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The role of common protective alleles HLA-DRB1*13 among
systemic autoimmune diseases
H Furukawa1,2, S Oka1,2, N Tsuchiya1, K Shimada3,4, A Hashimoto3, S Tohma2 and A Kawasaki1

Associations between human leukocyte antigen (HLA) and susceptibility to systemic autoimmune diseases have been reported. The
predisposing alleles are variable among ethnic groups and/or diseases. On the other hand, some HLA alleles are associated with
resistance to systemic autoimmune diseases, including systemic sclerosis, systemic lupus erythematosus and rheumatoid arthritis.
Interestingly, DRB1*13 alleles are the protective alleles shared by multiple autoimmune diseases. DRB1*13:01 allele is protective in
European populations and DRB1*13:02 in Japanese. Because alleles in multiple HLA loci are in strong linkage disequilibrium, it is
difficult to determine which of the protective alleles is functionally responsible for the protective effects. Thus far, association
studies suggested that DRB1*13:02 represents at least one of the causally associated protective factors against multiple systemic
autoimmune diseases in the Japanese population. The protective effect of DRB1*13 alleles appears to overcome the predisposing
effect of the susceptible alleles in heterozygous individuals of DRB1*13 and the susceptible allele. A gene dosage effect was
observed in the associations of DRB1*13:02 with the protection from systemic autoimmune diseases; thus homozygous individuals
are more effectively protected from the systemic autoimmune diseases than heterozygotes. DRB1*13:02 also confers protection
against organ-specific autoimmune diseases and some infectious diseases. Several hypotheses can be proposed for the molecular
mechanisms of the protection conferred by DRB1*13, some of which can explain the dominant effect of DRB1*13 molecules over
the susceptible alleles, but the actual protective function of DRB1*13 requires further study. Understanding of the protective
mechanisms of DRB1*13 may lead to the identification of targets for the curative treatment of systemic autoimmune diseases.
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INTRODUCTION
The term ‘collagen diseases’ was originally proposed for a group of
systemic diseases characterized by widespread fibrinoid degen-
eration of collagen and includes systemic autoimmune diseases
such as rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE) and systemic sclerosis (SSc).1 Although the etiology of these
systemic autoimmune diseases is still unknown, it is thought that
susceptibility to systemic autoimmune diseases is associated with
genetic, environmental and stochastic causes. Predisposing
genetic factors for systemic autoimmune diseases include the
human leukocyte antigen (HLA) class II alleles,2–4 which are the
strongest genetic factors in almost all systemic autoimmune
diseases.
HLA class II gene cluster is encoded in the 0.9 M base region on

human chromosome 6 and are composed of430 loci.5 The genes
coding HLA class II molecules are located in this region and
43500 alleles were reported. The HLA alleles coded on these loci
are in strong linkage disequilibrium (LD), making it highly difficult
to determine the functionally relevant protective gene in this
region. There are at least six loci for HLA class II genes; DRA, DRB1
(DRB3, DRB4 or DRB5 located in some haplotypes as copy number
variations), DQA1, DQB1, DPA1 and DPB1 encode the α and β
chains of HLA-DR, -DQ and -DP molecules, respectively (Figure 1).
HLA-DR, -DQ and -DP molecules were heterodimers formed by the
32 kD α and 28 kD β chains. HLA class II molecules present

primarily exogenous peptides to T-cell receptors of CD4+ T cells,
stimulating acquired immunity.

