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TET family dioxygenases and DNA demethylation
in stem cells and cancers
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The methylation of cytosine and subsequent oxidation constitutes a fundamental epigenetic modification in mammalian

genomes, and its abnormalities are intimately coupled to various pathogenic processes including cancer development.

Enzymes of the Ten–eleven translocation (TET) family catalyze the stepwise oxidation of 5-methylcytosine in DNA to

5-hydroxymethylcytosine and further oxidation products. These oxidized 5-methylcytosine derivatives represent intermediates in

the reversal of cytosine methylation, and also serve as stable epigenetic modifications that exert distinctive regulatory roles. It is

becoming increasingly obvious that TET proteins and their catalytic products are key regulators of embryonic development, stem

cell functions and lineage specification. Over the past several years, the function of TET proteins as a barrier between normal

and malignant states has been extensively investigated. Dysregulation of TET protein expression or function is commonly

observed in a wide range of cancers. Notably, TET loss-of-function is causally related to the onset and progression of

hematologic malignancy in vivo. In this review, we focus on recent advances in the mechanistic understanding of

DNA methylation–demethylation dynamics, and their potential regulatory functions in cellular differentiation and oncogenic

transformation.
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INTRODUCTION

Eukaryotic DNA is tightly packaged into a highly organized
chromatin structure with the assistance of special proteins
called histones.1 Approximately 146 base pairs of DNA are
wrapped around a histone octamer that consists of two copies
of four core histones (H2A, H2B, H3 and H4) to form
the nucleosome, the smallest unit of chromatin. Nucleosomes
are then linked by another histone protein called histone H1,
followed by further compaction into a higher-order structure
that makes up chromosomes. The amino-terminal tails of the
core histone proteins are frequently subject to multivalent post-
translational modifications, such as acetylation, phosphoryla-
tion, methylation, sumoylation and ubiquitylation, altering the
degree of local chromatin condensation and accessibility
of genetic loci to the cellular machinery that dynamically
modulates chromatin architecture and gene expression.

In addition to these histone modifications, a methyl group
can be covalently attached to the carbon-5 position of

a cytosine (C) in DNA to form 5-methylcytosine (5mC). This

process, called ‘DNA methylation’, is a type of epigenetic

mechanism that influences transcription, X-chromosome

inactivation, suppression of mobile genetic elements and

genomic imprinting.2 Recent studies have demonstrated that

adenines in the mammalian genome are also methylated to

produce N6-methyladenine, but in this review, DNA methyla-

tion refers to only cytosine methylation.3

In most mammalian genomes, cytosine methylation
occurs almost exclusively in the context of palindromic
CpG dinucleotides.4,5 Typically, cytosines in both strands of
a DNA duplex are methylated symmetrically. CpG methylation
is catalyzed by a family of DNA methyltransferases (DNMTs),
which are classified into two large categories.6 During early
embryogenesis, DNMT3A and DNMT3B initially deposit
methylation marks on unmethylated CpG, and thus
are classified as de novo methyltransferases. Then, DNMT1,
a maintenance methyltransferase, is largely responsible for the
post-replicative inheritance of pre-existing methylation marks.
During semi-conservative DNA replication, the ubiquitin-like
plant homeodomain and RING finger domain 1 (UHRF1)
preferentially recognizes CpGs in the hemi-methylated
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DNA via its SET and RING-associated (SRA) domain, and
recruits DNMT1 to restore parental methylation patterns on
the nascent strand.7–11 Therefore, the absence of DNMT1/
UHRF1 can lead to the progressive dilution of cytosine
methylation during successive rounds of DNA replication,
a process called ‘passive demethylation’. In addition,
DNA demethylation can also take place in a replication-
independent manner via the combined action of various
enzymes, as described later.

It has long been considered that 5mC is a stably inherited
epigenetic modification. However, a subset of 5mCs in the
genome are epigenetically unstable and can be further modified
enzymatically. Analyses of TET enzyme function have revealed
that cytosine in DNA does not exist in a binary modification
status (C versus 5mC) as previously believed, but it could
adopt one of five different states.12 In the early 2000s, the
TET1 gene was first cloned as a fusion partner of mixed-lineage
leukemia (MLL) H3K4 methyltransferase (also known as
KMT2A) in a handful of acute myeloid and lymphocytic
leukemia patients harboring the chromosomal rearrangement
t(10;11)(q22;q23).13,14 By a homology search, additional
TET genes, TET2 and TET3, were also identified. However,
TET protein function has only recently been determined.
TET1 was identified in a search for mammalian homologs of
J-binding protein (JBP) 1 and 2, the Fe(II) and 2-oxoglutarate
(2OG)-dependent dioxygenases in Trypanosoma brucei that
oxidize thymine in DNA to 5-hydroxymethyluracil (5hmU)
during the synthesis of base J.15–17 TET1 was shown to oxidize
5mC to 5hmC in cells and in vitro. The two cofactors, Fe(II)
and 2OG, are indispensable for TET-mediated 5mC oxidation.
Subsequent studies have shown that all three TET proteins
belong to a family of dioxygenase enzymes and share
identical catalytic activity to successively oxidize the methyl
group of 5mC, yielding three distinct forms of oxidized
methylcytosines (termed ‘oxi-mCs’), 5-hydroxymethylcytosine
(5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC).18–21

