Experimental & Molecular Medicine (2017) 49, e364; doi:10.1038/emm.2017.102

OPEN © 2017 KSBMB. All rights reserved 2092-6413/17

www.nature.com/emm

REVIEW

Sex-specific regulation of immune responses by PPARs

Hong-Jai Park!? and Je-Min Choi?

The prevalence of autoimmune, infectious and metabolic diseases is different for men and women owing to the respective ability
of their immune systems to respond to self and foreign antigens. Although several factors, including hormones and the
X-chromosome, have been suggested to contribute to such sex-specific immune responses, the underlying factors remain poorly
defined. Recent studies using peroxisome proliferator-activated receptor (PPAR) ligands and knockout mice have identified
sex-dimorphic expression of PPARs, and have shown that the inhibitory functions of PPAR in T cells are substantially affected by
the sex hormones. In this review, we consider the sex-specific differences in PPARs and summarize the diverse PPAR-mediated,

sex-specific properties of effector T-cell responses, such as T-cell activation, survival and differentiation, as well as their
involvement in T-cell-related autoimmune diseases, including colitis, graft-versus-host disease and experimental autoimmune
encephalomyelitis. Understanding PPAR-mediated sex differences in immune responses will provide more precise insights into

the roles of PPARs in effector T cells.
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SEX DIFFERENCES IN THE INCIDENCE OF DISEASES
Sex is a biological factor that contributes to physiological and
anatomical differences. Immunological sex differences also exist
and cause disparate responses to both self and foreign
antigens.! In general, males have a greater prevalence and
severity of bacterial, fungal and parasitic infectious diseases
than females.? In addition, the RNA viral load in females with
an acute HIV infection is 40% less than that in males,? and the
risk of death from malignant cancer is twofold higher in
males than in females.! Moreover, antibody production from
vaccination against influenza virus is stronger in females than
in males, demonstrating that females generate stronger
immune responses than males.* Although the heightened
immune response of females is highly effective with respect
to clearing pathogens and enhancing the vaccination efficiency,
it also contributes to an increased susceptibility to inflamma-
tory and autoimmune diseases compared with males.>® Indeed,
there is a higher proportion of females with autoimmune
disease than males,”~'? with females accounting for more than
60% of the incidence of Sjogren’s syndrome, systemic lupus
erythematosus (SLE), thyroid disease, rheumatoid arthritis,
multiple sclerosis (MS) and Grave’s disease.!!~!3

In addition to immune disease, there are also sex-specific
differences in the prevalence of metabolic diseases. The risk of
cardiovascular diseases is increased in females compared with

that in males, whereas more males have type II diabetes
mellitus.'»!> Insulin-sensitizing drugs also have sex-specific
differences and are more effective in females as evidenced
by reduced fasting plasma glucose levels.'® The genetic
factors related to the sex chromosomes,!”!° microRNAs,20-22
hormonal mediators estrogen,”>>® progesterone,”’° and
androgens,so‘33 and environmental mediators of nutrition>*3°
and microbiota®*8 have all been suggested to affect sex-based
differences in various diseases.

SEX-SPECIFIC DIFFERENCES IN IMMUNE RESPONSES
Innate immunity

Sex affects multiple aspects of innate immunity, which has an
essential role in the regulation of non-specific and immediate
defense against pathogens.® Innate immune cells such as
macrophages and dendritic cells (DCs) express several
pattern-recognition receptors (PRRs) that recognize and
respond to various antigens. Male peritoneal macrophages
express higher levels of cell surface TLR4 protein than female
cells, and lipopolysaccharide-challenged male mice have higher
levels of pro-inflammatory cytokine and chemokine produc-
tion, including IL-6, IL-1f and IL-10.4%*! Male neutrophils also
show higher expression of TLR4 and produce greater amounts
of TNF-a than female cells following lipopolysaccharide
stimulation.*? These inflammatory responses in males are
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believed to be responsible for the greater susceptibility of males
to bacterial septic shock. In addition, viral ligand-induced
TLR9 activation of male peripheral blood mononuclear cells
(PBMCs) results in a greater production of IL-10 than that
of female cells, a finding that is highly correlated with the
plasma level of sex hormones as IL-10 cytokine production
between males and post-menopausal women does not
show any differences compared with males and females at
reproductive age.*3