PREDISPOSING EFFECTS OF HLA ON SYSTEMIC AUTOIMMUNE
DISEASES
Skewed HLA class II allele frequencies are associated with systemic
autoimmune diseases. SSc is a chronic systemic autoimmune
disease that is featured by skin and internal organ fibrosis.
Antinuclear antibodies are frequently detected in SSc patients.
Genetic risk factors for SSc include HLA class II alleles as the
strongest ones. HLA-DRB1*11:04, DQB1*03:01 and DQB1*26 epi
(DQB1 alleles encoding a non-leucine residue at position 26 of the
HLA-DQβ chain) are associated with SSc susceptibility in
Europeans6 and DRB1*15:02, DPB1*03:01 and DPB1*09:01 in
Asians.7–10 It was also known that DRB1*08:04 and DQB1*03:01
are associated with SSc in African-American and that DRB1*11:04
and DQB1*03:01 are associated in Hispanic populations.6

Anti-centromere antibodies (ACA)11 and anti-topoisomerase
I antibodies (ATA)12 are detected in SSc patients and suggested
to define subsets of SSc. It has been shown that ACA-positive SSc
was associated with DQB1*05:01 and DQB1*26 epi in European
populations6 but with DRB1*01:01, DRB1*10:01, DRB1*15:02,
DQB1*05:01, DPB1*03:01 and DPB1*04:02 in Asians.8–10,13

DPB1*13:01 is reported to be associated with ATA-positive SSc in
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Europeans6 and DRB1*15:02, DRB1*16:02, DQB1*06:01, DPB1*03:01,
DPB1*09:01 and DPB1*13:01 in Asians.8–10,13 Thus different HLA
class II alleles are associated with the risk of overall SSc or subsets
of SSc in different ethnic groups.
SLE is a prototypic and systemic autoimmune disease that

affects multiple organs. Several different autoantibodies are
detected in SLE patients. HLA is one of the important genetic
risk factors for SLE. DRB1*03:01 and DRB1*15:01 are associated
with SLE susceptibility in European14,15 and DRB1*09:01,
DRB1*15:01 and DRB1*15:02 in Asian populations.16–19 It was also
known that DRB1*15:03 is associated with SLE in African-American
populations20 and that DRB1*08:02 is associated with Hispanic
populations.21 With respect to the specific autoantibodies to
ribonucleoprotein, DPB1*05:01 was associated with SLE patients
with anti-Ro/SS-A or anti-La/SS-B antibodies.22 The association of
polymorphisms of amino-acid residues 11 and 13 of DRβ molecule
with SLE was reported.23 These amino-acid residues form the HLA-
DR peptide-binding groove.24 Thus different DRB1 alleles are
associated in different ethnic groups also in the case of SLE.
RA is a chronic systemic autoimmune disease that mainly affects

synovial joints, but extra-articular manifestations are often
complicated. Association between RA and HLA has been known
for 40 years.25 RA risk is associated with some HLA-DRB1 alleles.26

Amino-acid sequence at positions 70–74 (QKRAA, RRRAA or
QRRAA) of the HLA-DRβ chain is conserved among these alleles
and was referred to as the ‘shared epitope’ (SE).26 DRB1*04:01 and
DRB1*04:05 are associated with RA in European and Asian
populations, respectively.26,27 Such difference could be explained
by the different frequencies of these RA risk alleles in different
ethnicities. A gene dosage effect was reported in RA but not in
SLE; having two copies of SE alleles confer higher RA risk than
those with one copy of SE. Although all the known genetic risk
factors could explain 16% of RA risk, HLA alleles can explain
11%.28,29 Anti-citrullinated peptide antibody (ACPA) is specifically
detected in RA patients and is suggested to be pathogenic. SE
alleles are strongly associated with ACPA-positive RA but only
weakly with ACPA-negative RA.30 The association of HLA-DRB1
amino-acid residues with RA was also analyzed, and the important
role of the polymorphisms in amino-acid positions 11 and 13 of
DRβ molecule was reported.31 The amino-acid residues of
positions 11 and 13 form the HLA-DR peptide-binding groove.24

Thus HLA is the most important genetic risk factor for RA, and the
main predisposing alleles are different among ethnic groups. In
addition, the major predisposing alleles are different among
systemic autoimmune diseases.