Dysregulation of DNA methylation is a prominent feature
of cancers.22 Recent studies have clearly established that
5mC oxidation is also highly disrupted in most cancer
types.23–27 Numerous studies point to the fundamental roles
of the key epigenetic regulators such as DNMTs, TETs and
isocitrate dehydrogenase (IDH) enzymes in gene expression,
development, cellular development and transformation.28

Despite strenuous efforts over the last decade, the exact
mechanism underlying enhanced malignant transformation
upon the dysregulation of these factors remains poorly under-
stood. Haematopoietic differentiation and transformation is
one of the most extensively studied systems in this regard.
Thus, in this review, we focus on the current mechanistic
understanding of DNA methylation and demethylation
pathways in mammals and its functional implications in
cell development and transformation, focusing on the hema-
topoietic system.

STRUCTURAL BASIS FOR SUBSTRATE RECOGNITION

AND ITERATIVE OXIDATION BY TET PROTEINS

TET proteins contain a carboxyl-terminal core catalytic domain
that comprises a conserved cysteine-rich domain and a double-
stranded β-helix domain (DSBH, also referred to as a ‘jelly-roll
fold’) (Figure 1).16,17 Within the DSBH domain, there are key
catalytic residues that interact with Fe(II) and 2OG. Upon
cofactor binding, molecular oxygen oxidizes Fe(II) in the
catalytic pocket, thereby inducing the oxidative decarboxylation
of 2OG and substrate oxidation.29 A large low-complexity
insert is found within the DSBH domain and located at
the exterior surface of the catalytic domain (Figure 1).
Although the precise function of this insertion remains to be
determined, it may have regulatory roles via post-translational
modifications, such as glycosylation and phosphorylation.30,31

A study has shown that the deletion of this insert markedly
increases 5hmC production by the TET2 catalytic domain.32

TET proteins also have an additional domain that potentially
regulates their chromatin targeting. At the amino-terminal
region, TET1 and TET3 have a DNA-binding domain called
the CXXC domain, which is composed of two Cys4-type zinc
finger motifs.16,17,33 Interestingly, the ancestral TET2 gene
underwent a chromosomal inversion during evolution; as
a result, the segment encoding its CXXC domain was separated
from the region encoding the catalytic domain.34 Thus, the
ancestral CXXC domain of TET2 is now encoded separately by
a neighboring gene, IDAX (also called CXXC4). The CXXC
domain of TET proteins (IDAX CXXC domain in the case of
TET2) is highly conserved and preferentially associates with
unmethylated CpG-containing sequences.34–36 The presence or
absence of the CXXC domain may affect the genomic
distribution of TET proteins; Tet1 is preferentially detected at

Figure 1 Domain structure of TET proteins. The carboxyl-terminal
core catalytic domain is highly conserved among all TET family
members and consists of a DSBH domain and a cysteine (Cys)-rich
domain. The Cys-rich domain is comprised of two subdomains and
modulates the chromatin targeting of TET proteins. The DSBH
domain harbors key catalytic motifs, including the HxD motif,
which interacts with Fe(II) and 2OG. A large low-complexity insert
is found within the DSBH domain, but its function remains to be
defined.
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the promoter CpG islands (CGIs) or enhancers in mouse
embryonic stem cells (ESCs), particularly at the former,
whereas Tet2 is mostly enriched in gene bodies or enhancer
regions.37–39

Structural analyses of TET proteins provide significant
insights into how TET enzymes recognize their substrates
and catalyze iterative oxidation reactions.32,40–42 The crystal
structure of the TET2 catalytic core domain revealed that two
subdomains of the Cys-rich domain wrap around the DSBH
domain on which DNA is located.32 Interestingly, two out
of three zinc fingers, coordinated by several residues from
the Cys-rich and DSBH domains, bring the two domains into
close proximity to facilitate the formation of a compact
globular structure, creating a unique structure for DNA
substrate recognition.32 TET2 specifically recognizes 5mCpG-
containing DNAs with no preference for the flanking
sequences, consistent with the fact that 5hmC is almost
exclusively located in the CpG context throughout the
genome.43 This interaction is stabilized by extensive intermo-
lecular hydrogen bonds between key residues of TET2 and
5mCpGs-flanking phosphates in the DNA backbone. Hydro-
phobic interactions resulting from base-stacking interactions
also contribute to the overall stability of the structure. Inter-
estingly, CpG recognition does not depend on the methyl
group of 5mC; accordingly, TET proteins could accommodate
the formyl and carboxyl groups of highly oxidized 5mC
derivatives at the active site.32,42

Unlike 5mC, the majority (480%) of oxi-mCs are deposited
asymmetrically on a specific CpG site.43,44 What is the
molecular basis for this strand asymmetry? As observed for
5mC recognition by the SRA domain of DNMT enzymes,
TET2 also recognizes oxi-mCs using a base-flipping mechan-
ism. Upon TET2 binding to the symmetrically methylated

palindromic CpG DNA, only a single oxidized base in one
strand is flipped out of the DNA duplex and incorporated into
the active site.32,40 A similar base-flipping mechanism has also
been observed in the structure of the Naegleria Tet-like
dioxygenase (NgTet1).42

