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Improving soil bacterial taxa–area relationships assessment
using DNA meta-barcoding

S Terrat1, S Dequiedt1, W Horrigue1, M Lelievre1, C Cruaud2, NPA Saby3, C Jolivet3, D Arrouays3,
P-A Maron1,4, L Ranjard1,4,6 and N Chemidlin Prévost-Bouré5,6

The evaluation of the taxa–area relationship (TAR) with molecular fingerprinting data demonstrated the spatial structuration of
soil microorganisms and provided insights into the processes shaping their diversity. The increasing use of massive sequencing
technologies in biodiversity investigations has now raised the question of the advantages of such technologies over the
fingerprinting approach for elucidation of the determinism of soil microbial community assembly in broad-scale biogeographic
studies. Our objectives in this study were to compare DNA fingerprinting and meta-barcoding approaches for evaluating soil
bacterial TAR and the determinism of soil bacterial community assembly on a broad scale. This comparison was performed on
392 soil samples from four French geographic regions with different levels of environmental heterogeneity. Both molecular
approaches demonstrated a TAR with a significant slope but, because of its more sensitive description of soil bacterial
community richness, meta-barcoding provided significantly higher and more accurate estimates of turnover rates. Both
approaches were useful in evidencing the processes shaping bacterial diversity variations on a broad scale. When different
taxonomic resolutions were considered for meta-barcoding data, they significantly influenced the estimation of turnover rates but
not the relative importance of each component process. Altogether, DNA meta-barcoding provides a more accurate evaluation of
the TAR and may lead to re-examination of the processes shaping soil bacterial community assembly. This should provide new
insights into soil microbial ecology in the context of sustainable use of soil resources.
Heredity (2015) 114, 468–475; doi:10.1038/hdy.2014.91; published online 8 October 2014

INTRODUCTION

Soils are highly complex ecosystems and are considered as one of the
Earth’s main reservoirs of biological diversity. Bacteria account for a
major part of this biodiversity, and it is now clear that such
microorganisms have a key role in soil functioning processes (for
example, control of nutrient cycles, and directly influence plant,
animal or human health; Nemergut et al., 2011). However, many of
the environmental factors regulating the diversity of below-ground
bacteria, still need to be investigated, which limits our understanding
of the distribution of such bacteria at various spatial scales (Hanson
et al., 2012).
Until recently, most biogeographic studies have been devoted to

plants and animals, providing insights into the ecological processes
(dispersal, selection, ecological drift and speciation), which shape the
community assembly and dynamics of macroorganisms (Nemergut
et al., 2011, 2013; Hanson et al., 2012). For microorganisms, the first
biogeographic hypothesis was developed by Baas Becking in 1934:
‘Everything is everywhere, but, the environment selects’, implying that
microbes would be homogeneously distributed on a broad scale and
among various environments. Interestingly, the number of microbial
biogeography studies has increased exponentially over the last decade
because of progress with molecular tools for routine application and
broad-scale sampling networks involving several hundreds of samples

(Maron et al., 2011; Hanson et al., 2012). These studies are providing
overwhelming evidence that microorganisms display biogeographic
patterns, but that much remains to be described and understood about
the ecological processes contributing to these biological distributions
as well as their relative importance (Hanson et al., 2012; Ranjard
et al., 2013).
The oldest and most relevant way to discriminate the spatial

processing of microbial diversification is to evaluate the taxa–area
relationship (TAR). The first TAR was reported by Arrhenius (1921)
as a power–law relationship between species richness (SA) in an area A
and local species richness (S0) and area (A):

SA ¼ S0A
z ð1Þ

In this equation, z represents the rate at which new species are
sampled as the sampling area is increased. This has been extended to
microorganisms by taking equation (1) and deriving a similarity
distance–decay relationship between community similarity between
sites and geographic distance between sites (equation 2):

wd ¼ wD
d

D

� ��2z

ð2Þ

In this equation, z is the same parameter as in equation (1) and is
commonly considered as a turnover rate. χd and χD are the
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community similarities between sites located d meters and D meters
apart from each other. This derivation is based on two assumptions:
that community size is infinite and that z is steady (Rosindell et al.,
2011). For microorganisms, the infinite community size hypothesis
may hold because soil microbial communities are commonly assumed
to be very large and diverse, and the average abundance per microbial
taxa is high (Harte et al., 2009). On the contrary, the hypothesis of z
remaining steady across scales, which assumes self-similarity as a
probability rule for the spatial distribution of taxa abundance across
spatial scales (Harte et al., 1999), may not hold for soil microbes.
Consequently: (i) it may be assumed that the similarity distance–decay
relationship is equivalent to the TAR and (ii) the z estimates and
subsequent conclusions may vary across scales but can be assumed
constant for a given scale.
Nevertheless, beyond the debate concerning the form of the TAR