PROTECTIVE EFFECTS OF HLA ON SYSTEMIC AUTOIMMUNE
DISEASES
Although many studies reported susceptible associations of HLA
class II alleles with systemic autoimmune diseases,2–4 few
attempts have been made on the protective association of HLA.
DRB1*07:01, DRB1*15:01, DQB1*02:02 and DQB1*06:02 alleles were
reported to be protectively associated with SSc in European
populations6 and DRB1*01:01, DRB1*04:06, DRB1*07:01,
DRB1*13:02, DRB1*14:06, DQB1*03:01 and DPB1*02:01 in
Asians.9,10,13 With respect to SLE, DRB1*13 is protective against
European SLE,32,33 and DRB1*13:02 and *14:03 have been shown
to be protective in Japanese population.19

In the case of RA, it had been suggested that an amino-acid
sequence (DERAA) at positions 70–74,34 isoleucine at position 67
(I67),35 aspartic acid at position 70 (D70)36 or a conserved amino-
acid sequence at positions 71–74 (S1; ARAA or ERAA) 37,38 in the
HLA-DRβ chain were shown to be protective.
Of particular interest, DRB1*13:01 and DRB1*13:02 are com-

monly present in all these protective allele groups. DRB1*13 alleles
were reported to be protectively associated with RA in European
populations.39,40 DRB1*13:01 allele was protective against ACPA-
positive RA in European populations.41 The protective effect was
attributed to DRB1∗13 rather than DERAA, D70 or I67.41 It was
recently shown that HLA-DRB1*13 affects the onset of ACPA-
positive RA but not protective against ACPA production in
individuals without RA.42 DRB1*13 was also protective against
RA in Turkish43 and Asian populations.44 DRB1*13:02 is protectively
associated against ACPA-positive and ACPA-negative RA in
Japanese.27,45 Thus HLA is one of the important resistant factors
for systemic autoimmune diseases, and DRB1*13 are the shared
protective alleles against multiple diseases,

THE ROLE OF HLA-DRB1*13:02 IN SYSTEMIC AUTOIMMUNE
DISEASES
DRB1*13:02 is carried by the extended haplotype A*33:03-C*14:03-
B*44:03-DRB1*13:02-DQB1*06:04-DPB1*04:01, which has been
reported to be positively selected in Japanese.46 LD between
DRB1*13:02 was also observed in HLA-G located on the telomeric
side of HLA-A;47 thus LD with DRB1*13:02 extends across almost
the whole MHC region. Therefore, certain allele(s) on this
haplotype is thought to have a causative protective for systemic
autoimmune diseases. In fact, the causative allele may not
necessarily be single, and multiple protective alleles of different
loci may have a protective role independently.
Haplotype association analyses provide valuable information in

elucidating the causatively associated alleles among a group of
alleles in LD. LD between DRB1*13:02 and DQB1*06:04 or
DQB1*06:09 is especially strong in the Japanese population.48

The haplotype carrier frequencies of both DRB1*13:02-DQB1*06:04
and DRB1*13:02-DQB1*06:09 in systemic autoimmune disease
patients were obtained from secondary analyses based on the
previously published data,13,19,27 suggesting that DRB1*13:02
rather than DQB1 alleles has the protective role (Table 1). In
addition, two-locus analysis and conditional logistic regression
analysis between these alleles revealed that the primary protective
effect is neither DQB1*06:04 nor DQB1*06:09 but DRB1*13:02
(Tables 2 and 3). Thus the primary protective role of DRB1*13:02
with Japanese SSc, SLE and RA was suggested.
It was known that DRB1*13:02 and DQA1*01:02 alleles are in

strong LD in the Japanese population.48 DRB1*15:01 or DRB1*16:02
alleles are also in strong LD with DQA1*01:02; however, neither
DRB1*15:01 nor DRB1*16:02 conferred protective effects for
systemic autoimmune diseases.13,19,27 Thus DQA1*01:02 is unlikely
to be the functional protective allele for systemic autoimmune
diseases. Similarly, DRB1*13:02 and DRB3*03:01 alleles are in strong
LD in the Japanese population.48 DRB1*12:02 and DRB3*03:01

