially
biased sampling, the overall lack of relevant life history data on
badgers within Wisconsin presents a substantial challenge for deci-
phering between potential errors (for example, improper parameter-
ization and type I errors) and actual patterns in gene flow.
In this study, we genotyped 233 individual badgers at 12 micro-

satellite loci to examine the utility of integrating ordination and
regression techniques with simulations for overcoming challenges
associated with limited life history and spatially biased sampling. To
identify landscape factors that influence badger gene flow, this study
used ordination and regression techniques to test whether isolation-
by-distance (IBD; Wright, 1943), badger’s preference for treeless
habitats and a major topographic barrier within the study area are
correlated with genetic variation of badgers in Wisconsin. Ordination

and regression techniques can test for these factors simultaneously,
making them highly useful for disentangling multiple influences on
gene flow without the need for parameterizing landscape hypotheses.
Obtaining a large number of samples required a statewide citizen-based
effort where citizens reported badger sightings such as active burrows
and road-kills (Kierepka, 2014). This method of sampling resulted in
samples clumped around populated areas, a factor that could lead to
erroneous conclusions about gene flow (Schwartz and McKelvey, 2009;
Oyler-McCance et al., 2013). Therefore, we also performed gene flow
simulations to calculate how often our chosen statistics falsely identified
landscape effects (that is, type I errors) to separate significant results
created by sampling and actual landscape effects.

MATERIALS AND METHODS

Study area
Our study area (110 745 km2) encompasses the state of Wisconsin in the Upper
Midwest, USA. The landscape exhibits a transition from a mixture of native
grasslands and agriculture in the south to more forested habitats as latitude
increases. Badger activity has been recorded in every county in Wisconsin based
on citizen-based monitoring of badgers from 2009 to 2014 (Kierepka, 2014)
and Wisconsin Department of Natural Resources mammal surveys from 1987
to 2008 (Wydeven et al., 1998; Kitchell, 2008); both suggest badgers have a
relatively continuous distribution throughout Wisconsin. Despite their con-
tinuous distribution within Wisconsin, recent genetic evidence suggests that
badgers in Wisconsin represent a unique genetic population within North
America owing to the Mississippi River and Great Lakes (Kierepka, 2014).

Sample collection
As badgers are protected from harvest in Wisconsin as a Species with
Information Needs (Wisconsin Department of Natural Resources, 2008), hair
(n= 111) and tissue (n= 139) samples (n= 250 total) were collected from 2004
to 2013. All badgers sampled before 2009 were deceased animals, from either
road-kills or incidental captures (n= 47), whereas samples collected from 2009
to 2013 were a mix of live animals (n= 106) and road-kills (n= 90). Live
animals consisted of either live captures (n= 25) or via hairs collected from
active burrows (n= 81).
Hair collection involved attaching a snare (modified from British Columbia

Ministry of Environment Ecosystems Branch for the Resources Information
Standards Committee, 2007) to the entrance of an active burrow (that is,
activity within burrow reported within 24 h) and waiting overnight for the
animal to pass under the snare. A successful hair collection typically contained
20–50 long banded hairs with intact roots, ensuring a sufficient number of hairs
for molecular analysis. The majority of hair snares (78/81) were deployed
during March–August, when family groups were together based on the citizen
monitoring program in Wisconsin. Road-kills were collected from March to
October, but peaks in road-kills occurred from August to October, roughly
corresponding to the hypothesized breeding season and dispersal of juveniles.

Laboratory methods
DNA was extracted using Qiagen DNEasy Blood and Tissue Kits (QIAGEN
Inc., Valencia, CA, USA) for both tissues and hairs. Extractions used a 1-mm3

piece of tissue or 10–20 hairs with intact follicles in a user-refined extraction
protocol (Qiagen, 2006). Hairs were processed on different days than tissue
samples in dedicated laboratory space. We amplified all samples at 12
microsatellite loci (Supplementary Table S1) developed in American badger
(Tt-1, Tt-2, Tt-3 and Tt-4; Davis and Strobeck, 1998), American mink
(Neovison vison; Mvis072; Fleming et al., 2002), American marten (Martes
americana; Ma-1; Davis and Strobeck, 1998) and European badger (Meles meles;
Mel112, Mel101, Mel111, Mel108, Mel14 and Mel1: Carpenter et al., 2003;
Domingo-Roura et al., 2003). Multiplex PCRs were conducted in sets of 2–4
primers in 10-μl reaction volumes (Supplementary Table S1). Amplified
products were genotyped on an ABI 3730 DNA Analyzer (Life Technologies,
Grand Island, NY, USA) at the University of Wisconsin Biotechnology Center,
and alleles were sized using the program GeneMarker (SoftGenetics LLC, State
College, PA, USA).
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We utilized a comparative multi-tube approach for genotyping hair samples
(Frantz et al., 2003; modified from Navidi et al., 1992 and Taberlet et al., 1996)
where each hair extract (two for most samples, n= 85; single extraction, n= 17)
was genotyped three (heterozygotes) to seven times (homozygotes) to validate
resultant genotypes. Tissue samples were collected from road-killed animals
and varied considerably in quality, so we also re-extracted and re-genotyped
50% of tissue samples (n= 68). All resultant homozygotes and 25% of
heterozygotes in tissues were re-genotyped as a final check. In total, we
identified six instances of allelic dropout (all hairs) in the 918 repeated
genotypes (0.65% error rate). Any individuals with o10 genotypes were then
culled from the data set. As a final step to remove highly related individuals, we
calculated relatedness values (r) between all individuals in the program SPAGEDI