equation, this relationship is assumed to result mainly from: (i) the
accumulation of species as the sampling area is increased because of
the increased number of different habitats sampled (corresponding to
the selection process); (ii) population dynamics, with greater possibi-
lities for colonization and speciation but lower extinction rates in
larger areas, corresponding to dispersal limitations and ecological drift
processes; and (iii) speciation processes within the considered organ-
isms (Hubbell, 2001; Zinger et al., 2014). Challenging the widespread
idea that microorganisms exhibit a cosmopolitan distribution, TAR is
now commonly used in a majority of microbial biogeographical
studies to assess microbial community turnover rate and its relative
potential dependence on ‘dispersal’ and ‘selection’ (Angel et al., 2010;
Martiny et al., 2011; Ranjard et al., 2013; Wang et al., 2013; Zinger
et al., 2014). The estimated turnover rates for microbial communities
in most studies range from 0.002 to 0.26 (Horner-Devine et al., 2004;
Green and Bohannan, 2006; Woodcock et al., 2006), and are generally
much lower than those estimated for macroorganisms (classical range:
0.1–0.25; Horner-Devine et al., 2004). In addition, Ranjard et al.
(2013) have shown that selection and limited dispersal are not
mutually exclusive and that a non-negligible proportion of bacterial
community variation on a broad scale might be explained by the latter.
Although these studies demonstrated a significant spatial structuring

of bacterial communities into biogeographical patterns, they were
mainly based on molecular approaches with limited resolution, such as
fingerprinting methods (Angel et al., 2010; Ranjard et al., 2013), or
low-depth sequencing (Martiny et al., 2011). Nowadays, high-
throughput sequencing technologies (for example, 454 pyrosequencing
or Illumina) are readily available to assess microbial diversity with
greater precision and provide huge amounts of taxonomic informa-
tion, based on hundreds of thousands of ribosomal RNA (rRNA) gene
sequences (here designated DNA meta-barcoding) from a single
metagenomic DNA (Maron et al., 2011). Increasing use of these
technologies in biodiversity investigations raised methodological and
conceptual insights to ecologists (Wang et al., 2013; Zinger et al.,
2014). Regarding biogeography studies, it has raised the question of
the potential gain offered by the greater resolution of the DNA meta-
barcoding approach, as compared with fingerprinting, in providing a
deeper understanding of the determinism of microbial community
assembly on a broad scale (Terrat et al., 2012; Lienhard et al., 2013).
Recently, Van Dorst et al. (2014) incorporated various spatial scales
and demonstrated the similar capacities of DNA fingerprinting and
meta-barcoding to discriminate bacterial communities and to correlate
with environmental variables at a local scale, but the greater resolution
of DNA meta-barcoding at a global scale. This underlines the
importance of adopting DNA meta-barcoding to support studies on

broad to global scales, and to reexamine the processes involved in
community assembly.
Our objectives in this study were to compare soil bacterial TAR and

the determinism of soil bacterial community assembly on a broad
scale using both approaches, namely DNA fingerprinting (Automated
RISA fingerprinting, ARISA data set in the following) and DNA meta-
barcoding (454 pyrosequencing, NGS data set in the following), to
characterize soil bacterial diversity. Four geographic regions in the
RMQS data set (‘Réseau de Mesures de la Qualité des Sols’= French
Monitoring Network for Soil Quality, covering 2200 soils over the
whole of France using a systematic grid 16 km×16 km) were selected
along a gradient of environmental heterogeneity, representing a total
of 392 soils. As the meta-barcoding approach can provide taxonomic
information at different resolutions, multiple operational taxonomic
unit (OTU) clustering thresholds (80 to 97%) were used. The
similarity between two communities was determined with the
Sørensen index based on the amount of shared OTUs, irrespective
of their relationship (Green et al., 2004). In each region, the soil
bacterial community turnover rates (z) were estimated using the
above-described similarity distance–decay relationship (equation 2).
A distance-based redundancy analysis was used to partition bacterial
community variance according to pedo-climatic characteristics, land-
use and spatial variables. Our main hypothesis was that DNA meta-
barcoding would provide a more robust estimation of TAR and a
better understanding of the processes involved in bacterial community
assembly on a broad scale than molecular fingerprinting.

MATERIALS AND METHODS

Sampling design
Soil samples were provided by the soil genetic resource conservatory of the

GenoSol platform (http://www2.dijon.inra.fr/plateforme_genosol/) and

obtained from the soil storage facility of the RMQS. The RMQS database

consists of soil samples obtained from a regular 16-km grid across the

550 000 km2 of metropolitan France and was designed to monitor soil

properties (Arrouays et al., 2002). The baseline survey comprises 2200 sites

(each corresponding to a composite soil sample obtained from 25 soil cores)

and was started in 2001 and completed in 2009. No temporal effect has been

observed (data not shown). The 392 sites analyzed in this study were organized

into four geographic regions: Brittany (124 sites), Burgundy (109 sites), Landes

(52 sites) and South-East (107 sites) with contrasting soil type, land-use (coarse

level of the CORINE Land Cover classification; IFEN, http://www.ifen.fr;

7 classes: forest, crop systems, grasslands, particular natural ecosystems,

vineyards/orchards, parkland and wild land), climate (Quintana-Segui et al.,

2008) and geomorphology (Supplementary Table S1). The sites within a region

were at least 16-km apart. For each soil, the following pedo-climatic

characteristics were examined: particle-size distribution, pH in water (pHwater),

C:N ratio, organic carbon (Corg), N, soluble P, CaCO3 and exchangeable cation

(Ca, K and Mg) contents, sum of annual temperatures (°C) and annual rainfall

(mm). Physical and chemical analyses were performed by the Soil Analysis

Laboratory of INRA (Arras, France), which is accredited for such analyses by

the French Ministry of Agriculture.

