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Mapping quantitative trait loci in selected breeding
populations: A segregation distortion approach

Y Cui1,2, F Zhang1, J Xu1,3, Z Li1 and S Xu2

Quantitative trait locus (QTL) mapping is often conducted in line-crossing experiments where a sample of individuals is randomly
selected from a pool of all potential progeny. QTLs detected from such an experiment are important for us to understand the
genetic mechanisms governing a complex trait, but may not be directly relevant to plant breeding if they are not detected from
the breeding population where selection is targeting for. QTLs segregating in one population may not necessarily segregate in
another population. To facilitate marker-assisted selection, QTLs must be detected from the very population which the selection
is targeting. However, selected breeding populations often have depleted genetic variation with small population sizes, resulting
in low power in detecting useful QTLs. On the other hand, if selection is effective, loci controlling the selected trait will deviate
from the expected Mendelian segregation ratio. In this study, we proposed to detect QTLs in selected breeding populations via
the detection of marker segregation distortion in either a single population or multiple populations using the same selection
scheme. Simulation studies showed that QTL can be detected in strong selected populations with selected population sizes as
small as 25 plants. We applied the new method to detect QTLs in two breeding populations of rice selected for high grain yield.
Seven QTLs were identified, four of which have been validated in advanced generations in a follow-up study. Cloned genes in the
vicinity of the four QTLs were also reported in the literatures. This mapping-by-selection approach provides a new avenue for
breeders to improve breeding progress. The new method can be applied to breeding programs not only in rice but also in other
agricultural species including crops, trees and animals.
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INTRODUCTION

Over a century of breeding efforts has produced numerous varieties of
domestic plants and animals to provide ample food resources for
human. The great successes in plant and animal breeding have largely
been achieved by exploiting within-species genetic variation for traits
of interest through phenotypic selection. Although appropriate phe-
notypic selection is effective to exploit useful genetic variation of
complex traits in breeding populations, the rich sources of naturally
occurring genetic variation in plants and animals are largely hidden at
the phenotypic levels and remain uncharacterized at the genomic and
molecular levels. As a result, they are very much under-utilized in the
past breeding programs. Meanwhile, the past decades have witnessed
tremendous progress in genetic dissections of complex traits in plants
and animals using DNA markers and genomic technologies (Francia
et al., 2005; Collard and Mackill, 2008; Miah et al., 2013). During this
period of time, thousands of quantitative trait locus (QTL) affecting a
wide range of complex traits have been identified in different plant
and animal species. These QTLs have greatly deepened our under-
standing on the genetic basis of complex traits. Unfortunately, results
of QTL mapping have not yet changed much of today’s activities of
breeding because past efforts on QTL mapping almost exclusively
used randomly selected populations that were not directly relevant
to breeding. The phenotypic effects of target QTLs are largely

unpredictable when they are transferred into different genetic back-
grounds or tested in different environments using marker-assisted
selection (Wang et al., 2012).
It is well known that genetic study of quantitative traits largely

depends on the amount of genetic variation of the traits in the target
populations (Falconer and Mackay, 1996; Lynch and Walsh, 1998).
In terms of QTL mapping, the greater the genetic variation, the higher
the statistical power of QTL detection. Therefore, geneticists often use
line-crossing populations with large genetic variation for QTL map-
ping. Selective genotyping by keeping the two extreme distributions of
the phenotype in mapping populations is a mean of artificially
increasing genetic variation and reducing sample sizes (Darvasi and
Soller, 1992). The detected QTLs can help us understand the genetic
mechanisms of the traits under study but are not necessarily relevant
to breeding programs because the QTLs detected in populations of
crossing experiments may not segregate in breeding populations.
Breeders, on the other hand, try to improve agricultural production
by eliminating undesired individuals from the populations (one-tailed
directional selection), resulting in reduced genetic variation and very
small population sizes. Keeping undesired individuals in breeding
populations as controls represents substantial additional cost and is
not a common practice in many breeding programs. To facilitate
breeding via marker-assisted selection, QTLs are better detected in the
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very population which the selection is targeting. However, depleted
genetic variation of traits under selection in the small group of
surviving individuals will reduce the statistical power of QTL detec-
tion. The more effective the selection, the lower the statistical power of
QTL detection. Therefore, QTL mapping in selected breeding popula-
tions is not practical owing to reduced genetic variation and small
population sizes based on the conventional marker–trait association
models (Lander and Botstein, 1989). The small group of selected
progeny actually contains the most important genetic information
regarding specific target traits of interest to breeders and we must take
advantage of such information to optimize our breeding strategy.
In many cases of plant breeding, selection for abiotic stress