v. 1.2 (Hardy and Vekemans, 2002). Any r that was outside three times the
interquartile range of all r values (that is, outlier in distribution) was considered
highly related (r40.645). One individual from each highly related pair was then
removed from the data set (n= 3 individuals removed), resulting in 233
individuals in our total data set (17 samples culled; Supplementary Table S2;
Figure 1).

Population structure
We used two complementary Bayesian clustering approaches (non-spatial
STRUCTURE 2.2.3; Pritchard et al., 2000 and spatial BAPS 5; Corander et al.,
2008) to characterize population structure within Wisconsin. In our non-spatial
approach, we employed Bayesian clustering in STRUCTURE with 10 independent
runs (100 000 Markov chain Monte Carlo (MCMC) burn-in, 100 000
permutations) at each hypothesized number of genetic clusters (K) under the
admixture, correlated alleles model (Pritchard et al., 2000). The optimal value
for K among tested values (K= 1–10) was determined using ΔK (Evanno et al.,
2005) because likelihood values plateaued and variances among runs grew
larger at values of K above the optimum (Pritchard et al., 2000; Supplementary

Figure S1a). Once the optimal K was identified, 10 longer runs of 1 000 000
MCMC burn-in, 1 000 000 permutations were conducted to calculate the
proportion of each individual’s genome that belongs to each cluster (q).
Average q-values across the 10 runs were calculated in CLUMPP (Jakobsson
and Rosenberg, 2007), and individuals were assigned to a cluster based on their
highest q.
In our spatially informed approach, we employed BAPS 5. We tested K= 1–10

(10 replicates per K) using the ‘Spatial Clustering of Individuals’ option in BAPS.
Location information for each individual was recorded in latitude and longitude
coordinates or using the ‘Create Random Points’ function within ArcMap v.
10.1 for individuals with less precise location information (that is, counties,
Public Land Survey System locations; n= 42). Maximum likelihood and highest
posterior probability were used to determine the optimal number of genetic
clusters in the sample. Admixture between inferred clusters was calculated using
500 simulations based on observed allele frequencies. For the total sample and
the inferred clusters, we calculated population-specific measures of genetic
diversity (allelic richness, number of alleles and heterozygosity and FIS) and
genetic differentiation among clusters (FST) in the R package diveRsity
(Keenan, 2013; R Core Team, 2013). Deviations from Hardy–Weinberg and
linkage equilibria were calculated in GENEPOP (Raymond and Rousset, 1995)
using a corrected alpha for multiple tests (α= 0.012; false discovery rate;
Benjamini and Yekutieli, 2001), and null allele frequencies were calculated in
MICRO-CHECKER (van Oosterhout et al., 2004).

Barriers to gene flow
To test for the effect of geographic distance on genetic differentiation, we
quantified patterns of IBD within Wisconsin using two complementary
approaches. We used a simple Mantel test to test for an association between
matrices of pairwise genetic and geographic distances and distance-based
redundancy analysis (dbRDA) to test for significant effects of geography
(latitude and longitude) on the distribution of genetic variation across the
study area. Both statistical tests require pairwise genetic distances, so we
calculated genetic distances between all individuals (Rousset's a; Rousset, 2000)
in the program SPAGEDI. All IBD tests (simple Mantel test and dbRDA) were
conducted in the R package VEGAN using the functions ‘mantel’ and ‘capscale’
(Oksanen et al., 2008).
In addition to tests for IBD, spatial autocorrelations were used to detect

departures from random mating (that is, panmixia) within 5-km distance
categories. Individuals separated by small geographic distances are expected to
exhibit positive spatial autocorrelations (that is, be more genetically similar than
expected under panmixia). Statistical significance in spatial autocorrelations was
assessed after 1000 permutations using custom code in R. Mantel tests, dbRDA
and spatial autocorrelations were run with the heavily sampled counties
subsampled by factors of 5 (0, 5, 10, 15 and 20 individuals were included
from Bayfield, Dane and Iowa counties) to alleviate any potential sampling
biases (Figure 1).
Population structure is often influenced by discrete barriers (isolation-by-

barrier) in addition to geographic distance (IBD). We used a partial Mantel test
to determine correlational significance between a genetic distance matrix
(Rousset’s a) and a barrier matrix while controlling for geographic distance.
The barrier matrix was a binary indicator of whether a pair of individuals was
on the same (0) or different (1) sides of the Wisconsin River, the most
prominent potential barrier to badger gene flow in Wisconsin. Calculations
were performed using the R package VEGAN, and statistical significance was
assessed via Pearson correlation coefficients after 1000 permutations.