Figure 1. HLA class II gene organization of each haplotype. DRB3 is
located in the haplotype of DRB1*03, DRB1*11, DRB1*12, DRB1*13 and
DRB1*14. DRB4 is included in the haplotype of DRB1*04, DRB1*07 and
DRB1*09. DRB5 is found in the haplotype of DRB1*15 and DRB1*16.
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alleles are also in strong LD, but DRB1*12:02 did not show
protective association against systemic autoimmune
diseases.13,19,27 Thus DRB3*03:01 allele is unlikely to be the
primary protective allele for systemic autoimmune diseases.
These haplotype analyses supported the primary protective role

of DRB1*13:02 among the HLA class II genes in the Japanese.
However, the possibility that other gene(s) on the DRB1*13:02-
extended haplotype, including those on the class I and class II
regions, has a functional role cannot be excluded. In fact, it is
possible that multiple genes on this haplotype may independently
have a functional role. Such possibility will be addressed by
comparison of the re-sequencing data of the MHC region of the
DRB1*13:02 haplotype.
In the protective associations of DRB1*13:02 with the systemic

autoimmune diseases (Table 4), a gene dosage effect was
observed. Homozygosity of DRB1*13:02 more effectively prevents
the development of systemic autoimmune diseases than hetero-
zygous DRB1*13:02 genotypes.
DRB1*13 has also been shown to be protective for other

systemic autoimmune diseases, including anti-neutrophil cyto-
plasmic antibody-associated vasculitis,49–51 mixed connective
tissue disease52 and polymyositis/dermatomyositis.53 In addition,
it was also reported that DRB1*13:02 confers protection in organ-
specific autoimmune diseases, such as psoriasis,33,54 autoimmune
hepatitis,55 primary biliary cirrhosis,56 Graves’ disease and
Hashimoto’s thyroiditis.57 DRB1*13:02 is also a protective allele
for cervical cancer caused by human papilloma virus infection,58

severe malaria59 and chronic hepatitis B infection.60 In addition,
DRB1*13:02 is associated with slow disease progression in HIV
infection.61 As DRB1*13 molecules proficiently stimulate CD4+ T
cells,62,63 it appears possible that DRB1*13:02 might be protective
for putative undiscovered infectious diseases that trigger auto-
immune diseases. Such a hypothesis might explain the role of
DRB1*13:02 for the protection of systemic and organ-specific
autoimmune diseases.

POTENTIAL MOLECULAR MECHANISMS OF HLA-DRB1*13
DRB1*13:01 is protective against ACPA-positive RA40;41, and SSc64

in European populations, while DRB1*13:02 allele was protectively
associated with RA27 and SSc13 in Japanese populations. The only
difference in the amino-acid sequence between these two alleles
is at position 86 (V in DRB1*13:01 and G in DRB1*13:02) of the HLA-
DRβ chain. It is plausible that common protective mechanisms are
present between DRB1*13:01 and DRB1*13:02 against systemic
autoimmune diseases. In support of this hypothesis, a common
peptide (TPKIQVYSRHPAENGKSN) derived from β2-microglobulin
has been shown to be presented by DRB1*13:01 and DRB1*13:02
molecules.65

When we examined the association of each amino-acid residue
with systemic autoimmune diseases, the protective role was
mapped to the amino-acid position 13S of the HLA-DRβ chain
(Figure 2). This amino-acid residue constitutes the HLA-DR

peptide-binding groove24 and is shared between DRB1*13:01
and DRB1*13:02 molecules.
The protective effects of the DRB1*13 alleles can overcome the

predisposing effects of susceptible alleles in DRB1 heterozygous
RA patients.27,41 Similar tendency was also observed in SLE19 and
SSc13 patients heterozygous for DRB1 in Japanese populations. To
explain the dominant effects of protective DRB1*13 alleles, it was
hypothesized that resistant DRB1*13 molecules are recognized by
the T-cell receptors of autoreactive regulatory T cells with high
affinity.66