tolerances is simply based on survival or death. If selection is effective,
frequencies of genes controlling the selected traits will shift in the
selected population compared with the unselected base population
(Hermisson and Wagner, 2004). Markers linked to the actual genes
will show shifted frequencies accordingly. What we observe in the
selected populations are distorted genotypic frequencies of markers
from the frequencies in the base population. If the base population is a
line-crossing population, the allele and genotypic frequencies are
theoretically known, and they are called Mendelian segregation ratios.
Distorted markers in selected populations are presumably linked to
QTLs of the target traits. Therefore, mapping segregation distortion
locus (SDL) is an alternative but more powerful approach to QTL
mapping. One assumption of the QTL mapping-by-selection approach
is that segregation distortion of markers is purely caused by artificial
selection. Other evolutionary forces, for example, gametic and zygotic
selections, may also cause segregation distortion. These loci are
confounded with QTL, but the distorted loci themselves are interesting
in their own rights.
We propose to perform QTL mapping in selected breeding

populations via mapping SDL. The conventional QTL mapping via
marker–trait association usually requires hundreds of genotyped
individuals. Such a QTL mapping study provides information on
genetic architecture of complex traits, albeit some of the QTL may not
be useful for breeding purposes. Segregation distortion analysis,
however, only requires a few dozens of genotyped individuals
(Luo et al., 2005). The detected SDLs provide information on the
loci that are targeted by phenotypic selection. This information is
useful for breeding purposes, for example, by operating selection
before the phenotype is measurable.
Chi-square tests are commonly used to test segregation distortion,

but more advanced methods should be taken. Fu and Ritland (1994)
and Lorieux et al. (1995) developed maximum likelihood methods to
map SDLs. Vogl and Xu (2000) used a Bayesian method to detect
multiple SDLs in a simultaneous manner. These methods are quite
different from the usual QTL mapping procedures. Luo and Xu (2003)
first developed an EM (expectation and maximization) algorithm for
mapping viability selection loci (the same as SDLs). Luo et al. (2005)
further developed a quantitative genetic model to map these loci. The
above authors postulated a hidden underlying liability for each
individual. The liability is an unobserved quantitative trait and
selection acts on the liability. The method of Luo et al. (2005) actually
maps loci controlling the hidden liability (an unobserved quantitative
trait). Therefore, methods of QTL mapping and SDL mapping have
been unified into the same framework of interval mapping. Most
recently, Zhan and Xu (2011) extended the liability model for SDL
mapping by incorporating into a prior variance to the effect of each
SDL and such a method is called generalized linear mixed model
(GLMM) (McGilchrist, 1994).

The GLMM approach to detecting segregation distortion (Zhan and
Xu, 2011) provides a mechanism to handle missing genotypes. With
proper modification, the GLMM method is able to combine different
populations for joint analysis. The rice-breeding program in the
Chinese Academy of Agricultural Science (CAAS) produced many
small breeding populations, all under the same scheme of selection.
We show that the combined analysis has increased the statistical power
of QTL detection.

MATERIALS AND METHODS

Detecting segregation distortion in single selected population
We first dealt with a single selected population with no missing markers. We
then combined several selected populations to perform a joint mapping.
Because the populations are subject to selection, if a locus is linked to QTL
controlling for a selected trait, for example, drought tolerance, this locus will
show a segregation distorted from the expected Mendelian ratio. Although the
method can be extended to any populations with known Mendelian ratios, we
focus our study to the BC2F2 population, which happens to be the type of
populations produced by the rice-breeding team lead by one of the correspond-
ing authors. First, we conducted two generations of backcrosses of a donor
parent to a recurrent parent (RP), obtaining a population called BC2F1. The
BC2F1 progeny were then subject to one generation of selfing, resulting in a
population called BC2F2. Let A1 be the allele of the RP and A2 be the allele of
the donor parent. The three genotypes in the BC2F2 population have an
expected Mendelian ratio of 13/16, 2/16 and 1/16 for the three genotypes, A1A1,
A1A2 and A2A2, respectively. For a single population, testing segregation
distortion can be performed using the Chi-square test with two degrees of
freedom. However, the simple Chi-square test is hard to be extended to
multiple populations. Furthermore, the Chi-square test cannot handle missing
genotypes. Therefore, we adopted the generalized linear mixed model approach
to test segregation distortion (Zhan and Xu, 2011).
We now focus on a single population. Let ϕ11= 13/16, ϕ11= 2/16 and