Landscape factor derivation
In nature, many different landscape factors can work in tandem to create
observed patterns of genetic variation (for example, Cushman et al., 2006).
Thus we sought to incorporate both barriers and ecological variables
(collectively called landscape factors) into a cumulative model that explains
how all landscape factors influence genetic variation in badgers. Ecological
variables included level III Ecoregions and land cover (Figure 2). We used level
III Ecoregions (Figure 2) to define broad-scale regions of similar abiotic (that is,
climate and soil) and biotic assemblages (in Wisconsin: Northern Lakes and
Forest (NLF); North Central Hardwood Forest (NCHF), Driftless Area (DA),

Figure 1 Sampling locations of 233 badgers with sufficient genetic data for
analysis. Counties within Wisconsin are outlined in gray and the three most
heavily sampled counties (Bayfield, Dane and Iowa counties) are labeled and
highlighted in gray. All states surrounding Wisconsin are labeled.
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Figure 2 Predictor variables for each georeferenced badger describe its location according to three landscape features (Wisconsin River, level III Ecoregion
and land cover; gray in print). For the Wisconsin River (blue line), each individual was coded as either east or west of the river (a). All badger locations fell
within one of four level III Ecoregions within Wisconsin (b): Driftless Area (DA), Northcentral Hardwood Forests (NCHF), Northern Lakes and Forest (NLF),
and Southwestern Wisconsin Till Plain (SWTP). Land cover data for each badger was calculated as the percentage of land cover within a circular buffer
surrounding each badger’s location (most predominant land cover class given by point’s color; c). A full color version of this figure is available at the Heredity
journal online.
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and Southeastern Wisconsin Till Plain (SWTP); Omernik, 1987). The full
description of how level III Ecoregions are defined is available in (Omernik,
1987), but briefly, two ecoregions (NLF and NCHF) are largely forested,
whereas DA and SWTP are dominated by agriculture. NLF has the least
agriculture among the included ecoregions with more sandy plains and
coniferous forests than NCHF. NCHF, in contrast, contains a mosaic of forest,
wetland and agricultural areas with varied soils types. SWTP is primarily
agriculture with silt–loam soils. DA was left unglaciated, resulting in greater
variability in topography (prairies at higher elevations and forests within
valleys) and soil types (exposed bedrock to clay).
In addition to level III Ecoregions, land cover variables were produced via an

intersection of two rasters: native soil associations within Wisconsin (Hole,
1976) and land cover (NLCD2006; Fry et al., 2011), and then summarized into
three land cover categories (Native Open, Forest and Agriculture) that represent
a continuum of habitat suitability for badger (Figure 2). Proportions of each
land cover category were calculated within 5-km circular buffers drawn around
each badger location. Proportions of Native Open, Forest and Agriculture were
highly correlated (r=− 0.35 to − 0.65, all Po0.001), so only one land cover
variable was used within each statistical model at a time.
We also attempted to include anthropogenic infrastructure as variables,

including roads (proportion of roads or road densities in buffers) and urban
areas (proportion roads and urban combined or urban alone), but little
variability was observed in these values (175–203/233 observations had o0.100
urban, mean= 0.0733–0.0879 across buffer widths). Furthermore, unlike many
species that exhibit genetic differentiation according to roads (for example,
Cushman and Lewis, 2010; Frantz et al., 2010a, b; Frantz et al., 2012; Galpern
et al., 2012; Robinson et al., 2012), American badgers do not prefer habitats
with ample cover (that is, forests) or avoid even large roads (Apps et al., 2002).
Badgers are thought to prefer roadside habitats because of the loose soils and
abundant rodent prey (Messick and Hornocker, 1981; Apps et al. 2002).
Although many of our samples were road-kills, a potential mechanism for a
barrier effect, burrows in Wisconsin were often observed on roadsides and
photo evidence of badger activity included several instances of individuals
crossing large highways. The low variability of roaded habitats within each
buffer and no apparent mechanisms for barrier effects precluded the
incorporation of roads within our landscape genetic analysis.

Landscape genetic analysis
Ordination techniques like spatial principal components analysis (sPCA;
Jombart et al., 2008) are highly effective at detecting both discrete barriers
and genetic gradients, which makes them ideal for disentangling complex
patterns of gene flow (Jombart et al., 2008). We used the R package ADEGENET

(Jombart, 2008) to perform sPCA calculations and significance tests for global
and local patterns using 1000 permutations. We used an inverse distance-
weighting network so that all badgers were considered neighbors. The first two
sPCA axes explained the most variation (eigenvalues= 0.0889 and 0.0571, all
others o0.0459; Supplementary Figure S3), so the spatially lagged scores for
these axes were retained as dependent variables in landscape genetic analysis.
We utilized two approaches to distinguish between landscape factors and