DNA molecular fingerprinting data (fingerprint data set)
The subset of 392 soil samples was selected from the DNA fingerprinting data

and methods (DNA extraction, purification, quantification and automated

ribosomal intergenic spacer analysis), originally described and analyzed in the

study by Ranjard et al. (2013). After automated ribosomal intergenic spacer

analysis, contingency tables were derived from the fingerprints with samples in

lines and bands (referred to as OTUbin in the following) in columns with a

maximum of 100 bands per sample to avoid taking into account artefactual

bands because of image analysis.
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DNA meta-barcoding data (NGS data set)
Soil DNA extraction, purification and quantification. Microbial DNA was
freshly extracted from soils using a procedure optimized by the GenoSol
platform named GnS-GII (Plassart et al., 2012; Terrat et al., 2012). The main
difference between the GnS-GII and the DNA extraction procedure used in
Ranjard et al. (2013) is the grinding step. However, both of these DNA
extraction methods can provide a representative picture of the community with
DNA molecular fingerprinting approaches (Plassart et al., 2012), but not if
high-throughput sequencing technologies, with their greater resolution, are
used (Terrat et al., 2012). μl Aliquots of crude DNA extracts were loaded onto
polyvinylpolypyrrolidone microbiospin minicolumns (BIO-RAD Laboratories,
Marnes-la-Coquette, France) and centrifuged for 4 min at 1000 g and 10 °C.
Eluates were then collected and purified for residual impurities using the
Geneclean Turbo kit (MP-Biomedicals, New-York, NY, USA). Purified DNA
extracts were then quantified using the PicoGreen staining Kit (Molecular
Probes, Paris, France).

Pyrosequencing of 16S rRNA genes. Microbial diversity (bacteria and archaea)
was determined for each soil by 454 pyrosequencing of ribosomal genes. A 16S
rRNA gene fragment targeting the complete hypervariable regions V4
(576–682) and V5 (822–879) (numbering based on the Escherichia coli system
of nomenclature (Brosius et al., 1978)) with an appropriate size (about 450
bases) for 454-pyrosequencing was amplified using the primers F479 (5′-CAGC
MGCYGCNGTAANAC-3′) and R888 (5′-CCGYCAATTCMTTTRAGT-3′).
Homemade bioinformatic programs have been developed to search large
DNA sequence databases for the presence of primers, including degeneracies,
as coded by the IUPAC rules, and also additional mismatches in order to test
primer improvement. The sequences investigated were SILVA, and direct
extraction of every small subunit rRNA sequence from EMBL using acnuc, and
also a dedicated reference database of 18S eukaryotic sequences, which had
been thoroughly analyzed and annotated (Supplementary Table S2) for in silico
match analysis. For each sample, 5 ng of DNA were used for a 25 μl PCR
conducted under the following conditions: 94 °C for 2min, 35 cycles of 30 s at
94 °C (denaturation), 30 s at 52 °C (hybridization) and 1min at 72 °C
(elongation), followed by 7min at 72 °C (final elongation). The PCR products
were purified using a MinElute gel extraction kit (Qiagen, Courtaboeuf, France)
and quantified using the PicoGreen staining Kit (Molecular Probes). A second
PCR of nine cycles was then conducted under similar PCR conditions with 5 ng
of purified PCR products and 10-base pair multiplex identifiers, designed and
validated by ROCHE (http://www.liv.ac.uk/media/livacuk/centreforgenomicre-
search/The_GS_FLX_Titanium_Chemistry_Extended_MID_Set.pdf) and added
before the 5′ position of the primers, and after the 3′ positions of the adapters
to specifically identify each sample and avoid PCR bias. Finally, the PCR
products were purified and quantified as described above. Pyrosequencing was
then carried out on a GS FLX Titanium (Roche 454 Sequencing System) at
Genoscope (Evry, France).

