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Diagnostic value of blood gene expression signatures in active
tuberculosis in Thais: a pilot study
N Satproedprai1, N Wichukchinda1, S Suphankong1, W Inunchot1, T Kuntima2, S Kumpeerasart1, S Wattanapokayakit1, S Nedsuwan3,
H Yanai4, K Higuchi5,6, N Harada5,6 and S Mahasirimongkol1

Tuberculosis (TB) is a major global health problem. Routine laboratory tests or newly developed molecular detection are limited to
the quality of sputum sample. Here we selected genes specific to TB by a minimum redundancy–maximum relevancy package
using publicly available microarray data and determine level of selected genes in blood collected from a Thai TB cohort of 40 active
TB patients, 38 healthy controls and 18 previous TB patients using quantitative real-time PCR. FCGR1A, FCGR1B variant 1, FCGR1B
variant 2, APOL1, GBP5, PSTPIP2, STAT1, KCNJ15, MAFB and KAZN had significantly higher expression level in active TB individuals as
compared with healthy controls and previous TB cases (Po0.01). A mathematical method was applied to calculate TB predictive
score, which contains the level of expression of seven genes and this score can identify active TB cases with 82.5% sensitivity and
100% specificity as compared with conventional culture confirmation. In addition, TB predictive scores in active TB patients were
reduced to normal after completion of standard short-course therapy, which was mostly in concordant with the disease outcome.
These finding suggested that blood gene expression measurement and TB Sick Score could have potential value in terms of
diagnosis of TB and anti-TB treatment monitoring.
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INTRODUCTION
Tuberculosis (TB) is a global health problem with high complexity
in its transmission model, resulting in difficulty for controlling the
epidemic. Tuberculosis disease development is caused by years of
infection with acid-fast, slow-growing bacilli, Mycobacterium
tuberculosis (MTB). It is estimated that one-third of the world
population are infected with TB but only 10% among those
eventually develops active disease.1 Spread of the disease is
fueled by globalization and expansion of previously under-
estimated reactivation risk for latently infected individuals such
as in individuals with HIV or diabetes mellitus, aging population,
war and poor nutritional status. In some clinical situations, such as
smear-negative tuberculosis, disseminated TB and pediatric TB,
when sputum samples are difficult to achieve, it makes accurate
diagnosis impossible owing to the limited availability of bacteria
for microbiological or even molecular diagnosis.2

Recently, blood transcription signatures have been used to
discriminate between active tuberculosis, latent tuberculosis
infection and healthy control.3 The neutrophil-driven gene
expression signatures were highly differentiated in the UK’s active
TB population and were validated in the second data set of South
African active TB patients. These gene signatures were also
confirmed by other concurrent studies carried out in another
cohort from South Africa and Germany, highlighting the role of
immune responses against TB infection dominated by CD64
(FCGR1A and FCGR1B).4,5 As CD64 is also suggested as a marker for
other systemic bacterial infection and most of the other TB
responsive genes are correlated with CD64 expression,6–9 this

indicates that a nonspecific host response could be detected in
blood during bacterial infection. Within systemic bacterial infec-
tions, only tuberculosis is presented with prolonged respiratory or
systemic symptoms with few exceptions such as Melioidosis. In
the clinical setting, where autoimmune diseases and cancer are
the main differential diagnosis of tuberculosis, such kind of gene
expression analysis could be very useful as a diagnostic tool to rule
in tuberculosis and keep the clinician on high alert for possibility
of chronic bacterial infection.
In the original study from UK populations, it seemed that the

gene expression signatures is closely related to the disease
severity and subsequently disappeared shortly after treatment of
tuberculosis.3 In another detailed study looking exclusively at the
dynamic of TB-specific gene expression signatures along the
course of anti-TB chemotherapy, it confirmed that the changes in
gene expression level were seen as early as after 2 weeks of anti-
TB chemotherapy.10 Minimal set of gene expression should be
tested in other populations to confirm this promising finding and
accelerate the validation of these biomarkers.
The reported TB-specific gene expression signatures3 also

included MAFB and KAZN, which were also investigated in a
genome-wide association study stating that these genes could
have roles in host susceptibility/resistance to tuberculosis.11,12

MAFB and KAZN were differentially expressed in active TB patients
as compared with healthy individuals in the published data sets
albeit lower ranking among the reported signatures.3 Therefore,
we hypothesized that KAZN and MAFB are associated with active
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disease activity and should be part of prognostic markers for
active TB.
In this study, we analyzed the publicly available microarray data

from the UK and South African study3 using feature selection
algorithm to define a minimal set of genes that can discriminate
active TB disease from latent TB and healthy status. Then the
minimal set of genes was validated using blood samples from a TB
cohort in northern Thailand.

