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Regional heritability mapping method helps explain missing
heritability of blood lipid traits in isolated populations

M Shirali1, R Pong-Wong2, P Navarro1, S Knott3, C Hayward1, V Vitart1, I Rudan4,5, H Campbell5,
ND Hastie1, AF Wright1 and CS Haley1,2

Single single-nucleotide polymorphism (SNP) genome-wide association studies (SSGWAS) may fail to identify loci with modest
effects on a trait. The recently developed regional heritability mapping (RHM) method can potentially identify such loci. In this
study, RHM was compared with the SSGWAS for blood lipid traits (high-density lipoprotein (HDL), low-density lipoprotein (LDL),
plasma concentrations of total cholesterol (TC) and triglycerides (TG)). Data comprised 2246 adults from isolated populations
genotyped using ∼300 000 SNP arrays. The results were compared with large meta-analyses of these traits for validation.
Using RHM, two significant regions affecting HDL on chromosomes 15 and 16 and one affecting LDL on chromosome 19 were
identified. These regions covered the most significant SNPs associated with HDL and LDL from the meta-analysis. The
chromosome 19 region was identified in our data despite the fact that the most significant SNP in the meta-analysis (or any
SNP tagging it) was not genotyped in our SNP array. The SSGWAS identified one SNP associated with HDL on chromosome 16
(the top meta-analysis SNP) and one on chromosome 10 (not reported by RHM or in the meta-analysis and hence possibly a
false positive association). The results further confirm that RHM can have better power than SSGWAS in detecting causal
regions including regions containing crucial ungenotyped variants. This study suggests that RHM can be a useful tool to explain
some of the ‘missing heritability’ of complex trait variation.
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INTRODUCTION

Blood lipoprotein concentration is an important risk factor for
coronary heart disease and stroke (Lewington et al., 2007). The main
lipoproteins in blood include high-density lipoprotein (HDL) and
low-density lipoprotein (LDL) levels and plasma concentrations of
total cholesterol (TC) and triglycerides (TG). These traits have
moderate to high heritability: 40–60% for HDL, 40–50% for LDL,
35–48% for TG (Weiss et al., 2006; Kathiresan et al., 2007) and
41–53% for TC (Bielinski et al., 2006; Velásquez-Meléndez et al.,
2007). Large meta-analysis (Teslovich et al., 2010; Surakka et al., 2015)
of genome-wide association studies (GWASs) in blood lipid traits
uncovered associations explaining only a fraction of the heritabilities
of these traits. In most GWASs, single single-nucleotide polymorphism
(SNP) analysis (SSGWAS) has been used to determine associated
variants and subsequently their contribution to complex trait varia-
tion. This method has been shown to lack power for the detection of
rare genetic variants (Bodmer and Tomlinson, 2010) because of low
linkage disequilibrium between rare alleles and genotyped SNPs on the
SNP genotyping array (Zeggini et al., 2005). Nagamine et al. (2012b)
suggested that the regional heritability mapping (RHM) method can
uncover genetic variance not identified by SSGWAS. The RHM
method uses a relationship matrix between individuals based on
SNP information from short regions of genome to estimate the trait
variance explained by each region and localize variation. The main