Bioinformatic analysis of 16S rRNA gene sequences. Bioinformatic analyses were
done using the GnS-PIPE initially developed by the GenoSol platform (INRA,
Dijon, France; Terrat et al., 2012), and recently optimized. The parameters
chosen for each bioinformatic step can be found in Supplementary Table S3.
First, all the 16S raw reads were sorted according to the multiplex identifier
sequences. The raw reads were then preprocessed (filtered and deleted) based
on: (a) their minimum length, (b) their number of ambiguities (Ns) and
(c) their primer sequences. A PERL program was then applied for rigorous de-
replication (that is, clustering of strictly identical sequences). The de-replicated
reads were then aligned using Infernal alignments, and clustered into OTUs
using a PERL program that groups rare reads with abundant ones, and does not
count differences in homopolymer lengths (here, a cluster is defined by the
most abundant read, known as the centroid, and every read in the cluster must
have similarity above the given identity threshold with the centroid). A filtering
step was then carried out to check all single-singletons (reads detected only
once and not clustered, which might be artifacts, such as PCR chimeras) based
on the quality of their taxonomic assignments. More precisely, each single-
singleton was compared with a dedicated reference database from the Silva
curated database using similarity approaches (USEARCH), with sequences
longer than 500 nucleotides, and kept only if their identity was higher than the

defined threshold (Supplementary Table S3). When several reference sequences
were found (defined maximum of 10), a taxonomic consensus was derived, that
is, a read was assigned to a given taxonomy only if a majority of similar reference
sequences had the same description. Finally, in order to compare the data sets
efficiently and avoid biased community comparisons, a homogenization step of
kept reads per sample was carried out, to a value close to the lowest observed
among samples (9410 reads), by random selection (Gihring et al., 2012). The
global analysis of soil samples was then computed by merging all homogenized
high-quality reads from each sample into one global file before subsequent
analyses. As the global analysis of bacterial community structure and diversity
relies on the construction of similarity clusters (or OTUs) of 16S rRNA gene
PCR amplicons (Horner-Devine et al., 2004), we chose to use OTUs to examine
the distribution of 16S rRNA gene sequences in our data set. However, there is
no single best definition of ‘species’, ‘genus’, etc… when this sequencing
approach is used, (because of controversy about thresholds of similarity allowing
clear differentiation of taxonomic units), so we applied the following thresholds
of sequence similarity: 80, 85, 90, 95 and 97% (Rosselló-Mora and Amann,
2001; Nemergut et al., 2011). Such multiple OTU definitions are analogous to
comparing different taxonomic resolutions. The retained high-quality reads were
then used to determine the OTU composition of samples at each level of
similarity. Finally, contingency tables of OTUs were obtained with samples in
lines and OTUs in columns, indicating the number of reads in each OTU for all
samples. OTUs were also taxonomically assigned using the information from
high-quality reads (Supplementary Table S4). The raw data sets are available in
the EBI database system under project accession number PRJEB6290.

Data set post-processing. Two filtering steps were applied to the NGS
contingency tables of OTUs to eliminate potentially artefactual data (because
of sequencing errors or PCR chimeras for example). The first step consisted of
removing OTUs that occurred only once in the overall data set, considered as
experimental artifacts. The second filtering step was designed to avoid up-
weighting the importance of rare OTUs in the data set (as the contingency
tables would be converted into binary tables for statistical analyses). This
filtering step consisted of changing the value for the sample in the global OTU
to 0 if two conditions were verified: (i) for each OTU in the global contingency
table, if the reads of one sample representedo1% of the total abundance of the
OTU and (ii) if the reads from the given OTU for the analyzed sample
represented o0.1% of the total number of cleaned sequences identified in the
sample. This second filtering step made it possible to remove less information
than a single filter, which removed OTU representing o0.1% of the total
number of cleaned sequences identified in the sample (Supplementary
Table S5). The contingency tables of OTUs (with samples in lines and OTUs
in columns) were then converted into binary tables for subsequent analyses.
OTU richness was compared between the raw data set and the filtered data set
to evaluate the effects of the filters.

Statistical analyses
Evaluation of congruence between ARISA and 454 sequencing data sets. In order
to evaluate if ARISA and 454 sequencing data sets were comparable, the correlation
between the distance matrices derived from each data set (Sørensen index) was
tested by means of Mantel test (mantel function in vegan package in R).

Environmental heterogeneity. The level of environmental heterogeneity
between regions was determined by applying a multivariate analysis on mixed
data using the ade4 package in R (http://cran.r-project.org/web/packages/ade4/
index.html) with soil pedo-climatic characteristics, land-use and geomorpholo-
gical data (elevation). Quantitative data were centered and scaled and qualitative
data were converted into weighted binary variables (weight equal to 1/n; n being
the number of classes for the qualitative variables). Differences between the four
regions were examined by between-group analysis and a Monte-Carlo
permutation test (1000 permutations). The environmental heterogeneity in
each region was determined from the site dispersion on the factorial map.