In mouse ESCs, TET enzymes convert ~ 10% of 5mCs to
5hmCs, and only a subset (1–10%) of 5hmCs are further
oxidized to 5fC/5caC. Therefore, 5hmC is about 10- to
100-fold more prevalent than more oxidized bases in
the genome.17,20,45–47 This unequal genomic distribution
of oxi-mCs might be attributable, at least in part, to
TDG/BER-mediated active demethylation because 5fC and
5caC, but not 5hmC, are reverted to unmethylated cytosines
(Figure 2). In addition, a fraction of oxi-mCs, mostly
5hmC, may not undergo entire oxidation reactions because
TET enzymes differentiate their substrates. Indeed,
TET proteins are less active on 5hmC and 5fC than on 5mC
in vitro, indicating a substrate preference.20,40,42 TET-mediated
oxidation tends to occur preferentially in regions with higher
chromatin accessibility. What determines whether oxi-mCs are
committed to undergoing further oxidation? Notably, all three
oxi-mCs are similarly recognized by TET proteins
with comparable binding affinity, and adopt almost identical
conformations within active sites.40 However, the hydroxy-
methyl group and formyl group of 5hmC and 5fC, respectively,
adopt a more restrained conformation within active sites by
forming hydrogen bonds with N-oxalylglycine (NOG, 2OG
under physiological conditions) as well as polar groups of the
cytosine ring. This structural restriction prevents hydrogen
abstraction, the rate-limiting step for TET-mediated oxidation
reactions with a concomitant decrease in catalytic efficiency.40

Collectively, the catalytic core of TET proteins has intrinsic
properties for efficient CpG recognition, substrate preference

Figure 2 Function of TET proteins in passive and active DNA demethylation. TET proteins iteratively oxidize 5mC to produce oxidized
methylcytosines (oxi-mCs), of which 5fC and 5caC are directly excised by the DNA repair enzyme TDG (thymine DNA glycosylase). The
resulting abasic sites are eventually replaced with unmethylated cytosines by base excision repair (BER). No mammalian 5mC glycosylases
that directly excise 5mC have been reported to date. TET proteins also promote the oxidative demethylation of 5mC in a replication-
dependent manner because oxi-mCs tend to interfere with the methylase activity of DNMT1. TET proteins have a distinct preference for
their substrates, so many oxi-mCs, mostly 5hmC, are not committed to demethylation pathways and are stable epigenetic modifications.
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and strand biases (Figure 1). Thus, a fraction of 5hmC is less
prone to further oxidation and remains as a stable
epigenetic mark.

Considering the capability of TET enzymes to oxidize their
substrates in a step-wise manner, differential genomic levels of
oxi-mCs also suggest that TET-catalyzed oxidation is not
processive, and frequently stalls at the intermediate stages,
most likely at 5hmC. TET proteins may associate transiently
with specific substrates and detach before completing oxidation
to the end product 5caC. Furthermore, there may be a division
of labor among distinct TET enzymes. In fact, a recent
study has shown that collaborative interplay among
TET proteins and transcription factors is required to complete
active DNA demethylation in enhancers.48 In mouse ESCs,
Tet1 recruits Sall4, which is a strong 5hmC-interacting protein
in vitro, to enhancers. Unexpectedly, the Sall4-bound enhancers
are substantially depleted of 5hmCs, but significantly enriched
for 5caC. Deletion of Sall4 increases 5hmC levels in these
regions in a Tet1-dependent manner, suggesting that Tet1 is
mainly responsible for the initial oxidation of 5mC to 5hmC.
In contrast, Sall4 loss leads to a reduction in 5caC levels and
Tet2 occupancy at the Sall4-bound enhancers. Furthermore,
depletion of Tet2, but not Tet1, increases 5hmC levels at
Sall4-bound sites. These observations suggest that cooperative
interactions between Tet1 and Tet2 are coordinated by an
oxi-mC-sensing transcription factor to complete stepwise
5mC oxidation at enhancer regions.

IMPACT OF OXIDIZED METHYLCYTOSINES IN DNA

METHYLATION AND DEMETHYLATION

DNA methylation is a highly dynamic process. Therefore, it is
important to precisely control the generation and erasure of
methylation marks to ensure the long-term inheritance of
cell type-specific epigenomic memory across generations.49,50

As mentioned earlier, following DNA replication, hemi-
methylated CpG DNAs are transiently formed with only the
parental strand containing 5mC, and the original modification
patterns are restored by re-methylating cytosines in the newly
synthesized DNA strands (by DNMT1) and consecutively
re-oxidizing the resulting 5mCs (by TET proteins). If the
methylation maintenance machinery becomes non-functional
or chromatin accessibility becomes restricted under certain
conditions, 5mCs would be passively diluted as cells divide,
either globally or locally. TET proteins can also promote this
process, but they first oxidize 5mCs to oxi-mCs, which are
subsequently diluted to regenerate unmethylated cytosines in
a replication-dependent manner.