RESULTS
Subject recruitment, demographic and clinical characteristics
All subjects were recruited and samples were collected from
Chiangrai Prachanukroh Hospital in northern Thailand. The total
number of subjects in each group was; 40 active TB patients
(active TB), 18 previously treated TB patients (previous TB) and 38
healthy controls (healthy control). All TB patients were diagnosed
of TB with abnormal chest radiography, positive sputum acid-fast
bacilli staining (AFB), positive TB culture confirmation with no
resistance to any of the four drugs in the standard TB regimen. All
TB patients received standard short-course anti-TB chemotherapy
containing rifampicin, isoniazid, pyrazinamide and ethambutol for
2 months following by rifampicin and isoniazid for another
4 months. All previous TB cases were recruited at least 1 year after
they completed the anti-TB chemotherapy with cured result and
no relapse. Quantiferon gold TB in-tube assay (QFT) were done for
all subjects, the QFT-positive percentage in each group were 75%,
77.8% and 15.8% in active TB, previous TB and healthy controls,

respectively. Details of demographic and clinical characteristics
were described in Supplementary Table 1 and 2.

Levels of selected genes were differentially expressed in active TB
cases as compared to healthy controls and previous TB cases
Analysis using mRMR package yielded top genes that were
differentially expressed in active TB individuals across different
cohorts with high discriminatory power in previously published
data sets3 (Supplementary Table 4). First, we optimized the assay
for measuring transcript levels from 13 target genes that were
selected from mRMR package, which included the following
genes; SORT1, EPB41L3, KCNJ15, MAFB, PSTPIP2, GBP5, FCGR1A,
FCGR1B variant 1, FCGR1B variant 2, KAZN, APOL1, STAT1,WARS and
two internal control genes; GAPDH and HPRT1. A real-time two-
step TaqMan RT-PCR assay was optimized with single-color or
dual-color, custom designed or commercially available probe and
primer sets. Assay optimization was carried out in 10 active TB
cases and 10 healthy controls. From 13 genes tested, 11 genes
were successfully quantifiable. Those genes were FCGR1A, FCGR1B
variant 1, FCGR1B variant 2, APOL1, GBP5, PSTPIP2, STAT1, EPB41L3,
KCNJ15, MAFB and KAZN. Then we continued to measure gene
expression level of those 11 genes in the total of 40 active TB
cases, 38 healthy controls and 18 Previous TB cases (Figure 1). All
target genes were differentially expressed in active TB as
compared with other groups with statistical significance
(Po0.01; Figures 1a–g and Figures 1i–k) except for EPB41L3
(Figure 1h). The median of relative expression levels of each gene
and the median expression fold changes between groups were

Figure 1. Boxplots of the level of gene expression in groups of active TB patients (active TB), healthy individuals (healthy controls) and
previous TB patients who had completed anti-TB chemotherapy for 41 year without relapse (previous TB). Levels of gene expressions were
normalized with internal control gene, HPRT1. The significance tests were carried out using ANOVA and P-value of each transcription was
presented for each gene. (a) FCGR1A, (b) FCGR1B variant 1, (c) FCGR1B variant 2, (d) APOL1, (e) GBP5, (f) PSTPIP2, (g) STAT1, (h) EPB41L3, (i) KCNJ15,
(j) MAFB and (k) KAZN.
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listed in Supplementary Table 5 and 6. Then, the active TB group
was further classified based on the number of days between the
initiation of standard short-course chemotherapy and the blood
sampling date. A significant deviation on MAFB and KAZN
expression levels was observed between active TB cases whose
blood samples were collected at day 0 to day 7 after the start of
chemotherapy and active TB cases whose blood samples were
taken at day 8 to day 15 after initiation of chemotherapy (Figure 2)
whereas other genes had no significant deviation (data not
shown).