Evaluation of bacterial community composition turnover rate. The turnover
rates (z) for bacterial community composition were derived from the slope of
the TAR as described in Ranjard et al. (2013) following the method
described in Harte et al. (1999) and by applying equation (3), which is the
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log-transformation of equation (2):

log 10ðwdÞ ¼ ð�2 � zÞ � log 10ðdÞ þ b ð3Þ
where χd is the observed Sørensen’s similarity between two soil samples that are
d meters apart from each other; b is the intercept of the linear relationship and
z the turnover rate of the community composition. In this study, z is assumed
to be constant, that is, independent of d. The z estimate and its 95% confidence
interval were derived from the slope (−2*z) of the relationship between
similarity and distance by weighted linear regression. The overlap of the 95%
confidence intervals was used to test for significant differences in turnover rates
between regions or methods.

Variance partitioning of community assembly according to environmental filters
and space. The relative importance of residual spatial autocorrelation, pedo-
climatic characteristics and land-use in determining community composition
turnover was tested by db-RDA (Legendre et al., 2005; Legendre and Fortin,
2010). Quantitative data were centered and scaled. Residual spatial autocorrela-
tion was considered by introducing spatial variables into the analysis. These
spatial variables were constructed from site coordinates (x, y, elevation) to
reveal potential spatial trends at scales larger than the region, and from
principal coordinates of neighbour matrices eigenfunctions in each region
(pcnm function in vegan package, http://cran.r-project.org/web/packages/
vegan/index.html). Only principal coordinates of neighbour matrices with a
significant Moran index (Po0.001) were selected. Land-use corresponded to
the CORINE Land Cover classes (IFEN, http://www.ifen.fr) recoded into
dummy variables. Pedo-climatic characteristics consisted of climate and all
the physico–chemical variables except sand. The most parsimonious model was
obtained by forward selection from null to full model. The marginal effects of
each set of filters were tested with an analysis of variance (ANOVA)-like
permutation test for canonical analyses (anova.cca function in vegan package,
http://cran.r-project.org/web/packages/vegan/index.html).

RESULTS

Environmental heterogeneity
The four regions were selected for their contrasting environmental
heterogeneity as demonstrated by principal component analysis of

mixed data (Figure 1a). This multivariate analysis resulted in the
discrimination of the four regions on both axes (Monte-Carlo
permutation test, Po0.001). On the first axis, Landes was significantly
discriminated from Brittany, Burgundy and South-East, and these three
regions were discriminated from each other on the second axis. The
environmental heterogeneity differed strongly between regions, the
Landes sites being less dispersed on the factorial map than the Brittany
or Burgundy sites, which were less dispersed than those of the South-
East. Figure 1b shows that the four regions could mainly be
distinguished according to land-use (for example, 86% of the Landes
sites are forest sites), a restricted set of soil physico–chemical character-
istics (sand and silt contents, pHwater and CaCO3 content, P content
and C:N ratio) and by differences in elevation. Climatic conditions did
not have a significant role in discrimination between regions.

Post-processing and taxonomic resolution on NGS data
Post-processing steps were applied to the NGS data set in order to
account for potentially artefactual data. The effects of the filters were
assessed by comparing OTU richness in the raw and filtered data sets.
OTU richness at the 80% similarity threshold ranged from 20 to 171
OTUs in the raw data set and from 10 to 126 OTUs in the filtered data
set. It increased with the increasing similarity threshold in the
clustering analysis to reach a maximum at 97% sequence similarity.
At this level of sequence similarity, OTU richness ranged from 106 to
4687 OTUs in the raw data set and from 44 to 1641 OTUs in the
filtered data set (Table 1). The filtering steps reduced the number of
OTUs considered by 34 to 48%. This reduction was similar for each
region and harbored only a slight increase as the similarity threshold
increased, ranging from 34 to 45% at the 80% sequence similarity
threshold, and from 39 to 48% at the 97% sequence similarity
threshold.
Regarding the raw data set, the four regions could be ranked

according to the median OTU richness across all sites:

Figure 1 Environmental heterogeneity between the Brittany, Burgundy, Landes and South-East regions. (a) Factorial map representing the sites considered
respectively to their region of origin in a principle component analysis on mixed data. Green open opened circles: Brittany; blue open opened squares:
Burgundy; red crosses: Landes, black filled circles: South-East. (b) Correlation circle of the principle component analysis on mixed data. Monte-Carlo
permutation test (1000 permutations) was significant (Po0.001).
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Landes≈BurgundyoBrittany≈South-East (Po0.05, χ2 test), whatever
the clustering threshold. The same ranking of the different regions was
obtained with the filtered data set, indicating that the overall trends in
the diversity indices were not affected by the filtering steps adopted.