A recent study made an attempt to explain the protection
mediated by DRB1*13 molecules for RA by the DERAA motif
at positions 70–74 of the HLA-DRβ chain.67 This motif was
shared with vinculin and microbe-derived proteins. Citrullinated
vinculin is one of the autoantigens of ACPA and self-reactive
CD4+ T cells. The motif is presented by predisposing DQ
molecules and stimulates self-reactive CD4+ T cells, resulting in
the triggering of arthritis. However, these self-reactive CD4+ T cells
could not be found in DRB1*13 possessing individuals. The motif
of DRB1*13 molecules was thought to mediate the central
tolerance, explaining the protective mechanisms of DRB1*13
molecules.
Non-inherited maternal antigen was reported to have

protective roles in the pathogenesis of RA. It was observed
that the resistant DRB1 alleles with DERAA epitope at posi-
tions 70–74 of the HLA-DRβ chain, including DRB1*13,
have protective effects on children, though these alleles
were not inherited from their mothers.68 This could be explained
by the maternal micro-chimerism in the circulation of the
children.
Thus several hypotheses have been proposed to explain the

protective molecular mechanisms of DRB1*13 with systemic
autoimmune diseases. These hypotheses, along with other
possibilities, need to be validated in future studies.

CONCLUSION
Recent studies demonstrated the protective effect of DRB1*13
with systemic autoimmune diseases. DRB1*13:01 is protective in
European populations and DRB1*13:02 allele in Japanese. As the
ethnic difference of HLA allele distributions is well known, the
protective effects of HLA alleles for systemic autoimmune diseases
in other populations should be explored. Because DRB1*13 is
carried by extended haplotypes formed by HLA class II and class I
alleles, it is quite difficult to identify which of the alleles is
functionally responsible for the protective effects; however,
several lines of evidence suggest that DRB1*13 alleles themselves,
at least in part, have a role, although independent effects from
other genes in LD cannot be excluded. Several hypotheses have
been proposed to explain the protective molecular mechanisms of
DRB1*13 molecules against systemic autoimmune diseases, some
of which can explain the dominant effects of DRB1*13 molecules.
The precise understanding of the protective mechanisms of

Table 1. HLA allele and haplotype carrier frequencies in SSc, SLE and RA patients and controls

SSc
(n= 459)

SLE
(n= 459)

RA
(n= 1479)

SSc, SLE, RA
(n= 2397)

Control
(n= 413)

P OR Pc 95% CI

DRB1*13:02 32 (7.0) 30 (6.5) 107 (7.2) 169 (7.1) 57 (13.8) 1.32 × 10− 5 0.47 0.0004 (0.34–0.65)
DQB1*06:04 30 (6.5) 28 (6.1) 100 (6.8) 158 (6.6) 50 (12.1) 0.0002 0.51 0.0032 (0.37–0.72)
DQB1*06:09 3 (0.7) 1 (0.2) 4 (0.3) 8 (0.3) 6 (1.5) 0.0103 0.23 0.1538 (0.08–0.66)
*13:02-*06:04 29 (6.3) 28 (6.1) 100 (6.8) 157 (6.5) 50 (12.1) 0.0002 0.51 0.0075 (0.36–0.71)
*13:02-*06:09 3 (0.7) 1 (0.2) 3 (0.2) 7 (0.3) 6 (1.5) 0.0067 0.20 0.2401 (0.07–0.59)

Abbreviations: CI, confidence interval; HLA, human leukocyte antigen; OR, odds ratio; Pc, corrected P-value; RA, rheumatoid arthritis; SLE, systemic lupus
erythematosus; SSc, systemic sclerosis. Allele and haplotype carrier frequencies are shown in parenthesis (%). Association was tested by Fisher’s exact test
using two-by-two contingency tables in the comparison of systemic autoimmune disease patients and controls.
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DRB1*13 might eventually lead to cellular, molecular or genetic
targets for the permanent curative treatment of systemic
autoimmune diseases.
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