geographic distance, both of which can drive patterns in sPCA axes (Jombart
et al., 2008). We performed a partial RDA, a constrained ordination technique
that is the multivariate analog to simple linear regression (Legendre and
Legendre, 1998). Previous simulation studies in both population- (Fortín and
Legendre, 2010) and individual-based (Kierepka and Latch, 2015) studies have
demonstrated that RDA has much greater power than Mantel tests to detect
relationships in autocorrelated data. In individual-based studies, however, RDA
can suffer from type I errors (that is, false significance; Kierepka and Latch,
2015), so additional steps are needed to control for any potential errors. The
spatially lagged scores from the two retained sPCA axes were analyzed together
as explanatory variables with both latitude and longitude in the conditional
matrix (that is, variables to be controlled for in final models). The barrier
(Wisconsin River) and ecological (Ecoregion or Agriculture) variables were
included as predictors (See Figure 2 for classifications). To prevent correlations
in our explanatory variables, we calculated variance inflation factors (VIF) for
our predictor variables using the function ‘vif.cca’, but no such correlations
were found (all VIFo1.000). VEGAN provides a stepwise model selection

procedure to identify the variables that best explained genetic differences

among individuals in the function ‘ordistep’ followed by significance testing in

‘anova.cca’ (10 000 permutations for both functions; Oksanen et al., 2008).
We used spatially lagged regression models as a second approach to evaluate

the evidence for landscape influences on sPCA axes by controlling for the

potentially confounding influence of IBD. Spatially lagged regression models

evaluate each the spatially lagged score of each sPCA axis individually, which

provides further evidence for specific influences on patterns found within the

sPCA. It is unknown how spatially lagged regression performs in individual-

based landscape genetics, because the limited studies have utilized this

technique in a population-based framework (for example, Robinson et al.,

2012). Spatially lagged regression models control for IBD by including a spatial

weighting matrix (Wij) and ρ, a parameter that accounts for the lack of

independence between individuals (Legendre and Legendre, 1998). The

weighting matrix was constructed based on an inverse weighting calculation

as this procedure is thought to best approximate spatial autocorrelation under

IBD (Robinson et al., 2012). Regression models: Gi= ρ×Wij×Gj+β×X+ε
included sPCA scores for a focal individual i (Gi) and all other individuals (Gj)

along with explanatory barrier and landscape variables (X), their estimated

effects (β), and residual error (ε; Legendre and Legendre, 1998). A LaGrange

Multiplier test then tests for spatial autocorrelation within residuals of the

regressions where a significant test indicates autocorrelation remains within the

data (Bivand et al., 2011). One major advantage of spatial regression is the

ability to conduct model selection procedures such as Aikaike Information

Criterion (AIC) while providing regression coefficients and measures of

variability that are largely unavailable in Mantel tests (Fortín and Legendre,

2010; Guillot and Rousset, 2013). Model selection followed the method by

Burnham and Anderson’s (2002) where models with a ΔAICo2.0 were

considered candidate models for explaining an sPCA axis. Parameter estimates

were produced through model averaging of all candidate models where

significant parameters do not include zero (Burnham and Anderson, 2002).

All spatial regression methods were performed using the ‘lagsarlm’ function in

R package SPDEP (Bivand et al., 2011).

Type I error assessment
To assess type I errors within sPCA, partial RDA and spatially lagged regression

models, we simulated 100 populations where only geographic distance

influenced gene flow in the program CDPOP v. 1.4 (Landguth and

Cushman, 2009). CDPOP allows manipulation of both landscape resistance

to gene flow and assignment of demographic characteristics. We aimed to

create a single population that exhibited IBD, so the underlying landscape was

homogeneous. Both sexes had a similar dispersal regime because strong sex-

biased dispersal has not been recorded in badgers (Messick and Hornocker,

1981; Hoodicoff, 2003; Kierepka et al., 2012). Both sexes dispersed according to

an inverse square distribution, because this distribution ensures short distance

dispersal is much more common than long distance. Mating was sexual with

replacement (that is, both sexes could breed multiple times) and generations

were overlapping.
The actual census size and population density of badgers within Wisconsin is

unknown, so the majority of individuals within simulated populations were

placed randomly on Wisconsin’s landscape excluding urban and open water

habitats. The initial population for all simulations consisted of 1400 individuals,

1167 with random locations and 233 with geographic coordinates identical to

our empirical data set. After 250 generations, we sampled the 233 individuals

that had the same geographic locations as the empirical data set. Therefore, we

had 100 independent populations that were sampled identically to our

empirical data set that only exhibited IBD (verified via simple Mantel tests;

all r40.0512, all Po0.025).
For each simulated population, we then performed the same sPCA, partial

RDA and spatially lagged regression analyses as the empirical data set. A type I

error occurred when a barrier (Wisconsin River) or ecological (Ecoregion, land

cover) factor was falsely significant as in 45 of the 100 simulated population\s

(alpha= 0.05).
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RESULTS

Population structure
In the BAPS analysis, the optimal solution was K= 1 (−11197.19). The
STRUCTURE analysis indicated stronger support for K= 2 than for K= 1
and a second small peak at K= 4 (Supplementary Figure S1a).
A second peak in ΔK can sometimes be indicative of additional
substructure (as observed in hierarchical island models; Evanno et al.,
2005), but iterative runs of the K= 2 scheme failed to find any
additional substructure (that is, all q-values ranged from 0.4 to 0.6).
Furthermore, an inspection of the STRUCTURE assignments at K= 2 and
K= 4 revealed gradient patterns instead of any discrete barriers,
and relatively equal probabilities of assignment to each cluster
(Supplementary Figure S1b). As a final check, we evaluated FST
between the two putative clusters from STRUCTURE, and it was not
significant (FST= 0.008, P= 0.433). The resultant gradient in q-values
at K= 2, insignificant FST and results from BAPS suggests that the
inferred structure was likely an artifact of spatial autocorrelation
(Schwartz and McKelvey, 2009) or IBD (Frantz et al., 2009).
We observed a heterozygote deficiency within Wisconsin over all