TAR evaluation
Mantel test comparisons between the distance matrices derived from
the ARISA and 454 sequencing data sets (Sørensen index), highlighted
significant correlations between these two data sets (0.28oro0.62,
Po0.001). These significant correlations showed that the two data sets
were congruent and could be compared with one another (data not
shown).
DNA fingerprinting (ARISA) and meta-barcoding were compared

for their assessment of community turnover rate (z) using the
Sørensen dissimilarity index on binary data. The estimated z ranged
from 0.007 to 0.046, from 0.009 to 0.063, from 0.009 to 0.08 and from
0.013 to 0.09 in the Brittany, Burgundy, Landes and South-East
regions, respectively (Figure 2). Except in Landes, the estimated z with
the ARISA data set was always lower than the values obtained with the
NGS data set, irrespective of the similarity thresholds used. In
addition, z increased significantly with the sequence similarity thresh-
old used for the clustering of OTUs, except between 95 and 97%
similarity. Furthermore, the coefficients of variation of z were
systematically smaller with the NGS data set than with the ARISA
data set in every region and for every clustering level except in Landes
at 80% similarity. Indeed, in Landes, the coefficients of variation for z
ranged from 26 to 46% with NGS and were 40% with ARISA. For the
three other regions, the coefficients of variation of z ranged from 8 to
12% with NGS and from 10 to 17% with ARISA. The same trend was
observed when the four regions were compared with one another,

except at the 85% similarity threshold where z was higher in the
South-East than in Brittany, Landes and Burgundy (Figure 2). No
significant differences were observed between these three regions.
A similar trend was observed with the ARISA data set. Finally, no
significant differences between regions were observed at a similarity
threshold of 85%.

Variance partitioning of community assembly
The relative importance of the sets of spatial variables, land-use and
pedo-climatic characteristics on variations in bacterial community
assembly was used to compare the DNA meta-barcoding and
fingerprinting approaches for their capacity to help understanding
observed biological patterns.
The amount of variance in bacterial community assembly explained

by spatial and environmental parameters ranged from 19.5% to 23.0%,
23.3% to 31.6%, 7.2% to 29.8% and 23.7% to 30.6% in Brittany,
Burgundy, Landes and South-East, respectively, according to the
molecular approach adopted (DNA fingerprinting vs DNA meta-
barcoding) (Figure 3). In each region, slightly higher amounts of
community variance were explained for the ARISA data set than for the
NGS data set. In addition, similar amounts of community variance were
explained between the different thresholds of sequence similarity used
for OTUs clustering in the NGS approach with the Sørensen index
(from 80 to 97% similarity levels, data not shown) in a given region.
All groups of explanatory variables (pedo-climatic characteristics,

land-use or spatial variables) were selected with the ARISA and NGS
data sets, independently of the Sørensen index (Figure 3). However,
the land-use and spatial variables were not selected in Landes with
NGS, whereas they were selected with ARISA. Comparison of variance
partitioning of the ARISA and NGS data sets with the Sørensen index

Table 1 OTU numbers in the raw and filtered data sets

Clustering threshold Region (n) OTU richness Removed OTUs (%)

Raw data set Filtered data set

Min Median (± s.d.) Max Min Median (± s.d.) Max

80% Burgundy (109) 36 68 (±16.6) 115 20 39 (±11.5) 70 43

Brittany (131) 45 92 (±17.9) 152 29 57 (±13.5) 125 38

Landes (54) 43 60 (±19.3) 120 27 39 (±12.7) 90 34

South-East (108) 20 86 (±21.0) 171 10 48 (±17.2) 126 45

85% Burgundy (109) 83 156 (±37.4) 241 44 88 (±25.2) 153 44

Brittany (131) 105 211 (±39.3) 360 52 123 (±29.9) 274 42

Landes (54) 94 144 (±61.8) 435 62 90 (±43.8) 321 38

South-East (108) 33 211 (±42.6) 377 15 120 (±33.6) 263 43

90% Burgundy (109) 183 344 (±84.9) 577 91 181 (±55.0) 367 47

Brittany (131) 217 488 (±99.9) 869 125 260 (±62.7) 478 47

Landes (54) 201 343 (±188.5) 1361 136 223 (±133.8) 935 35

South-East (108) 56 485 (±95.2) 835 22 277 (±71.6) 483 43

95% Burgundy (109) 428 841 (±188.8) 1376 245 435 (±110.0) 828 48

Brittany (131) 473 1171 (±227.0) 1862 316 628 (±127.2) 1106 46

Landes (54) 475 875 (±496.1) 3423 356 570 (±247.4) 1622 35

South-East (108) 93 1165 (±209.6) 1638 33 669 (±128.9) 997 43

97% Burgundy (109) 669 1273 (±267.2) 2061 415 666 (±147.7) 1131 48

Brittany (131) 758 1752 (±306.4) 2620 494 904 (±143.7) 1392 48

Landes (54) 712 1360 (±691.1) 4687 541 832 (±249.4) 1641 39

South-East (108) 106 1725 (±294.4) 2236 44 959 (±163.7) 1295 44

Abbreviation: OTU, operational taxonomic unit.
For the raw and the filtered data sets, the median number of OTUs identified per site, its minimum and its maximum were determined per region at each clustering threshold considered in this
study. The s.d. of the mean is given in brackets. The percentage of OTUs removed by filtering steps was estimated by dividing the median number of OTUs in the filtered data set by the median
number of OTUs in the raw data set.