objective of this method is to uncover the variance contributed by the
combined effect of both common and rare alleles in a region that may
be missed by the SSGWAS scan. Uemoto et al. (2013) demonstrated
the advantage in power of RHM in comparison with SSGWAS and
some gene-based association methods, such as versatile gene-based
association study (Liu et al., 2010), SNP-set (Sequence) Kernel
Association Test (Wu et al., 2011) and canonical correlation analysis
(Tang and Ferreira, 2012), using simulations based on real genotype
data from a human population and a wide range of scenarios for
quantitative trait loci (QTLs) with both common and rare alleles.
Uemoto et al. (2013) demonstrated that the power of RHM to detect
QTL is greater than the other methods studied, with causative variants
at both low (0.0005oMAFo0.10) and high (MAF 40.10) minor
allele frequencies (MAFs). They reported that the power of these gene-
based association methods was strongly affected by the QTL MAF. For
example, the power of versatile gene-based association study decreased
for the detection of low MAF QTLs, whereas that of SNP-set
(Sequence) Kernel Association Test, which was developed as a rare-
variant association test (Wu et al., 2011), was reduced for high MAF
QTLs (Uemoto et al., 2013). Other region-based analyses that account
for familial data structure may be similar to RHM in power. For
example, SNP-set (Sequence) Kernel Association Test power can be
improved by changing the β-weights (Belonogova et al., 2013), and
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specific family-based versions of the approach are also available (Chen
et al., 2013; Svishcheva et al., 2014).
The aims of this study were to identify regions and SNPs that

contribute to variation in blood lipid traits using RHM and SSGWAS
analysis in three isolated Croatian populations and to compare the
effectiveness of the RHM approach in capturing the heritability of
blood lipid traits with SSGWAS in these populations. We compared
our results with those of a large meta-analysis for validation.

MATERIALS AND METHODS

Populations, phenotypic and genotypic data
A total of 2246 adult volunteers from three Southern European populations in
the city of Split and the islands of Vis and Korcula on the Dalmatian coast of
Croatia participated in 3 epidemiological field studies. All cohort studies were
approved by the Ethical Committee of the Medical School, University of Zagreb
and the Multi-Centre Research Ethics Committee for Scotland. All participants
gave written informed consent. Fasting plasma levels of four blood lipid traits
(LDL, HDL, TC and TG) were recorded. Supplementary Table 1 presents the
phenotypic mean, s.d. and sample size for each of four traits in these
populations. Before merging the data together, each population was adjusted
for the fixed effects, sex, age and age squared by fitting a linear regression model
and the residuals were rank transformed to the standard normal distribution,
separately. The adjusted and rank-transformed data were used as the
phenotypes for both SSGWAS and RHM analysis.
The samples were genotyped using 300K SNP genotyping arrays (Illumina

Human Hap300 for Vis and Illumina Inc. (San Diego, CA, USA) CNV370 for
Korcula and Split). Quality control procedures were performed per SNP and
per individual. SNPs with MAF o0.001, Hardy–Weinberg equilibrium
(Po10−8) and call rate o0.98 were discarded. Individuals were excluded with
a call rate of o0.98. After these quality control stages, 2246 individuals
remained, and 268 651 autosomal SNPs were common to all the population
samples and were used in our analysis. Genotypic quality control was done
using the GenABEL library version 1.6-5 (Aulchenko et al., 2007) in R (R
Development Core Team, 2011, Vienna, Austria, version 2.12.2).

Statistical analysis
Single SNP genome-wide association method. For all four traits, SSGWAS
analysis was performed using the GenABEL package in the R environment. The
whole genome kinship matrix was constructed using pair-wise identities by
state of all autosomal SNPs in the data set that passed the quality control
criteria using the ibs function of GenABEL (option weight= ‘freq’) as described
by Aulchenko et al. (2007). The association test was performed fitting the whole
genome kinship matrix as a random effect to account for relatedness using the
polygenic and mmscore functions of GenABEL (Chen and Abecasis, 2007) in R.

RHM analysis method. In the RHM method, the genome was divided into
regions using sequential windows of genotyped markers to assess the
contribution from each region to the trait variance. A random effects model
was applied to the adjusted and rank-transformed phenotypes. For this study
two random effects were included: the regional genomic polygenic and whole
genome polygenic matrices, as described by Nagamine et al. (2012b), using the
ASReml software (Gilmour et al., 2002). To evaluate the evidence for a regional
heritability 40, for each window, a likelihood ratio test statistic compared the
full model including a regional effect with the null model (no regional
heritability) that just included the relationship matrix derived using all
autosomal SNPs in the data set that passed the quality control criteria. The
full model and the null model are as below:

Full Model: y ¼ 1nmþ Zwaþ Zrr þ e

Null Model: y ¼ 1nmþ Zwaþ e

where y represents the adjusted and rank-transformed phenotype of interest, n
is the number of individuals, μ is the overall mean, a is the whole genome
additive genetic effect, matrix Zw is the whole genome relatedness matrix, r is
the regional additive genetic effect, matrix Zr is the regional relatedness matrix
and e is the vector of residuals. The regional and whole genome genetic values

were estimated using a relationship matrix derived from markers as described
by Nagamine et al. (2012a) by using the formulae below:

f ij ¼
2

m

Xm

k¼1

ðgik � pkÞðgjk � pkÞ
pkð1� pkÞ

; ðiajÞ

f ij ¼ 1þ 1

m

Xm

k¼1

Obsð#homÞk � Eð#homÞk
1� Eð#homÞk

; ði ¼ jÞ

where fij is the genomic relationship between individuals i and j, gik (gjk) is the
genotype of the individual i (j) at the k-th SNP (coded as 0, 0.5 and 1, for AA,
BA and BB, respectively), pk is the frequency of the allele B of k-th SNP and m
is the number of SNPs used for relationship estimation, representing the total
number of autosomal SNPs for the whole genome relationship matrix or the
number of SNPs in the region for the regional genomic relationship matrix.
Obs(#hom)k and E(#hom)k are the observed number and expected number of
homozygous genotypes under Hardy–Weinberg equilibrium at the k-th SNP.
Whole genomic, regional genomic and residual variances were s2w , s

2
r and s2e ,

respectively. The variance of the adjusted and rank-transformed phenotype of
interest, s2y , was calculated as s2w þ s2r þ s2e and therefore the whole genome
and regional heritabilities were h2w ¼ s2w=s

2
y and h2r ¼ s2r =s

2
y , respectively.

In the RHM analyses, the genome was scanned using regions (windows)
spanning 100 consecutive genotyped SNPs. Between the sequential windows we
allowed for a 50-SNP overlap as explained by Nagamine et al. (2012b). Using
the relationship matrix obtained from the SNPs within a window enables the
contribution of this region to the trait variance to be estimated and regions
affecting the trait to be identified. To fine-map associated variants, the 100 top
windows based on likelihood ratio test statistic values of 100-SNP window tests
were further analyzed using sequential 10-SNP windows with 5-SNP overlap.
This potentially allows narrow down the regions of the genome associated with
the trait of interest.

Significance thresholds. To determine the significance thresholds for SSGWAS
and RHM, a Bonferroni correction based on the number of independent tests
performed in each scenario was used to obtain a genome-wide 5% significance
threshold. In the SSGWAS method, this gave a − log P-value threshold of 6.73,
as 268 651 autosomal SNPs were used in this analysis. For the RHM method, in
100-SNP windows with 50-SNP overlap and 10-SNP windows with 5-SNP
overlap, 5373 and 53 732 windows were tested, respectively, and half that
number was used to estimate the Bonferroni corrected significance thresholds
and account for overlapping windows (as described by Nagamine et al., 2012b).
This resulted in thresholds of 4.73 − log P-value for 100-SNP windows with
50-SNP overlap, and 5.73 − log P-value for 10-SNP windows with 5-SNP
overlap. To balance between type I and type II errors, we considered the
suggestive level of significance, defined as the level at which one false positive
per genome scan is expected (Rao and Gu, 2001). The genome-wide suggestive
significance thresholds obtained using Bonferroni correction were 5.43, 4.43
and 3.43 − log P-values for SSGWAS, 10-SNP and 100-SNP windows,
respectively.