loci in a global analysis (Table 1) and for seven individual loci (all
Po0.001). These deviations from Hardy–Weinberg equilibrium are
expected if any deviation from panmixia exists within the data set or if
there are genotyping errors. All loci were highly polymorphic ranging
from 7 to 15 alleles per locus (average= 11.58 alleles/locus) and
showed no linkage disequilibrium (all P40.025). Although MICRO-
CHECKER identified an overall excess of homozygotes, the calculated
potential null allele frequencies were low (0.000–0.1548) and dis-
tributed across seven loci. It is therefore likely that the homozygote
excess we observed is due to a deviation from panmixia rather than
genotyping error, and thus we retained all alleles in subsequent
analyses to maximize explanatory power (Dharmarajan et al., 2013).
Although it is improbable that low frequency null alleles were present
in our data set, it is unlikely that they would bias our conclusions of
this study given their low frequency and the specific goals of this study
(Dakin and Avise, 2004; Chapuis and Estoup, 2007; Carlsson, 2008).

Barriers to gene flow
Results from the dbRDA analysis supported the Bayesian clustering
and Hardy–Weinberg equilibrium analyses that indicated a role for
geography driving gene flow patterns. However, the dbRDA analysis

was significant for only latitude (F= 2.404, P= 0.008), not longitude
(F= 1.009, P= 0.124). Also, the simple Mantel test did not show a
significant correlation between matrices of genetic and geographic
distances (r= 0.012, P= 0.312; Supplementary Figure S2). These
results suggest that variability in longitude across Wisconsin may be
too small to detect IBD.
Despite the equivocal evidence for IBD in dbRDA and Mantel test,

we found support for fine-scale spatial autocorrelations. Genetic
distances between proximate individuals (⩽25 km) were smaller
than expected under panmixia in the spatial autocorrelation
(Supplementary Figure S3). In particular, individuals separated by
5 km were highly autocorrelated, indicating that individuals found
closer together were more genetically similar. One explanation for the
strong positive autocorrelations at 5 km is that we sampled relatives in
Dane, Iowa and Bayfield counties where 53/90 pairwise comparisons
(Dane= 3, Iowa= 21 and Bayfield= 29) under 5 km occurred. How-
ever, most of these samples within these comparisons (n= 37
individuals) were road-killed individuals (n= 10) sampled across years
or live captured adult animals at separate burrows (n= 11). The
remaining samples were hair snared during May 2010 in Bayfield
County (n= 16), a time where badger kits are still dependent on their
mothers. Based on our protocol of only utilizing long hairs typical of
adults in extractions, it is unlikely we sampled mothers and their kits
at separate burrows. As a final test, we completely removed these
counties in another set of spatial autocorrelation tests, and the strong
positive autocorrelation remained at 5 km. Therefore, we argue that
the positive spatial autocorrelation is not an artifact of sampling
relatives.
We found no evidence for isolation-by-barrier resulting from the

Wisconsin River in either Bayesian analyses or partial Mantel tests.
Visual inspection of population assignments from STRUCTURE revealed a
gradient in q-values that lacked a strong genetic break along the
Wisconsin River. The partial Mantel test also revealed a lack of barrier
effect (r=− 0.0266, P= 0.992).

Landscape genetic analysis
Spatial PCA axes revealed two main patterns within Wisconsin: a
latitudinal cline across the entire state (Axis 1) and an area of high
genetic similarity in central Wisconsin (Axis 2; Figure 3). Both axes
had signatures of spatial autocorrelation (Moran’s I= 0.572 and
0.301), and Axis 1 explained more variation in genetic diversity than
Axis 2 (variance= 0.175 vs 0.152; Supplementary Figure S4). Loci
Mel1, Tt-2, Mvis072, Mel101 and Mel108 were most informative for
Axis 1 and Mel111, Tt-2 and Mel1 were most useful for Axis 2. The
Monte-Carlo test confirmed the existence of at least one global pattern
(observed: 0.010, P= 0.001) but no local pattern (observed: 0.006,
P= 0.362).
Results from the partial RDA and spatially lagged regressions

indicated that the Wisconsin River and Agriculture were correlated
with the two sPCA axes. In the partial RDA analysis, both the
Wisconsin River (F= 22.44, Po0.001) and Agriculture (F= 59.416,
Po0.001) were retained after model selection. Ecoregions, in contrast,
were not included in the final RDA models. Only Agriculture was
found to be associated with sPCA spatially lagged scores for both sPCA
axes; Forest or Native Open were not retained as significant variables
when used as the land cover variables.
All top spatially lagged regression models for Axis 1 contained the