Generation of active TB predictive score using minimum number
of transcripts
The predictive logistic regression model ‘TB Sick Score’ was
derived from the information of seven transcripts, which were
determined by logistic regression analysis. The model information
started to stabilize after the inclusion of four to seven transcripts
in the calibration of the model construction and the addition of
further transcripts did not provide more discrimination informa-
tion as shown in Figure 3. List of seven genes and the calculation
method for ‘TB Sick Score’ has been described in Materials and
Methods. The constructed model gave us a score threshold at 1.0
to determine the probability of patient having active TB.

Active TB predictive scores generated from the minimum set of
transcripts can differentiate active TB patients from healthy
controls
We calculated the active TB predictive score, which was named ‘TB
Sick Score’ for every subject from all three groups. The TB Sick
Score in the active TB group were varied with a median of 19.34
(0.074–1.13 × 1013; Figure 4). Seven from 40 subjects in active TB
group had TB Sick Score of o1.0. All of them had positive acid-
fast bacilli staining (AFB) and culture confirmation. In addition, we
compared the clinical diagnosis such as chest X-ray and interferon
gamma release assay (IGRA) status between active TB with TB Sick
Score 41.0 and those with score o1.0. However, we did not find
any major different between these two groups. In contrast, none
of the subjects in healthy control or previous TB had TB Sick Score
over 1.0. The sensitivity and specificity of TB Sick Score were
calculated using the cutoff of 1.0 to identify active TB and we
found that the TB Sick Score has 82.5% sensitivity and 100%
specificity as compared with clinical diagnosis (Table 1).
The positive predictive value (PPV) and negative predictive value
(NPV) of TB Sick Score were 100% and 88.89%, respectively

(Table 1). In addition, the receiver–operator curve analysis was
applied and the AUC for TB Sick Score was 96.6 with 95%
confidence interval of 92.5–100% (Figure 5).

Levels of TB Sick Score in most cases of active TB patients were
reduced after completion of standard short-course chemotherapy
All active TB patients were followed up after completion of standard
short-course chemotherapy and their treatment outcomes were
classified according to WHO guidelines into five groups; cured
(N=31), treatment completed (N=4), death (N=4), treatment failure
(N=4) and treatment intercepted (N=3). In addition, three patients
were still on extended course of treatment after the standard short-
course treatment was finished. Out of 40 active TB participants, we
were able to collect another blood sample from 12 active TB cases
to monitor the levels of each gene in the minimal set and TB Sick
Score after completion of standard short-course chemotherapy.
From 12 cases, 8 had reduced post-treatment TB Sick Score (0.178–
1.821) whereas 4 cases had increased TB Sick Score as compared
with at the time of diagnosis (430.64–1.75x1017; Figure 6). All eight
cases that had reduced TB Sick Score were classified as cured
(100%). In contrast, four cases had post-treatment TB Sick Score that
were significantly higher than the cutoff. When followed up, it was
found that one active TB case failed to recover with the TB Sick
Score after treatment completion significantly higher than the cutoff
value (TB Sick Score=1.75×1017), ~ 2×1015 times higher than the
TB Sick Score at time of diagnosis (TB Sick Score=85.867). Another
case was still on extended anti-TB chemotherapy with post-
treatment TB Sick Score of 618.34, whereas the other two cases
were classified as cured.