RESULTS

High-density lipoprotein
Figure 1 shows the Manhattan plot for HDL using the SSGWAS
method. Three SNPs associated with HDL were detected by SSGWAS
at the 5% significance level after Bonferroni correction. Two of these
variants (‘rs7499892’ and ‘rs3764261’) were close together on chro-
mosome 16 and the third SNP (‘rs3758562’) on chromosome 10.
Furthermore, a SNP on chromosome 15 (‘rs1532085’) was significant
at the suggestive level after Bonferroni correction. Supplementary
Table 2 presents SSGWAS results for 10 top SNPs with the − log
P-value of 45.00 for HDL.
Using the RHM method, the estimated heritability of HDL over the

whole genome (estimated by averaging the whole genome heritabilities
across all 100-SNP windows) was 45.8% (s.e. 6.6%). Two significant
windows associated with HDL were detected using the 100-SNP
window analysis at the 5% significance level after Bonferroni
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correction, one on chromosome 15 and the other on chromosome 16
(Table 1). Fine-mapping RHM analysis (using 10-SNP windows) of
the associated region on chromosome 15 showed that the region with
3.5% heritability contains the SNP (‘rs1532085’) that was suggestive
and not genome-wide significant in the SSGWAS analysis. In addition,
fine-mapping of the significant region on chromosome 16 indicated
that the window contains two significant overlapping 10-SNP
windows. The region covering these two overlapping 10-SNP windows
each with 4.0% heritability harbors the SNP ‘rs3764261’ identified by
SSGWAS. Supplementary Table 3 presents RHM results for 10 top
100-SNP windows for all traits of interest.

Low-density lipoprotein
Using SSGWAS, no SNP associated with LDL was detected at the
genome-wide significance level. The estimated heritability of LDL
averaged over the RHM genome scan using 100-SNP windows was
47.4% (s.e. 6.5%). RHM identified a region on chromosome 19 from
49 455 904 to 50 999 246 base pair associated with LDL. This region
encompassed two genome-wide significant overlapping 100-SNP
windows explaining 4.8% and 6.2% of the trait variance for LDL,
respectively. The fine-mapping analysis using 10-SNP windows
narrowed the region down to a single 10-SNP region with an
estimated 7.3% heritability.

TC and TG
Using the RHM genome scan, the estimated heritability for TC was
42.6% (s.e. 6.4%) and for TG was 18.8% (s.e. 6.3%). However, both
the RHM and SSGWAS analyses failed to detect SNPs and/or regions
associated with these traits at the genome-wide or suggestive sig-
nificance levels. Supplementary Table 2 presents SSGWAS results for
SNPs with − log P-values of 45.00 for TC and TG.

DISCUSSION

RHM vs SSGWAS
Table 2 presents the estimated variances of the significant SNPs
detected by the SSGWAS method and their regional variance estimated
by the RHM method compared with the SNP variances suggested by
meta-analysis. On chromosome 10, the significant SNP (‘rs3758562’)
identified by SSGWAS to be associated with HDL was not confirmed
by the RHM method as the region containing this SNP was not
significantly associated. This SNP and the region containing it was also
not detected in the meta-analysis of Teslovich et al. (2010) and in the
most current meta-analysis report in HDL by Surakka et al. (2015) and
also no report was found for any significant SNP around this region in
GWAS catalog (http://www.genome.gov/gwastudies) for HDL. This
result may suggest that SSGWAS detected a false positive and RHM
method may have avoided this problem. Furthermore, on chromo-
some 15, the suggestive SNP (‘rs1532085’) by SSGWAS explained