ϕ22= 1/16 be the expected Mendelian frequencies for the three genotypes. Let
us propose an underlying quantitative trait yj for individual j of the BC2F2
population. This underlying quantitative trait is called the liability, which can be
described by the following linear model, yj=Zja+εj, where Zj =1 for A1A1, Zj=0
for A1A2 and Zj =− 1 for A2A2. The genetic effect of the locus on the liability is
denoted by a. The residual error is assumed to be εj~N(0,1). Assume that all
individuals observed are selected based on the yj40 criterion. The surviving
probability is Pr(yj40)= Φ(Zja), where Φ(.) is the standardized cumulative
normal distribution function. The surviving probability of each individual
depends on the genotype and the effect of the locus (a) on the liability.
Although all individuals observed have survived the selection, they can
have different probabilities because they may have different genotypes.
Using the Bayes’ theorem, we formulated the following posterior probability
of survival for each genotype, pjð11Þ ¼ f11FðaÞ=pj, pjð12Þ ¼ f12Fð0Þ=pj or
pjð22Þ ¼ f22Fð�aÞ=pj, where pj ¼ f11FðaÞ þ f12Fð0Þ þ f22Fð�aÞ is a nor-
malization factor (mean fitness). These posterior probabilities facilitate a
mechanism for us to estimate the genetic parameter a. Note that when a= 0,
the three posterior probabilities would be identical to the Mendelian frequencies
for all individuals and we will not be able to detect segregation distortion. If
a≠ 0, then the posterior probabilities of genotypes will deviate from the
expected Mendelian segregation ratios. Therefore, testing segregation distortion
and testing the genetic effect of the liability are equivalent. This is the basis of
our generalized linear model. We further placed a prior distribution on the
genetic parameter, say normal prior, so that aBN 0;s2a

� �
, which makes the

problem as a Bayesian parameter estimation problem.
Under the Bayesian framework, we present a Bayesian posterior mode

estimate of the genetic effect. The log likelihood function combined with the
log prior gives the log posterior of the genetic parameter. Let us define the data
using wj(11)= 1 for A1A1, wj(12)= 1 for A1A2, and wj(22)= 1 for A2A2. Each
individual is represented by values of three variables, one for each genotype.
One of the three variables takes a value 1 if that variable happens to indicate the
actual genotype of the individual and the other two variables must take values
of zero. For example, if individual j has a genotype A1A1, then wj(11)= 1 and
wj(12)=wj(22)= 0. With this notation, the observed count for genotype A1A1 in
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the population is n11 ¼
Pn

j¼1 wjð11Þ, where n is the total sample size. The log
likelihood function is formulated as

LðaÞ ¼
Xn
j¼1

wjð11Þlnpjð11Þ þ wjð12Þlnpjð12Þ þ wjð22Þlnpjð22Þ
� � ð1Þ

The logarithm of the prior normal density is

P ajs2a
� � ¼ ln N ajs2a

� � ¼ ln
1ffiffiffiffiffiffiffiffiffiffi
2ps2a

p exp � a2

2s2a

� �( )
ð2Þ

Ignoring a constant term (not a function of the parameter), we have the
following simplified log prior,

P ajs2a
� � ¼ �1

2
ln s2a
� �� a2

2s2a
ð3Þ

Therefore, the log posterior is QðaÞ ¼ LðaÞ þ P ajs2a
� �

, which is the sum of the
log likelihood and the log prior. The posterior modes of a and s2a are obtained
numerically by maximizing Q(a). We adopted an EM algorithm (Dempster
et al., 1977) to estimate the parameters. Starting with s2a ¼ s2ð0Þa , the
conditional posterior mode of a is obtained by maximizing Q(a). Let a(0) be
the solution that maximizes Q(a) and the variance of a(0) is approximated by
var að0Þ

� � ¼ � ∂2Q að0Þ
� �

=∂a2
� ��1

. Given a(0), we then update s2a using

s2ð1Þa ¼ E a2
� � ¼ ½EðaÞ�2 þ varðaÞ ¼ að0Þ

	 
2
þ var að0Þ

	 

ð4Þ

The updated s2a then replaces the original s2a in the log posterior, which is
maximized again to obtain a(1) and var(a(1)). In general, the EM iteration is
described by s2ðtþ1Þ

a ¼ aðtÞ
� �2 þ var aðtÞ

� �
. When the iteration process con-

verges, we get both estimates of a and s2a. We used the Wald test statistic,
Wald ¼ â2=var âð Þ, to test the hypothesis H0:a= 0. Such a Wald test is applied
to every locus of the genome for detecting segregation distortion loci.

Detecting segregation distortion in multiple selected populations
Because breeding populations after selection often have small sample sizes,
particularly when selection intensity is high, the power of SDL detection can be
low from a single selected population. This is very important in plant breeding
today when introgression (backcross) breeding with a few elite recipients is
increasingly used. To increase the statistical power, we proposed to combine
several populations together and perform a joint analysis for SDL in multiple
populations. The GLMM method of Zhan and Xu (2011) does not have an
option to perform such a joint analysis. One problem of the multiple
population analysis is that different populations often involve different markers.
We need to generate a consensus map, in which markers not genotyped
in any single population are treated as missing markers in that population.
Genotypes of missing markers are inferred from the multipoint method
(Jiang and Zeng, 1997). The multipoint analysis requires transition matrix
from one marker to the next marker. Let A1A1, A1A2 and A2A2 be the three
genotypes for marker A and B1B1, B1B2 and B2B2 be the three genotypes for
marker B. The transition matrix from A to B is given in Table 1 (derivation is
complicated and thus not given) and denoted by matrix TAB, where r is the
recombination fraction between the two loci. For example, if the genotype of
locus A is A1A2, the probability of a individual taking genotype B1B1 is
Pr B ¼ B1B1jA ¼ A1A2ð Þ ¼ 4 1

2 r � 1
4r

2
� �þ rð1� rÞ3, which is the element of

the second row and the first column of matrix TAB. Given the transition matrix
and the marginal frequencies of the three genotypes, the multipoint method of
Jiang and Zeng (1997) directly applies for the BC2F2 population.
Let pjð11Þ ¼ Pr Aj ¼ A1A1j?