Wisconsin River and model averaging revealed that the parameter
estimate did not include zero (parameter estimate=− 0.225± 0.144;
Table 2). However, observed models also had relatively high residual
spatial autocorrelations (LaGrange Multiplier test:= 1.967–4.768,

Table 1 Locus-specific summary of genetic variation for n=233

badgers in Wisconsin

Locus A HO HE FIS FIS lower CI FIS upper CI

Mel111 11 0.68 0.85 0.198* 0.127 0.268

Mel14 10 0.81 0.83 0.022 −0.035 0.083

Mel1 13 0.81 0.87 0.071* 0.012 0.126

Tt-1 13 0.79 0.81 0.024 −0.041 0.084

Tt-2 7 0.59 0.68 0.133* 0.044 0.219

Ma-1 9 0.68 0.68 0.000 −0.079 0.083

Tt-3 15 0.77 0.88 0.126* 0.063 0.187

Tt-4 14 0.83 0.88 0.064* 0.008 0.122

Mvis072 9 0.64 0.81 0.209* 0.136 0.283

Mel101 15 0.81 0.86 0.048 −0.008 0.102

Mel108 13 0.73 0.78 0.064 −0.008 0.123

Mel112 13 0.60 0.81 0.261* 0.184 0.337

Overall 11.83 0.73 0.81 0.103* 0.080 0.122

Abbreviation: CI, confidence interval. Metrics included are the number of alleles per locus (A),
observed heterozygosity (HO), expected heterozygosity (HE), inbreeding coefficients (FIS) and
95% confidence intervals for FIS for each locus. Asterisks indicate significant deviations from
Hardy–Weinberg equilibrium at a corrected α=0.012.
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P= 0.0290–0.116), suggesting that IBD was also associated with Axis 1.
All top models for Axis 2 included Agriculture (Agriculture,
Agriculture+River, Agriculture+Ecoregion; Table 2). Model averaging
between these three models indicated that Agriculture was the only
significant variable (model averaged parameter: − 0.318± 0.284).
Observed models indicated a lack of remaining spatial autocorrelation
in Axis 2 (LaGrange test: 0.379–0.517, P= 0.439–0.538). Like the RDA
analysis, when Forest and Native Open were included as land cover
variables, they were not significantly associated with sPCA spatially
lagged scores of either axis.

Type I error assessment
Simulations revealed similar type I error rates for partial RDA and
spatially lagged regression (Figure 4). The Wisconsin River (52–57/100
populations) and Ecoregions (68–76/100 populations) were falsely
detected as ecological variables affecting gene flow much more
frequently than our 5 tests out of 100 cutoff. A likely cause of high
error rates was that residual autocorrelation (that is, IBD) remained
within the data (LaGrange Multiplier test: all Po0.062) in almost all
cases of significance. This high false significance rate in simulated
populations suggests that our finding of an association between the
Wisconsin River and spatially lagged scores from Axis 1 in our
empirical data set was likely an error. A lack of barrier effect for the
Wisconsin River was also supported by the Bayesian analyses and
partial Mantel test. In contrast, Agriculture was falsely detected as an
ecological variable affecting gene flow in o5% of populations
regardless of the test (3–5/100 populations; Figure 4). Therefore, our
finding of an association between Agriculture and the spatially lagged
regression scores was unlikely to be a type I error in our empirical data
set and represents an ecological variable that likely impacts gene flow.

DISCUSSION

There are many challenges associated with poorly understood species
that can affect conclusions about how features of the landscape
influence gene flow. In badgers, both limited life history data and

Table 2 Model selection results for spatially lagged regressions on

sPCA axes 1 and 2

Model AIC ΔAIC wi

Axis 1
Eco+River 169.66 0.00 0.499

Ag+Eco+River 171.46 1.80 0.203

River 171.49 1.83 0.200

Ag+River 172.94 3.28 0.097

Ag 199.40 29.74 0.000

Ag+Eco 201.15 31.49 0.000

Eco 203.11 33.45 0.000

Null 204.56 34.90 0.000

Axis 2
Ag 216.68 0.00 0.482

Ag+River 218.20 1.52 0.225

Ag+Eco 218.52 1.84 0.192

Ag+Eco+River 219.90 3.22 0.096

Eco 227.58 10.90 0.002

Null 229.16 12.48 0.000

River 229.93 13.25 0.000

Abbreviation: AIC, Aikaike Information Criterion. Top models (ΔAICo2.0; in bold) for Axis 1 all
included the Wisconsin River (River), whereas models for Axis 2 incorporated Agriculture (Ag).
Ecoregion (Eco) was not significant for either axis following model averaging.