Figure 1 Manhattan plot of results from SSGWAS in gray solid circle and RHM with 100-SNP windows in black filled circle for four blood lipid traits: HDL,
LDL, TG and TC. The gray horizontal line indicates the significant threshold level of genome-wide significance at 5% by Bonferroni correction of 6.73 for
SSGWAS and the black horizontal line indicates the significant threshold levels of genome-wide significance at 5% by Bonferroni correction of 4.73 for RHM
with 100-SNP windows.
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1.2% of total trait variance. However, the 100-SNP window containing
this SNP was found to be highly significant by the RHM method,
explaining 2.7% of total trait variance. Comparing these results with
the meta-analysis of Teslovich et al. (2010) reveals that this SNP is one
of the significantly associated variants with HDL with 0.9% heritability
based on its reported allele frequency and estimated effect. This result
indicates that the RHM method has the power to detect truly
associated variants that may not reach the genome-wide significance
level and hence may be missed by SSGWAS analysis. Finally, on
chromosome 16, the SSGWAS analysis identified one significantly
associated variant for HDL, ‘rs3764261’, explaining 2.0% of trait
variance. The region harboring this SNP was captured by the RHM
method as the most significant region associated with HDL, explaining
4.0% of trait variance and 8.7% of the total heritability. The meta-
analysis further confirmed that ‘rs3764261’ is the most significant SNP
associated with HDL with a − log P-value of 379.14; this SNP
explained 4.5% of the trait variance based on its reported allele
frequency and estimated effect in the meta-analysis. The current study
suggests that the RHM method performs better than the SSGWAS
method in capturing the effective variants.

RHM and SSGWAS vs meta-analysis
Table 3 presents comparisons between variance explained by meta-
analysis, SSGWAS and RHM in the traits of interest. The meta-analysis
identified 45 associated variants for HDL in addition to the two
regions identified in this study. This is likely due in part to the sample
size of the meta-analysis of4100 000 individuals compared with 2246
individuals in the current study. In addition, 34 out of 47 SNPs
associated with HDL in the meta-analysis were not genotyped in the
current study.
We estimated that the heritability explained by the 47 loci detected

in the meta-analysis would be 12.2% for HDL using reported MAFs
and effects in the meta-analysis data set. In addition, 13 of these SNPs
genotyped in the current study would explain 6.4% of the total
variance of HDL. Although just one of the 13 SNPs available out of the
47 was significant in the SSGWAS in the current study, these loci
together explained 4.4% of total trait variance for HDL. Using the
RHM method, regions harboring these 13 SNPs explained 8.5% of
the total trait variance for HDL in our data. The results suggest that
the RHM method has the potential to explain a larger proportion of
variance in traits than the SSGWAS method in the regions for which
meta-analysis hits are available in our data set. For associating SNPs
reported by meta-analysis that are available in our data set, the MAF in
meta-analysis and estimated allele frequency in the current study is
plotted in Supplementary Figure 1. For the other 34 regions for which
the meta-analysis hits are not available in our data set, the regional
heritability estimated by RHM was calculated; the total heritability of
HDL explained by all 47 regions by RHM was 19.4%.
For LDL, the most significant region detected by RHM was that

harboring the SNP (‘rs4420638’) that was most significantly associated
in the meta-analysis of Teslovich et al. (2010). This SNP was estimated
to explain 2.3% of the variance for LDL based on the meta-analysis
results. In the RHM analysis, the region containing this SNP explained
an estimated 4.8% of the trait variance. Neither this SNP nor any SNP
in high linkage disequilibrium (r2 40.90) with it was genotyped in the
current study; therefore, the region was not detected by SSGWAS. This
confirms the analysis of Nagamine et al. (2012b) that the RHM
method has the power to detect the associated regions, even if the
associated variant is not genotyped in the data.
The 37 loci detected in meta-analysis explain 12.1% of total trait

variance for LDL. Only 6 of the 37 SNPs were genotyped in the currentT
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study, and these explained 0.8% of total variance in meta-analysis, 0.8%
using the SSGWAS method and 0.6% using the RHM method.
No significantly associated SNP or region was detected in the current

study for either TC or TG. Teslovich et al. (2010) reported 52 and 32
associated loci for TC and TG, respectively, with estimated heritabilities
explained by these loci of 12.4 and 9.6%. From these meta-analysis
associated variants, only 12 and 4 SNPs, for TC and TG, respectively,
were available in the current study. Based on the meta-analysis results,
these SNPs explained 1.4% and 0.5% of the total trait variances for TC
and TG, respectively. The SSGWAS study also suggested similar
percentage of variance for these SNPs with 1.2% and 0.4% for TC
and TG, respectively. The RHM method showed a higher percentage of
variance for the regions containing these genotyped SNPs of 2.6% and
4.9% for TC and TG, respectively. However, using the RHM method,
the 52 regions in TC and the 32 regions in TG that harbored associated
variants as reported by Teslovich et al. (2010) explained 10.4% and
6.4% of trait variance in the current study compared with the meta-
analysis of 12.4% and 9.4% for TC and TG, respectively.