� �
be the multipoint calculated probability of

individual j taking genotype A1A1 for the locus of interest. Recall that we used

wj(11) to denote the indicator of genotype A1A1. The log likelihood function for
individual j is defined as

LjðaÞ ¼ wjð11Þ ln pjð11Þ
� �þ wjð12Þ ln pjð12Þ

� �þ wjð22Þ ln pjð22Þ
� � ð5Þ

When the genotype is missing, we simply replace wj(11) by pj(11) so that

LjðaÞ ¼ pjð11Þ ln pjð11Þ
� �þ pjð12Þ ln pjð12Þ

� �þ pjð22Þ ln pjð22Þ
� � ð6Þ

Suppose that we have p donor parents and all cross with one common RP. Let
ai be the genetic effect of donor i for i = 1,...,p. The corresponding πj(11) and pj
(11) in population i are denoted by pijð11Þ and pijð11Þ, respectively. Let us also
assume that aiBN 0; s2a

� �
for all i = 1,...,p. The common prior variance s2a

links all the populations together and provides a mechanism to increase power
compared with the single population analysis. Let a = {a1,...,ap} be a vector of
genetic effects, one for each population. The log likelihood function combining
all populations is

LðaÞ ¼
Xp
i¼1

Xni
j¼1

wi
jð11Þ lnp

i
jð11Þ þ wi

jð12Þ lnp
i
jð12Þ þ wi

jð22Þ lnp
i
jð22Þ

	 

ð7Þ

The log prior is P ajs2a
� � ¼ �1

2 p ln s2a
� �� 1

2s2a

Pp
i¼1 a

2
i . Therefore, the log

posterior is QðaÞ ¼ LðaÞ þ P ajs2a
� �

. The EM algorithm for estimating s2a is
a simple extension of the algorithm in the single population situation,

s2ðtþ1Þ
a ¼ 1

p

Xp
i¼1

aðtÞi
	 
2

þ var aðtÞi
	 
� �

ð8Þ

The corresponding Wald test for multiple populations is
Wald ¼ Pp

i¼1 â
2
i =var âið Þ. It appears that the multiple populations Wald test

simply takes the sum of the Wald test of each individual population. The gain
by combining the populations comes from the common variance s2a shared by
all the p populations.

Design of simulation experiments
The new method was validated using simulated data. Twelve chromosomes
were simulated with a total genome length of 1500 cM. The genome was evenly
covered by 300 markers. The type of population was BC2F2, mimicking the
breeding populations produced in the CAAS rice-breeding program. Two
selection schemes were implemented in the experiment. One scheme was the
‘additive’ fitness model where the fitness of the heterozygote was the average of
the fitness of the two homozygotes. The other scheme was the ‘dominance’
fitness model in which the heterozygote had the same fitness as one of the two
homozygotes. Within each selection scheme, there were two levels of selection
intensity: strong selection and weak selection (see Table 2). For example, in the
strong additive selection, the survival probability of A1A1 genotype (RP) was
only 0.05 while that of A2A2 genotype (donor parent) was 0.90. The survival
probability of the heterozygote was (0.05 + 0.90)/2= 0.475. We also performed
a simulation experiment for two-locus joint selection. The fitness (survival
probability) of the nine two-locus joint genotypes took the product of
the fitness of individual loci and these fitness are given in Table 3. When the
additive model and strong selection in Table 3, for example, is taken, the
marginal fitness of genotype A2A2 is 0.90 and the marginal fitness for genotype
B1B2 is 0.475, leading to a fitness of 0.9× 0.475= 0.4275 for the joint genotype
A2A2B1B2.
The simulation experiments were performed as described below. First, we

used a Markov model to simulate 300 markers on 12 chromosomes for a BC2F2
individual under Mendelian segregation (13:2:1 ratio). Depending on the
genotype of the target locus (or loci), this individual might be selected (survival)
or eliminated (death). If the individual was selected, we added this individual to

Table 1 The transition matrix for two linked loci, A and B, with a recombination fraction of r in a BC2F2 populationa