The promoter regions of genes in innate immune cells
contain putative androgen, glucocorticoid and estrogen
elements** suggesting that hormones have profound effects
on the function of innate immunity. Compared to males,
females have greater TLR7 gene expression. As TLR7 is
encoded on the X-chromosome, the increased expression in
females may be due to incomplete X inactivation, whereas
males have a potentially lower expression level of TLR7.447
Female PBMCs and plasmacytoid DCs (pDCs) also have
increased IFN-a production compared to male cells following
TLR7 ligand stimulation,*®*° which is associated with reduced
viral RNA following viral infection.** Interestingly, castrated
male mice have anti-viral responses that are comparable with
those of females, including the induction of PRRs and anti-viral
genes,'” providing further evidence of the role of sex in the
innate immune response.

Adaptive immunity

Sex influences the adaptive immune system, and several studies
have shown that females generate a stronger immune response
than males. For example, the proportion of CD4* T cells and
Treg cells within the total CD4* population is higher in females
than in males, whereas males have a higher number of CD8"
T cells.’*> Owing to the higher number of CD4" T cells,
females generate a higher number of activated CD4™ T cells
than males following T-cell receptor (TCR) stimulation.’*
Interestingly, anti-viral and pro-inflammatory genes are upre-
gulated to a greater degree in activated female cytotoxic T cells
than in male cells, and half of these genes have estrogen-
response elements (EREs) in their promoter region,> suggest-
ing that sex hormones may influence the regulation of
cytotoxic T-cell activity.

Females have robust Thl responses, and female CD4" T cells
produce higher levels of IFN-y than male T cells. IFN-y serves
as an important factor in the onset of experimental
autoimmune encephalomyelitis (EAE).>® The enhanced
production of IFN-y by CD4" T cells in females is responsible
for their superior protection against infectious diseases such as
Leishmania.”> In addition, female CD4" T cells produce
less IL-17 than male CD4" T cells,®® further demonstrating
sex-specific differences in CD4* T-cell-mediated cytokine
production in males and females. Females also display greater
antibody responses, including higher B-cell numbers and basal
immunoglobulin levels, than males,””® possibly leading to
faster viral clearance in females. Finally, antibody responses to
viral and bacterial vaccines are higher in females than in males,
suggesting that vaccination efficacy is better in females than
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in males. For example, a half dose of vaccination against
influenza virus in females results in similar antibody produc-
tion to that of a full dose of vaccine in males.”®

THE ROLE OF PEROXISOME PROLIFERATOR-ACTIVATED
RECEPTORS IN THE IMMUNE RESPONSE

Peroxisome proliferator-activated receptors (PPARs) are nuclear
receptors that regulate lipid and glucose metabolism,%%% as
well as cell survival® and immunity.®>%” Tissues that require
high amounts of energy to maintain their own function, such as
liver, adipose, muscle and heart tissues, have high expression of
PPARs,% implying that PPARs act as regulators of metabolism.
PPARs are also expressed in various immune cells such as
monocytes, macrophages, T cells and B cells,*”" where they
may also regulate immune function.

PPARa is expressed in macrophages, granulocytes and
lymphocytes.”’ Ligand-activated PPARa represses NF-kB
activity and IL-2 production in lymphocytes,”® and regulates
IL-4- and IL-5-induced expression of target genes in T cells.”!
PPARa-deficient T cells produce higher amounts of IFN-y and
TNF-a with increased NF-kB and c-jun activity compared to
wild-type T cells. PPARa-deficient mice are also susceptible
to EAE, indicating that PPARa has an anti-inflammatory
function as a negative regulator of T cells.’® The PPAR« ligand
fenofibrate effectively reduces the severity of both EAE
and colitis by inhibiting TFN-y and IL-17 production,”!~73
indicating that PPAR« ligands may be useful for the treatment
of autoimmune diseases. In addition, PPARa has an important
role in the suppression of allergic contact dermatitis by Treg
cells’* as the proportion and suppressive function of Treg cells
are decreased in PPARa-deficient mice.