DISCUSSION
TB is a disease that affects two-third of the world’s population. No
effective vaccine against TB is available and treatment of active TB
disease is becoming increasingly challenging because of the
emergence of multidrug resistant and extremely drug resistant
MTB. Diagnostic methods that can identify active TB disease at the
early stage and biomarkers that can be used for treatment
monitoring are essential for effective administration of anti-TB
chemotherapy to prevent drug resistance.13 New methods were
used to study responses to MTB infection and one in particular is
the study of host gene expression profile using microarray that
brings about the global view of host responses to MTB infection in
high resolution.3,4,14–19 In this study the publicly available
microarray data that was published previously3 was utilized for

Figure 2. Significant deviation of gene expression level of (a) MAFB and (b) KAZN in the blood taken from active TB subjects who received anti-
TB chemotherapy for 0–7 days and the blood taken from active TB subjects who received anti-TB chemotherapy for 8–15 days.
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selection of the minimal set of genes that were differentially
expressed in active TB. We then measured the gene expression
levels of those selected genes from the blood of Thai TB patients
and controls. All of the genes selected were among 393 transcripts
that were differentially expressed in active TB cases as compared
with healthy controls in Berry et al.3 In contrast, none of the

transcripts selected were presented in the 86 TB-specific
transcripts set. This could be because most of the genes selected
were highly expressed as nonspecific response to bacterial
infection rather than exclusively for TB infection.
On the other hand, it was previously reported in Bloom et al.10

that the change in gene transcription levels were markedly
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Figure 3. Models using 1–11 genes for calculation of the TB Sick Score were validated and binomial deviance of each model were plotted. The
lowest binomial deviance was seen in a model using seven genes for calculation.

Figure 4. Scatter plot showing TB Sick Score levels in three subject groups; (1) active tuberculosis patients (active TB), (2) healthy control, (3)
previous TB patients who completed standard short-course chemotherapy 41 year ago without relapse. The cutoff for TB Sick Score is 1.0.
None of the subjects in healthy control or previous TB groups has TB Sick Score of over 1.0.
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reduced after patients have started anti-TB chemotherapy for
2 weeks as compared with the level at diagnosis. Our results also
demonstrated that in active TB patients who have received
standard short-course chemotherapy for TB for o7 days tended
to have significantly higher levels of MAFB and KAZN expression
than a group of active TB patients who had received anti-TB
treatment for 47 days. This means that, for a diagnostic purpose,
gene expression measurement of MAFB and KAZN and conse-
quently, the reported TB Sick Score should be used in naive
patients who have not started a TB regimen or at most within
7 days after a TB regimen had started. This is because in active TB
patients, who respond well with the anti-TB chemotherapy, the
level of gene expression of MAFB and KAZN may have changed in
such a way that they can affect the sensitivity of this method. In
contrast, since the TB-specific gene expression signatures changes
in response to anti-TB regimen, it means that these signatures can
possibly be used for anti-TB treatment monitoring. From our
study, 12 active TB cases were followed and the second blood
sample were collected after the completion of anti-TB chemother-
apy and queried for TB Sick Score. Most of them had TB Sick Score
reduced to normal; however, some patients still had higher TB Sick
Score after treatment completion. The treatment conclusion

revealed that some patients who had post-treatment TB Sick
Score significantly over the cutoff limit was either having
treatment failure or still on extended anti-TB treatment. Never-
theless, in case of patients with increased TB Sick Score after
treatment completion, but treatment concluded as cured, it may
owe to immune status or other undetected bacterial infections at
the second sampling. Nonetheless, those cases were still followed
up regularly for possible relapse. This gave us a glimpse that gene
expression analysis could be used for monitoring effectiveness of
anti-TB treatment for which no test is currently available for this
purpose. Hence, further study with a larger sample number and in
a different population should be done to increase accuracy of the
gene expression analysis method for use as a TB diagnostic test
and a longitudinal, prospective study could give a better insight
whether gene expression analysis can possibly be used for relapse
warning.
The mathematical method to calculate a TB Sick Score was

applied in which the score of 41.0 was associated with active TB
disease and none of the healthy controls or the previous TB
patients with no relapse has the score of 41.0. The TB Sick Score
method can identify active TB cases with a high sensitivity and
specificity as compared with culture confirmation. Many studies
have attempted to apply mathematic calculation of predictive
scores using only a small number of genes selected from
microarray analysis to differentiate active TB with success.14,18

Table 1. Diagnostic characteristics of TB Sick Score for active TB
classification as compared with diagnostic results (Sputum AFB and TB
culture confirmation)

Diagnosis results Active
TB

Healthy
control

Previous
TB

Total

TB (TB Sick Score⩾ 1.0) 33 0 0 33
Not TB (TB Sick Scoreo1.0) 7 38 18 63
Total 40 38 18 96

Abbreviation: TB, tuberculosis. Sensitivity 82.5%. Specificity 100%. Positive
predictive value (PPV) 100%. Negative predictive value (NPV) 88.89%.