Compared to maintenance methylation whose molecular
mechanism is relatively well defined, it is not clear how 5mC
oxidation patterns are restored and faithfully inherited by
daughter cells. It has been shown that maintenance methyla-
tion re-establishes methylation patterns immediately after
DNA replication, but subsequent TET-mediated oxidation
occurs relatively slowly at a later time point.51 TET proteins
may not simply catalyze the successive oxidation of 5mCs once
they are generated by DNMT1/UHRF1, and different

mechanisms might be employed to restore patterns of DNA
methylation and oxi-mCs during cell division. How might the
oxidized 5mC bases affect passive demethylation? Given that
oxi-mCs at CpG-containing DNA interfere with the ability of
DNMT1 to methylate CpG sites in vitro,52–54 TET proteins
were proposed to promote replication-dependent passive
demethylation (Figure 2). If this is the case, TET proteins
might be able to induce progressive DNA demethylation even
in the presence of active DNMT1/UHRF1, as observed in
normal erythropoiesis (Figure 3).55–57

Although the result is controversial, the SRA domain of
UHRF1 has been shown to recognize 5hmC and 5mC with
similar affinity.58 The UHRF2 SRA domain also preferentially
recognizes 5hmC.59,60 As UHRF1 is an obligate partner protein
of DNMT1, these results suggest that 5hmC could promote
methylation maintenance by facilitating the recruitment of
DNMT1 to hemi-hydroxymethylated DNA. Moreover,
DNMT3A and DNMT3B, originally known as de novo
DNA methyltransferases, are also required for DNA methyla-
tion maintenance in somatic cells,61 and they display compar-
able methylase activity on 5mC- and oxi-mC-containing
DNA in vitro, with 5fC increasing methylation efficiency most
markedly.53,54,62 Thus, further studies are required to elucidate
the precise roles of oxi-mCs in the maintenance of
DNA methylation.

In addition to passive dilution, 5mCs can also be removed
enzymatically by a replication-independent mechanism, a process
called ‘active DNA demethylation’ (Figure 2).12,25,26,49 In plants,
active demethylation depends on DEMETER and REPRESSOR
of SILENCING 1, which are well-characterized 5mC
DNA glycosylases that directly excise 5mC to initiate base
excision repair (BER). However, no orthologs with similar
activities have been identified in mammals. The DNA repair
protein thymine DNA glycosylase (TDG), which belongs to the
uracil DNA glycosylase superfamily, was a strong candidate
owing to its ability to remove the pyrimidine base from a T:G
mismatch that arises from the deamination of 5mC.63 However,
given the preference of activation-induced deaminase (AID)/
APOBEC deaminases for single-stranded DNA and unmethylated
cytosine over modified bases, this pathway may play a marginal
role.64 Notably, TDG specifically recognizes 5fC and 5caC, but
not 5mC and 5hmC, which normally base-pair with guanine,
and it shows robust in vitro base excision activity.18,60,65,66 TDG
harbors a binding pocket that specifically accommodates these
oxidized bases.66 Mechanistically, 5fC and 5caC were shown to
destabilize the covalent bond that links them to sugar, making the
glycosidic bond more susceptible to cleavage by TDG.67,68

It is now clear that 5mC in mammalian genomes can be
removed by a two-step process (Figure 2). TET proteins first
oxidize 5mCs to form oxi-mCs, and TDG subsequently excises
the highly oxidized bases 5fC and 5caC.18,65 This excision
reaction results in abasic sites that are eventually repaired by
the BER pathway to restore unmodified cytosines. In line with
this, the knockdown of Tdg in mouse ESCs leads to a 5- to
10-fold increase in the levels of genomic 5fC/5caC, whereas
its overexpression in HEK293T cells markedly diminishes
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the levels of TET-generated 5fC/5caC.18,44,64,69–73 Interestingly,
vitamin C treatment leads to a significant increase in the
levels of 5fC and 5caC, consistent with its function in
stimulating the catalytic activity of Tet enzymes.44,74–78 In line
with its profound role in demethylation, Tdg is essential for
embryonic development, as evidenced by mice with Tdg
deficiency79,80 or the expression of mutant Tdg lacking
glycosylase activity80, which exhibit developmental defects
and embryonic lethality, possibly by impairing the disappear-
ance of 5fC and 5caC. Other studies have shown that 5hmU
can be generated as a result of either deamination by
AID/APOBEC80,81 or direct oxidation by TET enzymes,82

followed by TDG-mediated BER. Furthermore, DNMTs could
directly catalyze dehydroxymethylation83,84 and the cell lysate
of ESCs exhibits 5caC decarboxylase activity.85 These pathways
need to be further characterized in vivo.