The PPARP/S agonist GW-0742 has protective, immune-
modulatory functions against EAE.”> On the other hand,
mice lacking PPARP/S expression display severe EAE clinical
signs with significant accumulation of IFN-y*IL-17A”
and IFN-y'IL-17A* T cells in the spinal cord.”® Additional
anti-inflammatory functions of PPARB/d have been identified,
including the fact that they are essential for the clearance
of apoptotic cells.”” Specifically, treatment with PPARB/S
ligands augments the clearance of apoptotic cells,
whereas delayed uptake of the cells found in the absence
of PPARP/S results in a SLE-like autoimmune disease.
These findings suggest that PPARB/S also has a significant
role in inhibiting T-cell activation and preventing autoimmune
disease.

PPARy has two isoforms, with PPARy1 distributed in most
tissues and PPARy2 dominantly expressed in adipose
tissue.®®’® PPARy ligands have inhibitory effects on monocyte
TNF-a, IL-1p and IL-6 cytokine production.”>3" PPARy
ligands and knockout mouse studies have demonstrated the
importance of PPARy in T-cell activation, survival, differentia-
tion and autoimmune disease. The PPARy ligands 15d-PGJ,
and ciglitazone inhibit IL-2 cytokine production and prolifera-
tion of T cells,8! demonstrating the importance of functional
PPARy expression for the ligand-mediated regulation of
immune responses. PPARy expression is decreased in the
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Figure 1 An androgen-sufficient environment enhances PPARa activity to regulate autoimmunity by suppressing IFN-y production. Males
have higher androgen hormone levels than females, and this androgen-sufficient environment contributes to enhanced PPARa expression in
male T cells by bringing the androgen receptor (AR) to the ARE present in the promoter region of the PPAR«a gene. Increased expression of
PPARa by androgen hormone inhibits NF-xB activity and IFN-y production in male T cells following TCR stimulation to control
inflammation and autoimmunity, such as in experimental autoimmune encephalomyelitis (EAE). In contrast to males, limited amounts
of androgen hormone in females do not lead to increased expression of PPARa, which, in turn, fails to suppress NF-xB activity and

IFN-y production in female T cells.

PBMCs of MS patients compared with that in healthy
controls,®? and pioglitazone treatment suppresses the human
allogenic T-cell response in an arterial graft model,® altogether
indicating that PPARy expression and activation have an
important role in preventing the onset of autoimmune disease
and graft rejection.

PPARy has been reported to be indispensable for the
accumulation of Treg cells in visceral adipose tissue (VAT).
Treg cells do not accumulate in the VAT of mice with
Foxp3-specifically deleted of PPARy,® indicating that PPARy
is a crucial mediator of Treg cell accumulation, phenotype
and function by regulating the expression of chemokine
receptors necessary for the migration of Treg cells. Recent
studies have also revealed an important role for PPARy in the
loss of the VAT Treg cell phenotype resulting from
the phosphorylation of the serine residue at the PPARy
position 273.85 Specifically, this PPARy serine residue acts
as a checkpoint for whether VAT Tregs will retain their
characteristic transcriptional signature.

PPARy expression in regulatory T (Treg) cells has an
essential role in preventing colitis®® and graft-versus-host
disease (GVHD).?” PPARy-deficient Treg cells have an
impaired ability to downregulate effector T-cell-mediated
colitis and GVHD, suggesting that the expression of
PPARy in Treg cells is essential for the inhibitory function
of these cells in the immune response, and points to the
immune-therapeutic potential of targeting PPARy. However,
this finding is contradicted by a report that PPARy is required
for the development of autoimmune diseases such as
colitis under lymphopenic conditions due to the apoptotic
characteristics of PPARy-deficient T cells with decreased levels
of IL-7Ra.%