CONCLUSION

Three significant regions detected by RHM provide evidence on the
power of RHM under three different conditions. First, RHM can

detect trait-associated regions that cannot be detected by the SSGWAS
method by taking into account the nearby SNP effects. Second, this
study suggests that when the SNP is not available in the data set, the
RHM method can detect causative regions as this method uses effects
of all SNPs in the region through the construction of a regional
relationship matrix. Finally, the RHM method may be able to reduce
the false discovery rate, a common problem with SSGWAS studies in
populations that are characterized by a high inbreeding coefficient
(Manenti et al., 2009) specially for SNPs with high MAF (Tabangin
et al., 2009), by using nearby SNP information and the summation of
SNP effects on a window.
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Table 2 Explained variance by SNP/region using meta-analysis, SSGWAS and RHM methods for captured SNPs

Chromosome SNP Trait Meta-analysis SSGWAS RHM

s2S s2G h2
E h2

S h2
S h2

win10 h2
win100

16 rs3764261 HDL 5.00 13.64 12.2% 4.5% 2.0% 4.0% 4.0%

15 rs1532085 HDL 1.00 13.64 12.2% 0.9% 1.2% 3.5% 2.7%

10 rs3758562 HDL NA 13.64 12.2% NA 1.3% 1.1%NS 1.3%NS

19 rs4420638 LDL 14.38 75.68 12.1% 2.3% NA 7.3% 4.8%

Abbreviations: HDL, high-density lipoprotein; LDL, low-density lipoprotein; LRT, likelihood ratio test; NA, not available; NS, not significant; RHM, regional heritability mapping; SNP, single-nucleotide
polymorphism; SSGWAS, single SNP genome-wide association study.
s2S : explained variance by the SNP; s2G : total genetic variance; h

2
E : explained trait heritability by all meta-analysis hits; h2

S : explained heritability by the SNP; h2
win10: heritability of the region using 10-SNP window

by RHM method; h2
win100 : heritability of the region using 100-SNP window by RHM method.

Table 3 Variance comparison between meta-analysis, SSGWAS and

RHM

Method HDL LDL TC TG

NS PVE NS PVE NS PVE NS PVE

SSGWAS
s2S 13 4.4% 6 0.8% 12 1.2% 4 0.4%

RHM
s2A

a 47 19.4% 37 12.4% 52 10.4% 32 6.4%

s2S
a 13 8.5% 6 0.6% 12 2.6% 4 4.9%

s2S /s
2
A 13/47 43.8% 6/37 2.3% 12/52 25.0% 4/32 76.5%

Meta-analysis
σA2 47 12.2% 37 12.1% 52 12.4% 32 9.6%

s2S 13 6.4% 6 0.8% 12 1.4% 4 0.5%

s2S /s
2
A 13/47 52.6% 6/37 6.7% 12/52 11.5% 4/32 5.2%

Abbreviations: HDL, high-density lipoprotein; LDL, low-density lipoprotein; NS, number of SNPs;
PVE, proportion of trait variance explained; RHM, regional heritability mapping; SNP, single-
nucleotide polymorphism; SSGWAS, single SNP genome-wide association study; TC, total
cholesterol; TG, triglycerides.
s2S : explained variance by associating SNP reported by meta-analysis that are available in our data set;

s2A : explained variance of all associating SNPs reported by meta-analysis.
as2A and s2S for RHM are explained variances by the regions containing the SNPs.
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