GENOMIC LANDSCAPE OF CYTOSINE METHYLATION

AND ITS OXIDATION PRODUCTS

In mammalian genomes, ~ 4–5% of all cytosines in the
CpG context are methylated to yield 5mC. The methylation
frequency at individual CpG sites typically displays a bimodal

distribution. In general, the majority (70–80%) of CpG sites
within genic and intergenic regions are highly methylated,
whereas a small fraction (o20%) that includes promoter CGIs
and distal regulatory elements, such as enhancers, is notably
depleted of methylation.5,86–89 Interestingly, non-CpG methy-
lation is prevalent in ESCs, neuronal precursor cells and
ectoderm-derived tissues, such as the cerebellum, cortex
and olfactory bulb.5,89 Cancer cells display highly dysregulated
DNA methylation profiles characterized by global hypomethy-
lation, which presumably impairs genome integrity, in
conjunction with localized hypermethylation of promoter CGIs
associated with aberrant expression of tumor suppressor genes
or repair genes.90–92 However, recent technological advances
have enabled the precise mapping of individual cytosine
derivatives at single-base resolution, and these analyses have
suggested that tumorigenesis is more highly associated with the
genome-wide loss of 5hmC than 5mC.93

Interestingly, the global level of cytosine methylation across
various human and murine tissues is remarkably similar.88,89,94

However, some CpG sites (7–20%) in the mouse epigenome
are differentially methylated among cell types; they are mostly
hypomethylated in a tissue-specific manner.86–89 Most of these

Figure 3 A model of TET-assisted passive DNA demethylation. The parental DNA methylation patterns are faithfully inherited to daughter
cells across generations because the methylation maintenance machinery DNMT1/UHRF1 is targeted to the hemi-methylated DNA after
DNA replication and re-methylates cytosine in the newly synthesized strand. Upon chromatin reorganization at certain genetic loci, such as
enhancers, in response to cellular signals, TET proteins and BER components might become more accessible. As a result, a fraction of
5mC may undergo stepwise oxidation. After replication, the resulting DNA contains oxi-mCs only on one strand, which impairs
maintenance methylation. Therefore, 5mCs would be passively diluted upon successive cell divisions, even in the presence of functional
DNMT1/UHRF1. The impact of de novo DNA methyltransferases in DNA methylation maintenance is not considered here.
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regions represent the small, evolutionarily conserved, distal
cis-regulatory elements marked with H3K4me1, H3K27ac and
p300 occupancy, and show significant enrichment of tissue-
specific transcription factor binding sites, indicating that they
include active enhancers.86–89 Intriguingly, transcription factor
binding is necessary and sufficient to reduce methylation levels
in these regions. In particular, cell type-specific transcription
factors could locally modify these regions during differentia-
tion, inducing dynamic changes in the expression of the
neighboring genes.87

Genome-wide mapping analyses have shown that 5hmC is
also strongly enriched in hypomethylated distal regulatory
elements, such as enhancers.39,87,95 Base-resolution DNA
methylome mapping has revealed that Tet deficiency leads to
more hypomethylated sites than hypermethylated sites in
ESCs.43 Extensive DNA hypermethylation typically occurs in
distal enhancer regions that are associated with enhancer-
related histone modifications (H3K4me1 and H3K27ac),
increased DNase I hypersensitivity, and occupancy by tran-
scription factors and a histone-modifying complex. On the
other hand, hypomethylated regions are randomly distributed
throughout the genome. Notably, the majority of hypermethy-
lated regions overlap significantly with regions enriched with
5fC and 5caC observed in the Tdg knockdown ESCs, suggesting
that Tet-mediated demethylation mainly occurs in these
regions. Changes in DNA methylation levels differentially
influence the transcription of neighboring genes.95 For exam-
ple, Tet loss inhibits recruitment of Kap1 to the chromatin and
induces derepression of most two-cell embryo (2C)-specific
genes such as Zscan4. As expected based on the known
function of Zscan4 in telomerase-independent telomere elon-
gation, telomere length is elongated in Tet-deficient ESCs.

On the basis of genome-wide profiling, 5fC and 5caC
mostly reside in the distal regulatory elements, including
the active/poised enhancers, CTCF-bound insulators, active/
poised promoters, and gene bodies of actively transcribed
genes.44,69–72,96 Combined with Tdg depletion, these studies
have enabled assessments of the dynamics and regulatory
mechanisms of active DNA demethylation pathways. Interest-
ingly, 5fC/5caC and 5hmC largely exist at distinct CpGs, and
5fC and 5caC frequently do not overlap at individual CpGs.
There are about three times more CpGs modified with 5hmC
alone than in association with 5fC/5caC,44 indicating that
TET/TDG-mediated active demethylation preferentially stops
at the 5hmC step and accordingly the majority of 5hmCs could
exist as stable marks. Furthermore, a considerable fraction of
5fC/5caC peaks are found in distal regulatory elements with
relatively higher chromatin accessibility, suggesting that the
catalytic processivity of TET enzymes is regulated by the local
chromatin environment. Interestingly, like 5hmC, most of the
5fC/5aC are asymmetrically modified,47 demonstrating that
active DNA demethylation activity targets palindromic CpGs
asymmetrically, consistent with the asymmetric base-
flipping model.