SEX-SPECIFIC PPARa-DEPENDENT DIFFERENCES IN
IMMUNE RESPONSES
PPARa expression is more abundant in naive and activated
male T cells than in female cells,’® suggesting that PPAR« has
a more substantial role in male T cells than in female T cells.
The production of IEN-y and TNF-a, but not that of IL-17, is
significantly increased in PPARa-deleted male T cells with
augmented NF-kB and c-jun activity,”® implying that PPAR«
effectively inhibits the production of inflammatory cytokines
in males. Moreover, male PPARa-deficient mice are more
susceptible to developing EAE with increased level of cytokines,
including IFN-y, TNF-a and IL-2, whereas female PPARa-
deficient mice have comparable cytokine production and EAE
pathogenesis compared to sex-matched littermate controls.”®
These findings suggest that PPARa can control the immune
responses in males due to its increased expression.>®

The male hormone androgen has been suggested to influ-
ence the expression of PPAR« in male T cells. Chip analysis has
shown that the androgen receptor can interact with the
promoter region of PPARa.? Furthermore, castrated male
mice exhibit increased Thl-cell infiltration into the CNS
compared with the weak Thl infiltration seen in sham male
mice, as well as increased IFN-y and decreased IL-17 cytokine
production. Altogether, these data suggest that the androgen
hormone is essential for maintaining PPARa expression in
males to inhibit Thl responses in the mouse EAE model.3>%
In human T cells, PPARa-mediated suppression of IFN-y
production is more sensitive in males than in females.’
Treatment of male T cells with PPARa siRNA results
in increased IFN-y production, whereas PPARy siRNA-
transfected female T cells have augmented IL-17 expression,
suggesting that the different regulatory roles of PPARa and
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Figure 2 An estrogen-sufficient environment promotes PPARy activity to regulate effector T-cell responses. The estrogen-sufficient
environment in females contributes to increased PPARYy expression levels in female T cells. A higher expression level of PPARy enables
female T cells to respond more effectively than male T cells to treatment with the PPARy ligand pioglitazone to regulate Thl, Th2, Thl7
and Tgy cells. In contrast, males have lower expression of PPARy due to limited available estrogen hormone. Thus, they fail to suppress
Thl, Th2 and Tgy cells in the presence of the PPARy ligand pioglitazone, but instead exhibit the selective inhibition of Th17-cell
differentiation. Estradiol administration in males enhances PPARy expression and rescues pioglitazone-mediated repression of Thl, Th2
and Tgy cells as seen in females. Thus, sufficient levels of estrogen are advantageous for promoting PPARy activity, and a synergistic
effect between pioglitazone and estrogen is critical for effector T-cell responses.

PPARy are dependent on sex. The sex-specific role of PPARx
in T cells is summarized in Figure 1.

SEX-SPECIFIC PPARy-DEPENDENT DIFFERENCES IN
IMMUNE RESPONSES

The basal expression of PPARy in CD4* T cells is higher than
that in CD8" T cells and B cells.”’ The expression of PPARy is
also increased in CD4" T cells following TCR stimulation.>®%0
PPARy expression is also higher in female T cells than in
males,>>>*°! and the treatment of male T cells with estradiol
enhances the expression of PPARYy, suggesting that the female
sex hormone estrogen profoundly influences the expression
of PPARy in T cells. These data may also suggest that PPARy
may be more sensitively regulated by PPARy ligand treatment
in female T cells than in male T cells. In addition, PPARy
expression is higher in the estrus phase of the menstrual
cycle than in the diestrus phase,”! further demonstrating
the importance of sex hormones in the regulation of PPARy
in females.

Recently, a study on the sex-specific differences regarding
the role of PPARy in T-cell survival showed that male
PPARy-deficient T cells undergo increased apoptosis with
decreased levels of Bcl-2 and IL-7Ra, and comprise a larger
proportion of apoptotic cells than female PPARy-deficient
T cells.®’ Another report suggested that PPARy is required
for the development of colitis in lymphopenic conditions,
and that a lack of PPARy results in decreased IL-7Ra,
suggesting an important role of PPARy in T-cell survival 38
Although more convincing data are required to solve this
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discrepancy, PPARy may function as a survival factor in
female T cells.