Soil bacterial TAR assessment by meta-barcoding
S Terrat et al

472

Heredity



revealed slightly different results for some regions when groups of
explanatory variables were ranked according to their marginal effect.
In the Brittany, Burgundy and Landes regions, pedo-climatic
characteristics explained the highest amount of variance (10%,
12.5% and 7–15%, respectively) whatever the molecular approach or
dissimilarity index whereas spatial variables accounted for a system-
atically higher variance with the ARISA data set than with the NGS
approach (Figure 3). For the South-East region, the use of ARISA or
NGS data sets led to different hierarchies in the groups of explanatory
variables. With the ARISA data set, pedo-climatic characteristics
explained the highest amount of variance (11%), followed by spatial
variables (8.7%) and land-use (4.8%). With the NGS data set, spatial

variables were the most important (9.2%), followed by land-use and
pedo-climatic characteristics (5.5% and 4.8%, respectively).

DISCUSSION

The four regions considered in this study followed a gradient of
environmental heterogeneity: low level (Landes region), medium level
(Brittany and Burgundy) and high level (South-East) as observed by
means of the dispersion of sites according to regions in the multi-
variate analysis on mixed data. Most of these differences were related
to variability of environmental parameters reported in the literature to
be involved in shaping soil microbial diversity: land-use (Drenovsky
et al., 2010), soil characteristics (texture, pH, P content and C:N ratio;

Figure 2 Comparison of ARISA and NGS approaches for the estimation of soil bacterial community turnover rate. Comparisons of each approach were
performed within each region: (a) Brittany; (b) Burgundy; (c) Landes; (d) South-East. Percentages indicate the level of similarity considered in the NGS
approach. Letters indicate significant differences between turnover rates in each region at the 5% probability level.

Figure 3 Variance partitioning of community composition with ARISA and NGS approaches in Brittany, Burgundy, Landes and South-East. Four groups of variables
were considered: pedo-climatic characteristics (light grey), land-use (dark grey), spatial descriptors (black), which stand for residual spatial autocorrelation and
interactions between the three sets of filters (white). Interactions between the three groups of variables were estimated but could not be tested for their significance.
Percentages indicate the level of similarity considered in the NGS approach. Significance codes: ns: P40.05; *: Po0.05; **: Po0.01; ***: Po0.001.
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Fierer and Jackson, 2006; Dequiedt et al., 2011; Lienhard et al., 2013)
and to a lesser extent climate (Fierer and Jackson, 2006). This
environmental heterogeneity had been shown to affect the soil
bacterial community turnover rate (z, slope of the TAR in the
similarity distance–decay relationship, Harte et al., 2009; Ranjard
et al., 2013). These four regions therefore provided a valid sampling
design for determining whether DNA meta-barcoding, as compared
with molecular fingerprinting, would provide a more accurate
estimation of TAR and a better understanding of the processes
involved in bacterial community assembly on a broad scale.
A preliminary step in the comparison of DNA meta-barcoding and

fingerprinting approaches was to post-process the data according to
molecular analysis steps specific to each method. For DNA finger-
printing, this was handled by setting a fixed number of OTUbin to be
considered during the band profiles analysis (Ranjard et al., 2001,
2013). For the NGS approach, methodological biases (for example,
PCRs or sequencing errors), which might generate OTUs of low
abundance and equally represented across samples, were removed by
bioinformatic filters (Quince et al., 2011) and by two post-processing
steps. These steps allowed the preservation of information on the ‘rare
biosphere’ while removing artifacts (Kunin et al., 2010; Terrat et al.,
2012; Supplementary Table S5), conversely to the classical
post-processing step (removal of all low abundant OTUs).
As the data were analyzed as presence–absence data, these steps
seemed a relevant consensus to avoid up-weighting the importance of
rare and specific OTUs in the data set (Van Dorst et al., 2014; Zinger
et al., 2014), while conserving a fine description of bacterial commu-
nity assembly (Supplementary Table S3). These post-processing steps
led to the conservation of at least 6000 sequences per sample, which
was higher than those used in a recent study (ca 4000 reads per
sample, Zinger et al., 2014). This study demonstrated that community
z was weakly affected by the sequencing depth per sample unless it was
shallow (o500 sequences), and that it was independent of the number
of reads between samples (Zinger et al., 2014).
In this context, DNA fingerprint and meta-barcoding approaches