A\B B1B1 B1B2 B2B2

A1A1 10
13 þ 2

13 ð1� rÞ2 þ 1
13ð1� r Þ4 8

13
1
2 r � 1

4r
2

� �þ 2
13r ð1� r Þ3 4

13
1
2 r � 1

4r
2

� �þ 1
13r

2ð1� r Þ2
A1A2 4 1

2 r � 1
4r

2
� �þ r ð1� rÞ3 (1− r)4 + r2(1− r)2 r(1− r)3

A2A2 4 1
2 r � 1

4r
2

� �þ r2ð1� r Þ2 2r(1− r)3 (1− r)4

aEach entry represents a probability that an individual plant takes a particular genotype at locus B given the genotype of this plant at locus A.
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the sample; otherwise, it was eliminated. The simulation was repeated until
n= 10, 25 or 50 individuals were cumulated in the sample. For the single locus
selection experiment, the locus at position 50 cM on chromosome 6 was the
target locus for selection. For the two-locus joint selection experiment, one
locus at position 50 cM on chromosome 6 and the other locus at position
45 cM on chromosome 10 were the target loci for selection. Under each
scenario, the simulation was replicated 100 times to facilitate power analyses.

Plant materials
Two selected populations of rice were used as the materials for testing the
methods described above. A superior high yield japonica variety from Northeast
China, Ji-Geng88 (JG88), was used as the RP of the introgression populations.
Two other varieties, Sheng-Nong265 (SN265) and MR77, were used as the
donor parents. SN265 is a japonica variety from Northeast China and MR77 is
an indica variety from Malaysia. The RP was crossed with each of the two
donors to generate F1 progeny, which were backcrossed with the RP for two
generations to produce BC2F1 lines. The selfed seeds of all BC2F1 plants from
each cross were bulk-harvested to produce a BC2F2 population. In the summer
of 2011, we planted 800 individuals from each population under normal
irrigated field conditions on the farm of the Ningxia Academy of Agricultural
Science (NAAS) of Northwest China. At maturity, we visually selected 68 BC2F2
plants, which had ideal plant type and high yield compared with the RP
parents, plus 120 random BC2F2 plants from the two populations in the field.
These included 98 BC2F2 introgression lines (ILs) (38 from selected population
and 60 from random population) from the JG88/SN265 cross and 90 ILs (30
from selected population and 60 from random population) from the JG88/
MR77 cross. On May 5 of 2012, seeds of all BC2F2 ILs sown on the seedling
nursery and 25-day seedlings of each IL were transplanted into a two-row plot
of 20 plants on the experimental farm of the Institute of Crop Sciences, Chinese
Academy of Agricultural Sciences (CAAS) in Beijing. In the field layout, one RP
plot was inserted in every 10 plots as the checks. The field was managed with
regular irrigation and the standard crop management practices. At maturity,
five typical plants in each plot were harvested and placed in a plastic net bag. All
harvested plants were dried in drying ovens under 80 °C for 3 days. The dried

plant samples were then measured for grain yield (GY) per plant. In the
summer of 2013, the 188 BC2F4 lines were progeny-tested for GY under the
same conditions on the CAAS experimental farm in Beijing. The 98 BC2F2 ILs
from the JG88/MR77 population were genotyped with 120 polymorphic SSR
markers and the 90 BC2F2 ILs from the JG88/SN265 population were
genotyped with 38 polymorphic SSR markers. On the basis of the 2-year
phenotypic data, 21 ILs from the JG88/MR77 population showed consistently
higher yield than the RP parent (JG88), while 26 ILs of the JG88/SN265
population had significantly higher yield than the JG88 parent.

RESULTS

Simulation studies
The average Wald test statistics of 100 repeated simulations of the
single locus selection experiment using one population are presented
in Figure 1. Under the strong selection scenario (both additive and
dominance), the target locus was successfully detected in all three
different population sizes using 9.85 as the critical value of the Wald
test statistics (drawn from 1000 repeated simulations under the null
model). Under the weak selection, however, the target locus was
detected only in the dominance selection scenario with sample size 50.
Under all population sizes, the Wald test statistic was higher in the
dominance selection model than that in the additive selection model.
When two genetically independent target loci were involved in the

selection, the target loci were detected only in three scenarios with
population size 50, but not under other cases (Figure 2). Larger sample
size and stronger selection had greater powers in detecting the target
loci with higher test statistics. Again, under the same scenarios of
selection and sample size, the Wald test statistic was higher for the
dominance fitness model than the additive fitness model.
The average Wald test statistics over 100 repeated simulations of the

single locus selection experiment using two combined populations are
given in Figure 3. Under strong selection, the target locus was detected
successfully in all scenarios using a critical value of 5.83 of the Wald
test statistics (drawn from 1000 repeated simulations under the null
model). For weak selection, the target locus was detected only when
the sample size was 50. Figure 4 presents the average Wald test
statistics for the two locus selection experiment using two combined
populations. The target loci were detected successfully in all scenarios
under strong selection. Under the additive fitness model with weak
selection, the target loci were also detected in all scenarios except for
the additive model with population size 10. Comparing the results of
Figures 3 and 4, we found that the Wald test statistics were much
greater for the two populations combined analysis than those for the
single population analysis.
Tables 4 and 5 show the average statistical powers from the 100

repeated simulation experiments. Under strong selection, the power of
detecting segregation distortion was very high and the combined
analysis of multiple populations had further increased the power.
Under weak selection, the power was low, particularly when the
sample size was smaller than 25.