OXIDIZED 5-METHYLCYTOSINE DERIVATIVES AS

DISTINCT EPIGENETIC MARKS

Oxi-mCs are detectable in most tissues, but their levels are
relatively very low compared to those of other bases and highly
variable across cell types. 5hmC is most prevalent in ESCs,
Purkinje neurons and the brain.45,94,97–99 As discussed,
a significant amount of 5hmC is maintained as stable,
demethylation-independent bases and can exert independent
epigenetic roles.25,26,47,51 The presence of oxi-mCs in
DNA influences its physical properties. For example, 5hmC
increases the thermodynamic stability of a DNA double
helix.100 When 5fC is incorporated into DNA, it induces
alterations of the local DNA structure and influences the
accessibility of DNA-binding proteins, presumably by altering
the degree of DNA supercoiling and packaging. Furthermore,
RNA polymerase II specifically recognizes 5caC and 5fC and
forms hydrogen bonds with the 5-carboxyl or 5-carbonyl
groups of 5caC or 5fC, respectively. As a result,
RNA polymerase II is transiently stalled, thereby delaying
transcription elongation on gene bodies.101,102 Moreover,
individual oxi-mCs were shown to be specifically recognized
by numerous cellular proteins, called ‘oxi-mC readers’, which
can differentiate the distinct chemical modification status of
oxi-mCs.60,103–106 By altering the modification status of differ-
ent cytosine derivatives, cells might be able to selectively
control the chromatin association and dissociation of these
cellular proteins. For instance, the transcription factor Wilms
tumor 1 binds preferentially to unmethylated or methylated
DNA, but binds less efficiently when its cognate binding site
contains oxi-mCs. In addition, TET proteins also interact with
diverse cellular proteins that potentially affect its chromatin
targeting and steady-state levels, as reviewed elsewhere.25,29

TET PROTEINS IN HEMATOLOGIC CANCERS

TET2 is frequently mutated in a wide spectrum of myeloid
malignancies, including ~ 20% of myelodysplastic syndrome
(MDS), 20% of myeloproliferative neoplasms (MPN), 50% of
chronic myelomonocytic leukemia (CMML), and 20% of acute
myeloid leukemia (AML), reviewed elsewhere.23,25,27 TET2
mutations are associated with aberrant DNA methylation
patterns in myeloid malignancies. TET2 deletion and mutations
are mostly heterozygous and are considered an early event in
the pathogenesis of myeloid malignancies. Most of the
leukemia-associated TET2 missense mutations are inactivating
mutations that inhibit or abolish the catalytic activity of TET2
in vitro and in vivo.21 These mutations may impair the
interaction of Fe(II) and 2OG at the active site or affect the
structural integrity of the catalytic core domain. Furthermore,
TET2 was shown to be monoubiquitylated by the CRL4VprBP

E3 ligase, which promotes the chromatin binding of TET2.107

Interestingly, leukemia-associated TET2 mutations are
frequently targeted to the residues that are directly ubiquity-
lated or required for associations with the E3 ligase.

Early studies using hematopoietic stem/progenitor cells
(HSPCs) from MPN patients bearing TET2 mutations108 or
HSPCs in which Tet2 expression was knocked-down109,110
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have shown that Tet2 inactivation induces a developmental
bias toward myeloid lineages at the expense of other lineages.
Overall, various Tet2 loss-of-function mouse models exhibit
very similar phenotypes, including augmented HSC expansion,
increased repopulating capacity of HSCs, and skewed differ-
entiation toward the myeloid lineage.23–26 Some strains of
Tet2-deficient mice, including those containing a homozygous
or heterozygous deletion of Tet2, developed myeloid
malignancies, indicating a causal relationship between
Tet2 loss-of-function and myeloid transformation. Notably,
Tet2 deletion in the more highly differentiated myeloid cells
compared with HSPCs is not capable of inducing leukemogen-
esis, and only wild type, but not catalytically inactive Tet2,
could rescue the leukemogenic phenotypes in Tet2-deficient
mice, suggesting that the catalytic activity of Tet2 is required to
suppress myeloid transformation.111 Consistent with recurrent
TET2 mutations in a subset of lymphoid malignancies, T-cell
lymphoma with follicular helper T-cell-like phenotypes has also
been observed in some Tet2-deficient mice.112 These results
collectively suggest that TET2 functions as a bona fide tumor
suppressor in hematological malignancies. However, it appears
that Tet2 deletion/mutation alone is not enough to drive
full-blown leukemia. Thus, TET2 dysregulation may contribute
to the induction of a pre-leukemic condition. The acquisition
of additional mutations may then drive the development
of full-blown malignancy. Supporting this hypothesis,
Tet2 deficiency has synergistic effects with various leukemia-
related mutations that commonly co-exist with TET2 muta-
tions in patients. Depending on the types of second mutations,
the fate of leukemic cells could diversify and the disease latency
is markedly shortened.113

TET1 also has a regulatory role in hematopoietic transfor-
mation. Interestingly, TET1 seems to exert context-dependent
effect. TET1 is a direct transcriptional target of MLL fusion
proteins and activates the expression of its downstream
oncogenic targets to promote leukemogenesis, suggesting its
oncogenic roles in MLL-rearranged leukemia.114 In contrast,
the loss of Tet1 in mice promotes the development of B-cell
lymphoma resembling follicular lymphoma and diffuse
large B-cell lymphoma, albeit with a long latency,115 suggesting
its tumor suppressor function in lymphomagenesis. In
non-Hodgkin B-cell lymphoma (B-NHL), TET1 expression
is suppressed at the transcriptional level via promoter
CpG methylation. Tet1 deficiency leads to an enhanced serial
replating capacity of HSPCs, augmented HSC self-renewal and
repopulating capacity, and the accumulation of DNA damage.
Tet1 loss also induces developmental bias toward the B-cell
lineage.