Figure 5. Reverse transcription two-step quantitative real-time PCR
of seven target genes; FCGR1A, FCGR1B variant 1, FCGR1B variant 2,
MAFB, APOL1, STAT1 and KAZN and a house keeping gene; HPRT1
were done in 40 active TB cases, 38 healthy controls and 18 previous
TB cases. All participants were HIV- Negative. TB Sick Score for all
participants were analyzed using receiver operator curve analysis.

Figure 6. TB Sick Score was calculated using the level of expression
of seven target genes normalized by a housekeeping gene; HPRT1.
TB Sick Score was applied to samples of 12 active TB cases, which
were collected at different time points. First, samples were taken
within 15 days after TB diagnosis and second, samples were taken
after the patients completed standard short-course chemotherapy.
Graphical representation shows comparison of TB Sick Score
between at the time of diagnosis (red dot) and after the standard
treatment finished (blue dot) of each patient.
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Similar to other studies, our TB Sick Score were strongly correlated
with the outcome of the disease, in which patients whose TB
treatment outcome were categorized as cured mostly had TB Sick
Score at treatment completion o1.0. This indicates the potential
for the TB Sick Score to be used for treatment monitoring.
However, because our cohort was focusing on TB patients who
have positive AFB and culture with negative HIV status therefore
this method should be further proved for its robustness in a real
clinical setting with TB–HIV coinfection individuals and patients
with diseases that have similar symptoms to TB, to evaluate the
real diagnostic value of this test. However, evidence shows an
encouraging possibility of arranging a small set of transcriptional
biomarkers that can distinguish TB from other diseases, regardless
of HIV coinfection or even difference in ethnicity.18

Some of the genes that were selected in this study such as
FCGR1A, FCGR1B variant 1 and variant 2 were among the most
differentially expressed genes between active TB and healthy
control or latent TB across many cohorts in South Africa, Germany
and UK.3,4,18–20 FCGR1A and FCGR1B genes encode variants of the
alpha subunit of CD64 or Fcγ receptor 1 that belongs to a family of
surface glycoproteins. Fcγ receptor 1 binds to IgG and induces
antibody-dependent cell cytotoxicity, endocytosis and
phagocytosis.2,21,22 It was found that CD64 is upregulated upon
bacterial infection and is used as a marker for sepsis.7,9 Fcγ
receptor 1 is found on most cells in myeloid lineage, monocytes
and macrophages and is induced by IFN-γ.21 How Fcγ receptor 1
functions in anti-TB response is still unknown, but recently it was
shown to be downregulated by microRNA-127 after an induced
lung injury and the downregulation of Fcγ receptor 1 in alveolar
macrophage seemed to alleviate lung inflammation.23 In addition,
it was shown that engagement of FcγRI stabilized the complex of
leucotriene B4 receptor, BLT1 in the lipid raft and enhanced
antimicrobial signals in rat alveolar macrophages.24 This suggests
that Fcγ receptor 1 could have a role in anti-TB response. However,
more a detailed study should be conducted to see whether Fcγ
receptor 1 could possibly be a target for TB treatment. Even
though genes encoding the Fcγ receptor 1 may not be exclusively
induced by TB infection but it can be useful in a setting where
differential diagnosis of TB from other benign lung disease such as
lung carcinoma is needed.
In addition, this study confirmed our previous finding that the

level of MAFB expression was elevated in active TB individuals as
compared with healthy individuals12,25 with a significant P-value
(P-value= 0.00606). MAFB is constitutively expressed in many cell
types and it is an important determinant for monocyte–macrophage
commitment in hematopoietic progenitor cells.26 It was reported
that MAFB is a transcriptional regulator and a type I interferon
rheostat that maintains basal level expression of Type I interferon in
the resting state.27 When induced, MAFB acts as a negative regulator
of Type I interferon upregulation by preventing activation of
transcriptional factor IRF3. This leads to the possibility that MAFB
may have a role in TB-induced regulation of Type I interferon but
further functional study is needed to confirm this role of MAFB.
Interestingly, when the mRMR was performed to select genes