Real data analysis
Table 6 shows the summary statistics for GY of the selected and
unselected (random) populations from the two introgression popula-
tions. In 2012, the mean GY of the 30 selected BC2F3 lines from cross
JG88/MR77 and the 38 selected BC2F3 lines from cross JG88/SN265
were 12.2% and 16.5%, respectively, higher than that of the RP JG88.
These two selected populations had variances of GY reduced by 50.2%
and 46.5%, respectively, compared with the random populations. The
21 confirmed high yield BC2F3 lines of cross JG88/MR77 and the 26
confirmed high yield BC2F3 lines of cross JG88/SN265 had means of

Table 2 Assigned fitness values of the three genotypes at a single

locus, A, under two schemes of selection used in the simulation

study: additive and dominance

Selection scheme Strength of selection Genotype

A1A1 A1A2 A2A2

Additive Strong 0.050 0.475 0.900

Weak 0.200 0.400 0.600

Dominance Strong 0.050 0.900 0.900

Weak 0.200 0.600 0.600

Table 3 Fitness values of the nine two-locus joint genotypes used in

the simulation study

Selection

intensity

Genotype Additive model Dominance model

A1A1 A1A2 A2A2 A1A1 A1A2 A2A2

Strong B1B1 0.0025 0.02375 0.045 0.0025 0.045 0.045

B1B2 0.02375 0.225625 0.4275 0.045 0.81 0.81

B2B2 0.045 0.4275 0.81 0.045 0.81 0.81

Weak B1B1 0.04 0.08 0.12 0.04 0.12 0.12

B1B2 0.08 0.16 0.24 0.12 0.36 0.36

B2B2 0.12 0.24 0.36 0.12 0.36 0.36
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Figure 2 Wald test statistics of the two-locus selection simulation experiment using one population: (a) strong additive fitness selection; (b) strong dominance
fitness selection; (c) weak additive fitness selection; and (d) weak dominance fitness selection. The horizontal broken line on each panel is the 9.85
threshold in Wald test statistics drawn from 1000 repeated simulations under the null model.

Figure 1 Wald test statistics of the single locus selection simulation experiment using one population: (a) strong additive fitness selection; (b) strong
dominance fitness selection; (c) weak additive fitness selection; and (d) weak dominance fitness selection. The horizontal broken line on each panel is the
9.85 threshold in Wald test statistic drawn from 1000 repeated simulations of the null model. Note that 10, 25 and 50 are the numbers of selected plants
and are defined as the population sizes.
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Figure 3 Wald test statistics of the single locus selection simulation experiment using two combined populations: (a) strong additive fitness selection;
(b) strong dominance fitness selection; (c) weak additive fitness selection; and (d) weak dominance fitness selection. The horizontal broken line on each
panel is the 5.83 threshold in Wald test statistics drawn from 1000 repeated simulations under the null model.

Figure 4 Wald test statistics of the two-locus selection simulation experiment using two combined populations: (a) strong additive fitness selection; (b) strong
dominance fitness selection; (c) weak additive fitness selection; and (d) weak dominance fitness selection. The horizontal broken line on each panel is the
5.83 threshold in Wald test statistics drawn from 1000 repeated simulations under the null model.
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GY 18.9% and 24.5% higher than that of the JG88 parent, respectively.
These lines had GY variances reduced by 71.8% and 65.1%,
respectively, compared with the random populations. In 2013, the
mean GY of the 30 selected BC2F4 lines from cross JG88/MR77 was
the same as that of the JG88 parent, while the mean GY of the 38
selected BC2F4 lines from cross JG88/SN265 was 12.2% higher than
that of the JG88 parent. The two selected introgression populations
had variances of GY reduced by 38.3% and 31.5%, respectively,
compared with the random populations. The 21 confirmed high yield
BC2F4 lines of cross JG88/MR77 and the 26 confirmed high yield

BC2F4 lines of cross JG88/SN265 had means of GY 7.8% and 15.9%
higher than that of the JG88 parent, respectively. The variances in GY
were reduced by 61.6% and 56.2%, respectively, for the two
populations compared with the random populations.
When using a single population and the 9.85 threshold in Wald test

statistics (drawn from 1000 permutations under the null model), the
segregation distortion approach based on 120 markers for population
JG88/MR77 detected one QTL for yield and the same approach based
on 38 markers for population JG88/SN265 detected two QTLs, with
one common QTL near RM481 on chromosome 7 detected in both
populations (see Figures 5a and b). When the two populations were
combined using a consensus linkage map with a total of 133 markers
(including imputed missing markers), we detected seven QTLs for
yield on rice chromosomes 1, 3, 5, 6 and 7, based on the 5.83
threshold drawn from multiple permuted samples under the null
model (Figure 5c, see also Table 7). Four out of the seven QTLs
(qGY1.2, qGY5.2, qGY7.1, qGY7.4) were detected in the combined two
populations (see Table 7). Results of the real data analysis are
consistent with those of the simulation studies in that the combined
analysis detected more QTLs than the single population analysis.
To validate the mapping results, data from the random (unselected)

populations of 60 BC2F3/BC2F4 lines from each cross were used to
validate the QTL near marker RM481 on chromosome 7, qGY7.1. This
locus had the largest effect on GY among all other QTLs. The random
ILs with the donor genotype (BB) had 3.2 g higher GY per plant, 13%
higher than the recipient genotype (AA). The difference was statisti-
cally significant in both populations and both years, except for the
JG88/MR77 population in 2013 (see Table 8).