Tet3 deficiency in mouse HSCs does not show any overt
hematopoietic phenotypes, except for the expansion of
HSPCs.25 However, Tet2 and Tet3 are highly expressed in
the hematopoietic system, suggesting that Tet2 and Tet3 play
redundant roles in the regulation of normal hematopoiesis and
oncogenesis.116 As expected, the combined loss of Tet2 and
Tet3 markedly impairs 5hmC production in hematopoietic
cells, suggesting that they are the major 5mC oxidases in the

hematopoietic system. Remarkably, the dual loss of Tet2 and
Tet3 rapidly induces the development of highly aggressive, fully
penetrant and cell-autonomous myeloid leukemia in mice. In
Tet2/Tet3 double-deficient HSPCs, the myeloid lineage genes
are significantly upregulated, whereas lymphoid and erythroid
lineage genes are strongly downregulated. These altered
gene expression patterns are associated with myeloid skewing.
The double deficiency leads to a mild but consistent increase
in DNA methylation, but this altered DNA methylation
only has a mild relationship to gene expression levels.
Furthermore, upon the loss of Tet2 and Tet3, DNA damage
progressively accumulates, suggesting that TET proteins also
play significant roles in maintaining genomic integrity.

In addition to myeloid cancers, TET2 mutations are also
found in lymphoid cancers, including ~ 2% of Hodgkin’s
lymphoma and 10% of T-cell lymphoma cases. Furthermore,
TET1 expression is significantly downregulated in acute
B-lymphocytic leukemia. Because both TET1 and TET2 are
frequently downregulated in acute B-lymphocytic leukemia,
the impact of the simultaneous deletion of both genes on
hematopoietic development has been tested.117 Surprisingly,
Tet1/Tet2 double knockout mice show significant decreases in
the frequency of myeloid malignancies and have a strikingly
improved survival rate compared to that of Tet2-deficient mice.
Even haplo-insufficiency of Tet1 is sufficient to induce these
phenotypes in Tet2-deficient mice. Furthermore, the double
knockout mice mainly develop transplantable, lethal B-acute
lymphoblastic leukemia-like malignancies associated with the
clonal expansion of B cells, extensive lymphocyte infiltration
into the bone marrow, spleen and liver, spleno-hepatomegaly,
and enlarged lymph nodes.

ADDITIONAL MAJOR EPIGENETIC FACTORS IN

HEMATOPOIETIC CANCERS

IDH enzymes
Recent studies suggest that an altered metabolic status is closely
linked to cellular transformation because many key enzymes
implicated in tumor suppression consume various metabolites
as cofactors. TET proteins require 2OG to catalyze 5mC
oxidation. 2OG is mainly produced by IDH enzymes in the
TCA cycle that catalyze the oxidative decarboxylation of
isocitrate (Figure 4). Interestingly, recurrent heterozygous
mutations in IDH1 and IDH2 genes have been detected in
a majority of glioblastomas and various hematopoietic
malignancies, including MDS, MPN and AML.25 IDH muta-
tions are almost exclusively targeted to specific mutational
hotspots (R132 in IDH1 and R140 and R172 in IDH2)
and confer a neomorphic ability to reduce 2OG to
2-hydroxyglutarate (2HG) (Figure 4).118 Thus, patients with
IDH mutations show elevated levels of 2HG. In addition,
inactivating mutations frequently arise in other genes that
encode additional metabolic enzymes. For example, mutations
in succinate dehydrogenase (SDH) and fumarate hydratase (FH)
lead to the accumulation of succinate and fumarate. Interest-
ingly, the structures of 2HG, succinate and fumarate are very
similar to that of 2OG. Accordingly, they can compete with
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2OG to inhibit 2OG-dependent dioxygenases, including TETs
and JmjC-domain-containing histone demethylases, causing an
increase in histone and DNA methylation (Figure 4). As a way
of targeting mutant IDH enzymes to treat cancers, specific
inhibitors that interfere with 2HG production by mutant
IDH enzymes have been developed and they were shown to
have clinical efficacy against gliomas in vitro and in vivo.119

To characterize the in vivo function of IDH mutations,
several mouse models, including those expressing mutant
IDH1 or IDH2, have been generated.120,121 Although the
expression of mutant IDH in mice leads to abnormal hema-
topoietic phenotypes, the mice were not the exact phenocopies
of those with Tet2 deficiency. For example, IDH mutations do
not significantly affect myeloid differentiation and the repopu-
lating capacity of HSCs, which are consistently observed in
various Tet2-deficient mouse models. Furthermore, no leuke-
mogenesis has been observed in any of these mouse models.
Thus, these results suggest that IDHmutations alone contribute
to pre-leukemic conditions, and full-blown leukemia develops
via the gain of additional mutations. Interestingly, genetic or
pharmacological suppression of mutant IDH proteins could
promote the differentiation of leukemic cells and significantly
ameliorate the pathogenic features, suggesting the requirement
of 2HG in the maintenance of leukemic cells.121,122

DNMT3A
During hematopoiesis, DNA methylation pattern is dynami-
cally regulated.123,124 Individual DNMTs have been shown to
be critical for HSC self-renewal, normal hematopoietic differ-
entiation, lineage specification and suppression of malignant
transformation.24 Among them, the de novo DNA methyl-
transferase DNMT3A has gained much attention. In mice, the
loss of Dnmt3a in HSCs augments HSC self-renewal and
impairs differentiation over serial transplantation,125 which was
further enhanced by the additional loss of Dnmt3b.126

Dnmt3a-deficient HSCs show aberrant DNA methylation
patterns, but changes in DNA methylation are not strongly
correlated with alterations in gene expression levels.
HSCs doubly deficient in Dnmt3a and Dnmt3b have large
hypomethylated regions in the CGI shore in the β-catenin
(Ctnnb1) promoter, which transcriptionally upregulates
β-catenin and its downstream target genes to block
HSC differentiation.