PPARy ligand studies have shown that PPARy acts as a
negative regulator of T-cell activation by inhibiting NF-xB and
NFAT transcription factors®? to suppress cytokine production
and proliferation. PPARy-deficient T cells also have increased
levels of cytokines and NF-xB activity following TCR
stimulation.”® This inhibitory role of PPARy in T-cell activation
is observed in female PPARy-deficient T cells, but not in
male T cells, suggesting that PPARy is more important
in females for NF-xB regulation. In addition, female
PPARy-deficient T cells produce enhanced lineage-specific
cytokines in Thl, Th2, Th17 and Th9 cells under
T-cell-differentiation-skewing ~ conditions.”” Recently, the
sex-specific regulatory functions of PPARy have been
investigated in the differentiation of Thl, Th2 and Th17 cells
between males and females. The PPARy ligand pioglitazone
inhibits the differentiation of female Thl, Th2 and Th17 cells,
whereas it specifically reduces only Th17-cell differentiation in
males.”®> These findings suggest that PPARy profoundly and
non-specifically influences the differentiation of female T cells
but selectively inhibits the formation of male Th17 cells.
Although pioglitazone single treatment does not affect
the differentiation of Thl and Th2 cells in male T cells,
estradiol enhances PPARy expression and suppresses Thl and
Th2-cell differentiation,”® suggesting that PPARy may have
stronger effects on inflammatory and allergic diseases in an
estrogen-repleted environment. These data are supported by



another recent study that investigated the sex-specific
regulatory functions of PPARy, showing that PPARy selectively
inhibits the differentiation of Th17 cells, but not that of Thi,
Th2 and Treg cells, by suppressing the RORyt transcription
factor without affecting T-bet, GATA3 or Foxp3.7*

The sex-specific functional activity of PPARy has been
proposed for Ty cells and germinal center (GC) responses.”
Spontaneous autoantibody production, glomerular inflamma-
tion and increased Tpy cells identified as CD4*CD44high
PSGL1°WCXCR5'PD-1%,5 and GC reactions are present in
female CD4-PPARYX® mice, but not in male mice, suggesting
that PPARY regulates Tgy responses more sensitively in females
than in males. Tgy responses are suppressed by PPARy in
SRBC- or NP-OVA-immunized mouse models.”>®! Interest-
ingly, this regulatory function of PPARy in Ty responses and
autoimmune phenotypes is sex-specific.”! Specifically, the
PPARy ligand pioglitazone reduces CD4*CD44M8"Bcl-6*
CXCR5" Tpy cells and GC formation only in females
dependent on estrogen, and this response is well-correlated
with PPARy expression.”! Estradiol administration in males
increases the expression of PPARy, and pioglitazone also
inhibits Tgy-cell and GC responses in males. This result implies
that estrogen sufficiency is advantageous for promoting
PPARYy activity, and that the synergistic effect of pioglitazone
and estrogen is critical for controlling Tgy responses. The
sex-specific regulatory roles of PPARy in effector T cells are
summarized in Figure 2.

SEX-SPECIFIC PPARB/5-DEPENDENT DIFFERENCES IN
IMMUNE RESPONSES

The role of PPARP/S was investigated in the EAE animal
model, and PPARB/S was shown to suppress the production of
IFN-y, IL-17, IL-12p35 and IL-12p40 in the brain and spleen,
and ameliorate EAE independent of sex.®® This result may be
due to the comparable level of PPARB/S expression in male and
female naive and activated T cells.”® On the other hand, female
skeletal muscle has higher PPARB/S mRNA expression than
males but comparable levels of protein.”” Although the
regulatory role of PPARP/S in T cells has not been well
studied, sex-specific differences in the regulation of PPARP/S
should be considered in future studies.

CONCLUSIONS

In general, the prevalence of autoimmune, infectious and
metabolic diseases are distinctly different for males and females.
Sex-specific differences in immune responses contribute to the
differences in both the prevalence and severity of these diseases.
More specifically, the recent literature has suggested that the
sex-specific functional regulation of PPARs in T cells is
mediated by sex hormones, including estrogen and androgen,
which may provide an explanation for the observed differences
in disease outcomes. Therapeutic strategies using PPAR ligands
in T-cell-mediated diseases such as autoimmune disease
should consider co-treatment with sex hormones. Further
studies will be required to more precisely elucidate the
molecular mechanisms of PPARs and other transcription
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factors that regulate effector T-cell functions and hormonal
responses.
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