Figure 3 Spatially lagged scores for the first two sPCA axes for Wisconsin
badgers. Scores from axes 1 (a) and 2 (b) were correlated with the
Wisconsin River and the percentage of Agriculture, respectively. Dark colors
(black and dark gray) represent negative sPCA scores while positive values
are light in color (white and light gray). More extreme values in sPCA axes
are displayed with larger squares.
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spatially biased sampling were obstacles that could potentially con-
found our interpretation of landscape genetic statistics. Our study
demonstrates that combining ordination and regression statistics with
simulations to quantify errors can help disentangle potential errors
from landscape effects on gene flow in an individual-based framework.
RDA and spatially lagged regression did not require calculation of
connectivity indices (Kierepka and Latch, 2015), which was critical for
this study given the nearly complete lack of relevant life history data.
With simulations, we were able to quantify the confounding effects of
spatially biased sampling to separate type I errors from biologically
relevant landscape effects on gene flow. Following error assessment,
our genetic data set indicated that geographic distance is the strongest
influence on badger gene flow within Wisconsin, with Agriculture
having a lesser role.

Landscape genetics of badgers in Wisconsin
Geographic distance was the primary influence on gene flow in
badgers, as evidenced by dbRDA, spatial autocorrelations and sPCA.
Both axes in the sPCA had strong signatures of spatial autocorrelation,
particularly in Axis 1, further demonstrating that geographic distance
influenced gene flow in badgers. The non-significant simple Mantel
test and dbRDA for longitude were inconsistent with the sPCA results,
which suggests that geographic distance is only important at local
scales. Positive spatial autocorrelations were particularly pronounced
under 5 km in our data set, a likely result of a behavioral mechanism
or sampling artifact. Restricted dispersal can occur in mammals due to
philopatry, particularly in females (Greenwood, 1980), but little
evidence has been found for philopatry in American badgers
(Messick and Hornocker, 1981; Kierepka et al., 2012). Dispersal
regimes can vary according to habitat quality where dispersal is more
restricted in suitable habitat (for example, Broquet et al., 2006; Frantz
et al., 2009), so high spatial autocorrelations may indicate badgers may
exhibit some degree of restricted dispersal in Wisconsin. Badgers were
genetically similar in areas with more suitable habitat, but these areas
were also the most heavily sampled. Within these heavily sampled
counties, proximate pairs of individuals were often collected as road-
killed animals, making it difficult to determine whether individuals

were killed within suitable habitat or during dispersal though matrix
habitat. Regardless of the mechanism, positive spatial autocorrelations
at fine scales is a fairly ubiquitous factor influencing spatial patterns of
genetic variation in other highly mobile carnivores (for example,
Cegelski et al., 2006; Schwartz et al., 2009; Zalewski et al., 2009;
Croteau et al., 2010), so it is not surprising to find that geographic
distance exhibits a strong influence on gene flow in badgers as well.
After controlling for the influence of geographic distance across

Wisconsin, our analyses detected the Wisconsin River as a potential
influence on patterns in sPCA Axis 1. However, considerable residual
autocorrelation remained in the spatially lagged regressions and
differentiation in sPCA Axis 1 appeared to be greatest between the
southeastern and northwestern areas of Wisconsin (that is, consistent
with geographic distance). Simulated populations in which geographic
distance was the only influence on gene flow also frequently detected a
barrier effect of the Wisconsin River, indicating that the statistically
significant effect we observed in our data set is likely a sampling
artifact. Badger activity in the largely forested northcentral areas of
Wisconsin was rarely reported, so most sampled individuals coded as
west of the Wisconsin River were from northwestern Wisconsin. Also,
the Wisconsin River occurs in the center of our study area, so
removing the effect of geography in the spatial regression and RDA
was difficult as evidenced by the high residual autocorrelation.
Therefore, the gap in sampling west of the Wisconsin River combined
with the underlying isolating effects of geographic distance appear
sufficient to create the statistically significant associations between
patterns of genetic variation and the Wisconsin River.
Unlike the Wisconsin River, type I error rates were low for

Agriculture, which suggests agricultural landscapes influence gene
flow within Wisconsin badgers. In this case, Agriculture appeared to
facilitate gene flow more readily than other habitats as evidenced by
the high genetic similarity of individuals (Axis 2 of sPCA) within
agricultural habitats. Optimal habitats often facilitate gene flow
(Cushman et al., 2006; Schwartz et al., 2009), but badgers generally
avoid Agriculture in other portions of their range (Messick and
Hornocker, 1981; Warner and Ver Steeg, 1995; Duquette and Gehrt,
2014). Avoidance behavior suggests that Agriculture is not an optimal
habitat for badgers, so understanding the exact role of Agriculture in
driving gene flow across Wisconsin is not straightforward without
corroborating field data on dispersal.
Several mechanisms could explain why agricultural habitat is

correlated with genetic variation in badgers. First, Agriculture could
be significant because of its tight correlation with Native Open, the
likely preferred badger habitat. Native Open was not significantly
associated with either sPCA axis, but sampling within Native Open
habitats was relatively sparse except in the northwestern open habitats.
In southern Wisconsin, Native Open habitats were often interspersed
with Agriculture, but spatial data may have lacked the resolution to
capture fine-scale habitats necessary for dispersal (Anderson et al.,
2010) similar to native habitat along fencerows (Duquette and Gehrt,
2014). Alternatively, dispersal through sub-optimal habitats via
density-dependent dispersal (for example, Martes pennanti; Carr
et al., 2007) or compensatory movements (Rosenberg et al., 1998)
could also explain why Agriculture enhanced gene flow. For badgers,
unavailable Native Open habitats (Carr et al., 2007) and/or faster
movements through Agriculture during dispersal (for example, Schultz
and Crone, 2001; Dickson et al., 2005; Rizkalla and Swihart, 2007)
could produce high genetic similarity among individuals within
agricultural habitats and surrounding suitable habitats (for example,
Native Open or pasturelands in central and southwestern Wisconsin,
respectively). Under this scenario, we would also expect elevated FIS