from the data sets of Berry et al., it was found that APOL1 was
among the top genes from the African cohort but not in a cohort
from UK. APOL1 encodes for a serum lipoprotein that binds to the
high-density lipoprotein molecule.28 APOL1 protein also acts as an
innate immune defense against blood parasites, Trypanosoma
brucei that causes sleeping sickness in Africans, and is thought to
be natural immune evolution against the parasites.29 Certain
genetic variations in the APOL1 gene in people of African descent
is associated with protective immunity against T. brucei but
unfortunately, it is also associated with non-diabetes, chronic
kidney disease.30 Furthermore, APOL1 is induced by many
cytokines and known to be a downstream-expressed transcript
in JAK-STAT signaling.31 APOL1 is upregulated by multiple
proinflammatory cytokines such as IFN-γ, and TNF-α.32,33 IFN-γ

induced upregulation of APOL1 in a monocyte cell line was shown
to restrict HIV-1 replication. Hence, there are evidences showing
that APOL1 has role in innate immune defense against parasites
and HIV but its role in innate immunity against TB is awaiting
further investigation.
Evidence from other studies and here have shown that the use

of unbiased, global gene expression analysis can identify genes
that are signatures of active TB disease. It is promising that these
gene expression levels can be used for diagnosis of TB regardless
of ethnicity and HIV coinfection status. The set of genes presented
in this study was differentially expressed in active TB disease with
possible biological function in TB immunity. A more detailed study
is needed to further confirm roles of each gene and its
contribution in immune response against TB. On the other hand,
the mathematical method that we applied to calculate TB Sick
Score demonstrated the possible usefulness of gene expression
measurement as a method for diagnosis of TB. Nevertheless, the
results that have been demonstrated here should be evaluated
further in another independent cohort to ensure the diagnostic
value of gene expression measurement for identification of active
TB. Furthermore, the method for gene expression measurement
can be further improved in such a way that it is simplified enough
for use in a clinical lab in a limited resources setting.

MATERIALS AND METHODS
Ethics statement
This study protocol was reviewed and approved by the institutional review
board of Chiangrai Prachanukroh hospital and the Institute for Develop-
ment of Human Research Protection (IHRP). Informed consents were
obtained from all participants in this study.

Subjects and sample collection
All subjects in this study were enrolled from Chiangrai Prachanukroh
Hospital in the northern province of Thailand. Forty patients (33 males,
7 females, median age of 48 (21–79) years) with active tuberculosis (active
TB) were recruited. Active TB status was defined by acid-fast staining of
sputum sample together with positive culture confirmation and abnormal
chest X-ray. All active TB cases were HIV negative at the time of enrollment.
Pre- and post-HIV test counseling was given to all subjects. Patients with
active TB were given standard short-course chemotherapy. Blood samples
were taken from Active TB patients within 15 days after the date when TB
was diagnosed and TB regimens were given to these patients. Thirty-eight
(24 males, 14 females, median age of 43.5 (25–64) years) healthy control
were recruited from regular blood donors whose interferon gamma release
assay (IGRAs) status had been determined. IGRAs method is described in
Supplementary Information. In addition, 18 previous TB patients (named as
“Previous TB”; 12 males, 4 females, median age of 52.5 (23–72) years) who
had completed standard short-course chemotherapy and were, free of
disease for at least 1 year, were also enrolled to the study to speculate the
level of gene expression signatures after TB was treated.

Gene expression level measurements
Blood collection. Three milliliters of venous blood were taken from
subjects and injected into a Tempus blood RNA tube for RNA stabilization
(Life technologies, Carlsbad, CA, USA). Briefly, whole blood were mixed
with the RNA stabilizing solution in the Tempus tube and all cells were
lysed to release RNA into RNA stabilizing solution by vigorously shaking
the tube for 10–20 s. Blood RNA samples were frozen at − 20 °C as soon as
possible and then kept until further processes.