were compared for their estimation of soil bacterial community z.
Both approaches associated with the Sørensen index demonstrated
significant z estimates, which were in accordance with those classically
observed in the literature with fingerprinting or low-depth sequencing
data (Green et al., 2004, 2006; Horner-Devine et al., 2004; Bell et al.,
2005; Woodcock et al., 2006; Martiny et al., 2011; Ranjard et al., 2013;
Zinger et al., 2014). Interestingly, the z estimates observed with the
DNA meta-barcoding approach were higher than those obtained with
ARISA, although the OTUbin richness in the ARISA data set was
similar to the OTU richness in the NGS data set for low clustering
thresholds (from 80 to 90% similarity). Moreover, the coefficients of
variation of z estimated with the DNA meta-barcoding approach were
systematically smaller than with the ARISA, thereby highlighting that
the z estimates obtained by DNA meta-barcoding approach are more
accurate. These differences in z estimates and coefficients of variation
can easily be explained: ARISA involves the analysis of the length
polymorphism of the intergenic spacer between the 16S and 23S
ribosomal genes (IGS) that can be considered less informative than
DNA meta-barcoding, which assesses the sequence (size and nucleo-
tide composition) (Ranjard et al., 2000; Terrat et al., 2012). This
accuracy of the NGS approach in describing community assembly may
reduce the similarity between sites, leading to higher estimates of
community turnover. From an ecological viewpoint, DNA fingerprint
and meta-barcoding approaches displayed a similar capacity to
discriminate samples and both demonstrated the significant spatial
structuration of soil bacterial communities in the different regions

considered. In addition, both methods revealed similar trends between
the regions for the hierarchy of soil bacterial community z: Brittanyo
(Burgundy, Landes)oSouth-East, in agreement with the study by Van
Dorst et al. (2014), which demonstrated the similar capacity of ARISA
and DNA meta-barcoding to discriminate sites at a local spatial scale.
This underlines the value of both methods in demonstrating ecological
trends for soil bacterial communities. Nevertheless, the DNA meta-
barcoding approach provides a finer description of soil bacterial
community composition than ARISA, which supports the hypothesis
that the turnover rates estimated derived from the latter approach
would be underestimated. One advantage of the DNA meta-barcoding
approach is that a description of community assembly can be drawn
from the construction of similarity clusters (OTUs) at various
thresholds of sequence similarity. Here, soil bacterial community z
increased significantly with increasing clustering thresholds (80 to
97%). This increase was mainly related to an increase of OTU richness
from low to high clustering thresholds, in agreement with Harte et al.
(2009). Interestingly, the values of z obtained for high clustering
thresholds were comparable to those observed for macroorganisms
(MacArthur and Wilson, 2001; Horner-Devine et al., 2004), high
thresholds that are considered to reflect taxonomic levels classically
used in macroecological studies (Rosselló-Mora and Amann, 2001).
These findings raise insights for microbial ecologists studying the
spatial structuring of soil microbial communities as they contradict the
classically observed positive relationship between community turnover
rate (z) and organism body size (Hillebrand et al., 2001; Drakare et al.,
2006), and also suggest that soil microbial communities may display
strong spatial structuration.
Meta-barcoding and fingerprint approaches were compared for

their ability to correlate pedo-climatic, land-use and spatial variables
with soil bacterial community distributions in a distance-based
redundancy analysis (Sørensen index). These environmental sets of
variables captured significant amounts of community variance for
both data sets (8 to 35%), which were within the range of those
reported in the literature for bacteria (Martiny et al., 2011; Hanson
et al., 2012). Surprisingly, slightly higher amounts of community
variance were explained for ARISA data. Van Dorst et al. (2014), in
contrast, had reported the opposite trend. This might be related to
differences in the spatial scales investigated (broad vs local scale) and
in data processing (OTUbin definition and bioinformatics steps for
OTUs clustering).
The variance partitioning approach also allowed the comparison of

the relative importance of pedo-climatic, land-use and spatial variables
in shaping bacterial community assembly according to the molecular
approach. The same hierarchy was observed for the different sets of
variables in Burgundy and Brittany, but not in the Landes and South-
East regions. Indeed, in the South-East region, spatial variables became
the main driver of community assembly according to the DNA meta-
barcoding approach. This result suggests that dispersal limitations may
be as important as selection in shaping bacterial community assembly
(Martiny et al., 2011) because this process could lead to a spatial
autocorrelation of bacterial communities between sites. This hypoth-
esis was supported by Bryant et al. (2008) who highlighted the primary
importance of elevation in limiting the dispersal of Acidobacteria. In
the South-East region, elevation was the most important spatial
variable explaining bacterial community assembly. Altogether, this
suggests that use of the DNA meta-barcoding approach could lead to
reexamination of the relative importance of the processes shaping soil
microbial diversity on a broad scale.
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CONCLUSION

Although DNA fingerprinting and meta-barcoding are both relevant
to demonstrate the spatial structuration of soil microbial communities
through significant TAR, the DNA meta-barcoding approach provides
a finer description of soil bacterial community assembly. It also
provides a more accurate estimation of community turnover rates.
Considering the processes shaping soil bacterial diversity, both
identical conclusions were not systematically obtained, suggesting that
DNA meta-barcoding approach may lead to reexamine their relative
importance. Nevertheless, this should be tested for other soil microbial
communities like fungi. In addition, in a context of up-scaling studies
in microbial biogeography, the meta-barcoding approach may help to
identify not only the scales at which soil microbial communities are
structured, but also the processes or the filters shaping their diversity
at each spatial scale.

Data archiving
The raw data sets are available on the EBI database system under
project accession number PRJEB6290.
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