DISCUSSION

In modern plant and animal breeding, directional phenotypic selection
remains the most powerful way for genetic improvement of produc-
tivity in agricultural crops and animals. A unique characteristic of
these breeding programs is that breeders are handling large numbers
of progenies derived from dozens or even hundreds of crosses between
a few key backbone (elite) parents and a diverse set of donors with a
relatively small number of progenies from each cross. These breeding
progenies normally have been selected for different combinations of
target traits and thus contain important genetic information regarding
the target traits of selection. These progeny are also segregating for
some non-target traits as a result of genetic hitchhiking (Zhang et al.,
2013). Therefore, advanced lines from breeding populations can be
useful materials for identifying and mapping loci associated with traits
interesting to breeders. However, mapping QTL in selected popula-
tions is challenging because of the reduced variance of traits in the
selected populations and the small population sizes after selection. The
reduced trait variance may cause substantial power loss in QTL
detection, even under moderate selection intensity. The small popula-
tions after selection are too small to be utilized for QTL mapping
using a conventional marker–trait association model. Nevertheless,
efforts have recently been made to map QTL in single selected
populations by detecting segregation distortion loci using simple Chi-
square tests (Li et al., 2005; Venuprasad et al., 2009; Zhang et al., 2011,
2014). Obviously, the simple Chi-square tests are not the optimal
methods because they cannot take advantage of the unique feature of
large number of small advanced breeding progenies to perform a joint
analysis in most plant and animal breeding programs. In this respect,
the method developed in this study provided a powerful strategy for
detecting QTL in selected breeding populations of plants and animals.
Our results indicated that mapping QTL by detecting segregation

distortion is effective in detecting QTL affecting complex traits in

Table 4 Statistical powers in detecting segregation distortion

obtained from 100 replicated simulation experiments of a single

population analysis

Selection intensity Sample size One locus Two loci

Additive Dominance Additive Dominance

Strong 10 75% 88% 73% 71.5%

25 100% 100% 100% 100%

50 100% 100% 100% 100%

Weak 10 0% 2% 0% 0%

25 12% 6% 6% 9%

50 44% 60% 28% 48%

Table 5 Statistical powers in detecting segregation distortion for two

loci obtained from 100 replicated simulation experiments using two

population combined analysis

Selection intensity Sample size One locus Two loci

Additive Dominance Additive Dominance

Strong 10 100% 100% 96% 100%

25 100% 100% 100% 100%

50 100% 100% 100% 100%

Weak 10 30% 20% 4% 10%

25 20% 18% 8% 18%

50 76% 92% 48% 78%

Table 6 Summary statistics of selected and unselected populations

for grain yield from two introgression populations of rice

Population

Grain yield (g/plant)

in year 2012

Grain yield (g/plant)

in year 2013

Cross Size (N) Mean Variance Range Mean Variance Range

JG88/MR77 60a 21.3 25.9 9.7~33.4 24.6 22.2 14.4~32.8

30b 23.8 12.9 15.6~30.4 24.8 13.7 17.5~32.1

21c 25.2 7.3 20.6~30.4 26.4 8.5 22.2~32.1

JG88/SN265 60a 23.1 31.8 10.4~39.1 27.8 25.1 16.1~35.4

38b 24.7 17.0 15.1~34.4 27.5 17.2 16.5~37.2

26c 26.4 11.1 20.4~34.4 28.4 11.0 22.5~37.2

JG88 (CK) 10 21.2 5.4 18.2~26.4 24.5 8.1 20.2~29.6

aPopulation size: the number of BC2F4 lines from the random (unselected) population.
bPopulation size: the number of BC2F3 lines selected for high yield.
cPopulation size: the number of BC2F4 lines with higher yield than the JG88 parent based on
progeny testing.
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selected populations. If the small population sizes are due to strong
selection, the new method actually enjoys small populations because
they mean strong selection had happened and thus high degrees of
segregation distortion are expected. Results of our study were
consistent with several recent studies where large numbers of loci
responsive to strong directional selection for abiotic stress tolerances
and heritable quantitative traits were detected and mapped (Zhang
et al., 2014; Wang et al., 2015).
Compared with a previously developed method of multiple SDL