Figure 4 Percentage of false significant tests (type I errors) for the
Wisconsin River, level III Ecoregions and Agriculture calculated in 100
simulated IBD populations. Both partial RDAs and spatially lagged
regressions (sReg) for each axis separately incorrectly identified the
Wisconsin River and level III Ecoregions as influences on gene flow more
often than Agriculture.
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values in badgers in agricultural habitat relative to other habitats, a
pattern that was present in our study but not significant. Determining
the exact role of Agriculture in badger gene flow is difficult without
corroborating field data, but regardless of the mechanism, badgers
appear able to successfully disperse through sub-optimal habitats.
American badger’s tolerance for fragmentation and overall high

gene flow differs greatly from the more well-studied European badger
(Meles meles) populations in the United Kingdom and Ireland. In
European badgers, multiple authors have recorded evidence for
restricted dispersal owing to both natural (that is, rivers; Sleeman
et al., 2009; Frantz et al., 2010b) and anthropogenic (roads; Clark
et al., 1998; Frantz et al., 2010a) barriers, as well as strong fine-scale
IBD created by philopatry within dense populations (Pope et al., 2006;
Frantz et al., 2010a). American badgers, in contrast, do not avoid large
roads (Apps et al., 2002), do not form social groups and occur at lower
densities than UK badger populations, so the difference in gene flow
patterns likely stems from their disparate ecologies.

Utility of ordination and regressions in landscape genetics
When interpreted properly through rigorous error testing, ordination
and regression statistics are well suited to poorly understood species
such as badgers in individual-based landscape genetics. One benefit of
ordination and regression techniques is that they offer considerable
flexibility in both landscape and genetic variables. To date, population-
based studies have successfully incorporated a wide array of variables
into ordination and regression techniques (for example, Balkenhol
et al., 2009; Reding et al., 2012; Robinson et al., 2012), but many of
those population-specific variables are not applicable to individual-
based approaches. Our study with badgers emphasizes that ordination
and regression techniques are equally useful in individual-based
studies with appropriate choices in landscape and genetic variables.
Deriving pairwise connectivity metrics for species without relevant

field data (that is, within the study area) such as badgers would have
had considerable uncertainty given that substantial individual and
population variation in demography and habitat associations across
species’ ranges. Even in well-studied species, landscape genetic patterns
vary between landscapes, primarily due to the presence or spatial
arrangement of important factors (for example, Short Bull et al.,
2011). RDA and spatially lagged regressions, in contrast, do not
necessitate extrapolation to produce pairwise connectivity metrics and
can still detect subtle impacts on gene flow as seen with Agriculture in
badgers (Kierepka and Latch, 2015). Therefore, their flexibility in
variable type makes ordination and regression techniques attractive for
a myriad of landscape genetic studies, including those focused on
species with limited life history information.
In addition to flexibility, ordination and regression techniques may

be particularly useful in conservation because both techniques have
high power to detect fine-scale landscape genetic patterns (Balkenhol
et al., 2009; Fortín and Legendre, 2010; Kierepka and Latch, 2015). In
this study, both RDA and spatially lagged regressions detected
Agriculture’s subtle impact on gene flow despite the strong influence
of geographic distance on genetic variation. Based on their ability to
detect landscape genetic patterns in simulated spatial gradients with
considerable noise (Fortín and Legendre, 2010; Kierepka and Latch,
2015), ordination and regression techniques likely would perform well
in situations with complex patterns in gene flow (for example, Bowen
et al., 2005; Kamler et al., 2013) and biased sampling. Although
ordination and regression techniques are flexible, statistically robust
and provide a means of multi-model inference, error assessment is
also critical as all statistics utilized in this study were also vulnerable to
type I errors (Kierepka and Latch, 2015). When combined with

simulations to quantify potential errors, ordination and regression
techniques can be a powerful tool to inform conservation and
management efforts in poorly understood species.

CONCLUSIONS

Overall, this study provides important information for future manage-
ment of the American badger in Wisconsin, a protected population
that is genetically distinct due to the Mississippi River and Great Lakes
(Kierepka, 2014). Badger gene flow within Wisconsin is largely
unrestricted despite heterogeneous habitat composition and the
presence of large riverine barriers. Future studies would be helpful
to assess potential mechanisms that could explain the relationship
between Agriculture and genetic variation observed in this study (that
is, conduits of dispersal or density-dependent dispersal). This study
demonstrates the utility of ordination and regression methods within
individual-based landscape genetics, which to date, were largely
restricted to population-based investigations of well-studied species.
With ordination and regression methods and explicit error assessment,
individual-based landscape genetic approaches can provide valuable
insights into how landscape heterogeneity impacts genetic variation
despite limited life history and biased sampling.
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