RNA isolation and purification. Briefly, a total of 9ml of whole blood plus
RNA stabilization buffer was vortexed with 3ml of PBS in a 50ml conical tube
and centrifuged at 3000 g, 4 °C for 30min then supernatant was carefully
decanted leaving the RNA pellet at the bottom of the tube. RNA pellets were
resuspended with RNase-free PBS and then subjected to purification using
Purelink RNA mini kit (Life technologies, Carlsbad, CA, USA) according to the
manufacturer’s protocol. All purified RNA samples were quantified using a
Nanodrop spectrophotometer (Thermo Scientific, Waltham, MA, USA). All
RNA samples gave purity ratio of A260/280 between 1.9 and 2.1.
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Real time reverse transcription quantitative PCR. RNA samples were reverse
transcribed using oligo dT primer and Superscript III reverse transcriptase
(Life technologies, Carlsbad, CA, USA). Expression of 13 target genes and
two housekeeping genes were measured using TaqMan hydrolysis probe
assay on an ABI 7900 real-time PCR machine (Life technologies, Carlsbad,
CA, USA). Primers and probes for SORT1, EPB41L3, KCNJ15, MAFB, PSTPIP2,
GBP5, FCGR1A, FCGR1B variant 1, FCGR1B variant 2, KAZN, KAZN isotype E
and GAPDH were designed using Primer express software version 3.0 (Life
technologies, Carlsbad, CA, USA). Primers and probes for APOL1, STAT1 and
HPRT1 are commercially available on the Life technologies website. In-
house designed primers and probes for each gene and their information
are listed in Supplementary Table 3. We decided to use a two-step
multiplex real-time RT-PCR to maximize sample utilization. All multiplex
panels were validated and the amplification efficiency of each primer–
probe set within a dual-color panel was similar to the efficiency of
amplification of a single real-time PCR (R2 between 0.98 and 0.99). Pooled
RNA samples were used as a standard sample to create a five-point
standard curve with fivefold serial dilutions starting from 100 ng of RNA
per reaction for quantification of each gene transcript. The assays were
done in triplicate. All expression data were normalized against a
housekeeping gene HPRT1.

Statistical analysis
Transcripts were selected based on three selection strategies. Unbiased
selection was made from reanalysis of Berry et al.3 three data sets;
GSE19444, GSE 19442 and GSE19439 from the super-series number
GSE19491. The data set were retrieved from the Gene Expression Omnibus
database (http://www.ncbi.nlm.nih.gov/geo/). The transcripts were
selected based on their structure correlation and whether it complements
the others. The minimal set of discriminative signatures were selected by
applying the minimum redundancy feature selection from microarray
data.34 In each cohort, the transcripts were ranked based on their
discriminative probability by feature selection algorithm implement in
mRMR. The most significant transcript from each data set were selected,
these transcripts were APOL1, WARS and EPB41L3. The overlapping
transcripts across all data sets were selected based on lowest average
rank from three cohorts and STAT1, SORT1, KCNJ15, FCGR1A, FCGR1B variant
1, FCGR1B variant 2, PSTPIP2 and GBP5 were included based on these
criteria. Third, MAFB and KAZN were handpicked from Berry et al. data set
owing to evidences of their genetic association in Thai tuberculosis
populations.11 In addition to 13 transcripts selected based on described
strategies, two housekeeping genes were included in this evaluation for
normalization purpose. ANOVA was applied for comparisons of gene
expression level between each group, which was active TB, previous TB
and healthy control, P-valueo0.05 were considered significant. On the
basis of normalized expression levels of transcripts that were successfully
measured, we used Glmnet35 to establish the optimum number of genes
to develop the predictive score for active TB. The TB disease predictive
score was made available based on logistic regression modeling by the
Glmnet package.35

Calculation of TB Sick Score
The TB Sick Score were calculated using levels of seven genes; FCGR1A,
FCGR1B variant 1, FCGR1B variant 2, APOL1, STAT1, MAFB and KAZN. The
detail calculation method and equation is described in the Supplementary
Information.
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