DNMT3A is also frequently mutated in a wide range
of hematopoietic malignancies including AMLs (20–30%),
MDS (10–15%), and MPN (~8%), and DNMT3A mutations
are generally correlated with poor prognosis.127 These muta-
tions are typically heterozygous and target a specific residue,
arginine 882, in the catalytic domain. The DNMT3AR882H

mutant has a dominant negative effect. The expression of the
DNMT3AR882H mutant or the deletion of Dnmt3a in mice
leads to the development of a wide spectrum of myeloid
and lymphoid malignancies resembling MDS, MPN, CMML,
AML and acute lymphoblastic leukemia although the disease
latency is very long. Similar to TET2 mutations, DNMT3A
mutations are considered an early event that are introduced in
HSCs, inducing a pre-leukemic condition, and a Dnmt3a
deficiency cooperates with MLL-AF9, Flt3-ITD, and other
mutations such as c-Kit, Kras and Npm1 mutations to promote
oncogenic transformation toward a diverse spectrum of
malignancies.

DNMT3A mutations frequently co-exist with TET2 muta-
tions in lymphoma and leukemia. Mutations in both genes are
expected to modulate DNA methylation patterns in opposite
directions; the former leads to global hypomethylation in
general, whereas the latter leads to hypermethylation. However,
in studies involving Dnmt3a- or Tet2-deficient mice, the
pathological outcomes are very similar. Because TET2
consumes 5mC generated by DNMT3A, both mutations would
result in the same end result at the molecular level, that is,
a loss of oxi-mCs. A recent study has shown that compared
to single deletions, the combined deletion of Dnmt3a and
Tet2 in mice further augments the accumulation and repopu-
lating capacity of HSPCs, and accelerates the development
of hematologic malignancy, including B-cell and T-cell
lymphomas,128 similar to the DNMT3AR882H in the
Tet2-deficient background.129 The dual loss of both enzymes
results in the downregulation of HSC-specific genes and
derepression of lineage-specific genes. For example, Dnmt3a
and Tet2 collaborate to prevent the activation of Klf1 and Epor.
These genes are known as erythroid lineage genes, but

Figure 4 TET protein as a linker between metabolism and
epigenetic regulation. During the tricarboxylic acid (TCA) cycle, IDH
enzymes catalyze the oxidative decarboxylation of isocitrate to
generate 2-oxoglutarate (2OG), an essential co-substrate that
TET enzymes require to oxidize their substrates. Mutations in the
IDH1 gene increase the binding affinity for NADPH relative to
isocitrate and NADP+; thus, the resulting mutant enzymes
acquire neomorphic activity to reduce 2OG to 2-hydroxyglutarate
(2HG). Owing to the structural similarity, 2HG can function as
a competitive inhibitor of TET enzymes.
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erythropoiesis is paradoxically blocked in the double knockout
mice, resulting in anemia. Interestingly, these genes promote
the self-renewal of double-knockout HSPCs in vitro. Further
studies are required to precisely assess whether the loss of 5mC,
oxi-mC or both contributes to malignant hematopoiesis.

CONCLUSIONS AND PERSPECTIVE

DNA methylation plays pivotal regulatory roles in diverse
cellular processes, such as transcription and genome integrity,
and its aberrations influence mammalian development
and cancer development. TET proteins directly modulate the
DNA methylation landscape by successively oxidizing 5mCs.
TET loss-of-function is commonly observed in various cancers,
including hematopoietic and non-hematopoietic cancers, and
studies of various mouse models have clearly shown that it is
causally related to the pathogenesis of hematologic cancers.
Notably, the re-introduction of wild-type Tet activity into
Tet-deficient HSPCs fully rescues the leukemogenic phenotypes
in mice. Similar tumor-suppressor functions are anticipated for
the wide spectrum of solid cancers. Therefore, the restoration
of TET expression or function in cancers will have an immense
clinical impact. In this regard, it is noteworthy that the
combined treatment of DNMT inhibitors and vitamin C shows
a marked effect in restoring TET activity in cancers. Despite
vast information on the regulatory function of TET proteins in
stem cell maintenance, lineage specification, gene transcription,
genomic integrity and oncogenesis, it is still unclear how TETs
control normal cell differentiation and malignant transforma-
tion. Further studies are required to uncover the exact
molecular mechanism underlying accelerated oncogenesis
upon TET loss-of-function. Furthermore, it is also necessary
to develop tools to precisely manipulate TET function in cancer
cells and identify targets for therapeutic intervention and/or
preventive measures.
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