mapping in single populations (Zhan and Xu, 2011), our approach of
joint mapping using multiple small and related breeding populations
by testing segregation distortion was more powerful in detecting QTL
affecting traits with low heritability. Therefore, our new method has
solved two major problems in mapping QTL in selected populations,
that is, the extremely small population sizes and low genome coverage
by DNA markers in single selected breeding populations. This was
clearly demonstrated by identifying and mapping seven QTLs for GY
in the two small selected populations of rice. We noted that among the
seven QTLs identified for GY, four (qGY1.2, qGY5.2, qGY7.1 and
qGY7.4) were consistently identified with data from single selected
BC2F2 plants and their corresponding BC2F3 progeny (Table 7).
Interestingly, qGY7.1 had the largest phenotypic effect and was verified
in the random populations of both crosses (Table 8). qGY1.2 was
mapped to the close vicinity of Gn1a, a cloned gene that increases
grain number per panicle and grain weight by reducing the expression
of OsCKX2 that leads to accumulation of cytokinins in inflorescence
meristems (Ashikari et al., 2005). The qGY7.4 overlaps with Ghd7,
another cloned gene that regulates yield by modulating panicle
branching (Weng et al., 2014). qGY5.2 is also in the vicinity of a

Figure 5 Wald test statistic profiles for segregation distortion in individual populations and combined population selected for high yield: (a) population JG88/
MR77; (b) population JG88/SN265; and (c) combined two populations. The horizontal broken lines on panels (a) and (b) are the 9.85 threshold in Wald test
statistics and the corresponding line in panel (c) is the 5.83 threshold in Wald test statistics drawn from 1000 permuted samples under the null model.

Table 7 Quantitative trait loci for grain yield (GY) detected via

segregation distortion in two selected breeding populations of rice

using two population joint analysis

QTL Marker
BC2F2 single

plant selection

BC2F3 and BC2F4

progeny testing

Wald test P-value Wald test P-value

qGY1.2 RM220 15.86 0.0004 9.36 0.0092

qGY3.10 RM186 7.32 0.0258

qGY5.2 RM413 7.47 0.0239 6.76 0.0339

qGY5.5 RM430 9.60 0.0082

qGY6.3 RM217 8.35 0.0154

qGY7.1 RM481 19.73 o0.0001 24.22 5.5E-06

qGY7.4 RM542 10.29 0.0058 10.28 0.0059

Table 8 Validation via t-test for association of grain yield (g/plant)

with marker RM481 (qGY7.1) in random BC2F3 (2012) and BC2F4
(2013) populations from crosses JG88/SN265 and JG88/MR77

Population Year Genotype Additive effect P-value

AA BB

JG88/MR77 2012 20.7±3.9 23.9±2.8 1.6 0.031

2013 24.3±4.9 24.7+2.2 0.2 0.785

JG88/SN265 2012 22.7±4.2 25.8±2.4 1.6 0.021

2013 27.3±3.4 30.4±1.8 1.6 0.008
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previously cloned gene, GW5, which improves GY by regulating cell
division during seed development (Weng et al., 2008). These four
newly detected QTLs were less likely to be false positives.
The new method of QTL mapping developed in this study will have

a huge potential to be applied to real plant and animal breeding
programs, as most breeding materials consist of advanced lines or
families selected for one or more target traits from related segregating
populations. As the high throughput and cost-effective SNP genotyping
technology has become increasingly feasible in many important crops
and domestic animals, identification and mapping of QTL associated
with both target and non-target traits from breeding materials will
provide extremely valuable genetic information for breeders, which is
expected to be a routine practice in the post-genomic era plant and
animal breeding programs (Li and Zhang, 2013).
Our method of combined QTL analysis by detecting segregation

distortion in multiple breeding populations remains a one-
dimensional approach for genome-wide scan of loci affecting target
traits responsive to directional selection. Efficient and powerful
statistical methods for characterizing high dimensional non-
random associations (epistasis) between or among alleles at
unlinked loci resulting from selection are needed (Zhang et al.,
2014) but are hard to address under the current models. Extension
to pairwise interaction involving two loci at a time may be possible
with some modification of the one-dimensional scan to two-
dimensional scan. Such an extension is a future project of this
research team.
Implementation of the new method for QTL mapping via segrega-

tion distortion is straightforward. It requires marker genotype
imputation for non-overlapping markers in the multiple population
joint analysis. If all markers are aligned perfectly among all popula-
tions to be combined, this step can be escaped. An R code called
multiple imputation is available from authors as request for marker
genotype imputation. Users are required to provide the expected
Mendelian segregation ratios and the transition matrix that are
determined by the type of introgression population. Once the
genotypes of all markers are imputed, the second step is to call an
R function named SDL method to perform the joint multiple population
analysis using the GLMM method described in the text. These R codes
along with a BC2F2 sample data which includes two breeding popula-
tions as a package named SDL BC2F2 method have been uploaded to our
CAAS rice-breeding website (www.rmbreeding.cn).
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