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Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regu-
lated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to 
lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-spe-
cific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their 
substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these mod-
ifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates 
depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin 
chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical 
studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss 
the unexpected specificities of non-eukaryotic proteases in these families.
Keywords: ubiquitin; DUBs; Ubl proteases; SUMO; Nedd8; ULPs
Cell Research (2016) 26:441-456. doi:10.1038/cr.2016.38; published online 25 March 2016

Correspondence: Mark Hochstrasser
E-mail: mark.hochstrasser@yale.edu

Introduction

 Covalent attachment of ubiquitin to proteins governs 
a wide array of cellular processes, including cell divi-
sion, DNA repair, endocytosis, cellular signaling, and 
protein quality control [1-4]. The sequential action of 
three enzymes — E1 ubiquitin-activating enzyme, E2 
ubiquitin-conjugating enzyme, and E3 ubiquitin ligase 
— results in attachment of ubiquitin to a substrate pro-
tein, usually via an amide (isopeptide) bond that links 
the C-terminal carboxyl group of ubiquitin with a lysine 
side chain(s) of the protein substrate (Figure 1) [5, 6]. 
Ubiquitin itself possesses seven lysine residues (Lys6, 
11, 27, 29, 33, 48, and 63), enabling it to form ubiquitin 
polymers; chains with different linkages signal different 
functional outcomes for the tagged proteins [3, 7-9]. All 
seven lysines are used for chain formation in vivo, as is 
the N-terminal α-amino group, the latter leading to ‘linear’ 
ubiquitin chains. Chains can be homopolymeric or, less 
commonly, of mixed linkage. Branched ubiquitin chains, 
which use different lysines of a single ubiquitin for chain 
extension, can also form [10-13].

Following the discovery of ubiquitin, related proteins 
called ubiquitin-like proteins (Ubls) were also identified; 
these proteins share a common core architecture called 
the β-grasp fold [14]. As with ubiquitin conjugation, a 
similar cascade of E1, E2 and E3 enzymes, specific to 
each Ubl, is utilized to covalently link Ubl and substrate 
[15]. Besides ubiquitin, the most frequently employed 

Figure 1 The ubiquitin (Ub) modification cycle.
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Ubl is SUMO (small ubiquitin-related modifier). In 
humans, SUMO is present as four isoforms, each en-
coded by a distinct gene [16]. Interestingly, hybrid SU-
MO-ubiquitin chains have also been described [17]. The 
variety of covalently ligated ubiquitin/Ubls and their 
polymeric forms creates significant challenges for the 
deconjugating enzymes in identifying and cleaving the 
appropriate substrates.

 Deubiquitinating enzymes (DUBs) and Ubl-specific 
proteases (ULPs) catalyze the cleavage of ubiquitin or 
Ubls from substrate proteins and also process C-termi-
nally extended precursor forms of these modifiers (Figure 
1) [18]. DUBs and ULPs can be classified into one of 
two mechanistic classes: (1) thiol proteases, which are 
mechanistically and structurally related to the well-stud-
ied cysteine protease papain and rely on a nucleophilic 
cysteine in the active site for catalysis, and (2) metal-
loproteases, which coordinate a Zn2+ ion in the active 
site and use a nucleophilic water ligated to the metal to 
hydrolyze the isopeptide linkage [19]. The JAB1/MPN/
MOV34 metalloproteases (JAMMs) include multiple 
DUBs and at least one ULP (a deneddylase, i.e., an en-
zyme that cleaves the Nedd8 Ubl from substrates). The 
thiol protease class includes the great majority of DUBs 
and ULPs. They are categorized into distinct families 
according to the structure of their catalytic domains. As 
with the JAMMs, the same family may have members 
that cleave ubiquitin, Ubls, or both. It remains difficult 
to predict these specificities based on enzyme primary 
sequence alone.

The four known eukaryotic thiol protease DUB fam-
ilies are the ubiquitin C-terminal hydrolases (UCHs), 
ubiquitin-specific proteases (USPs), ovarian tumor (OTU) 
proteases, and Machado-Josephin-domain proteases [20, 
21]. As will be discussed later, bacterial and viral thiol 
proteases outside of these families have been found to 
have DUB activity; it is noteworthy that these bacterial 
and viral ubiquitin-cleaving enzymes all function within 
eukaryotic cells. Similar to the DUBs, there are multi-
ple SUMO-specific thiol protease families: the SUMO/
sentrin-specific proteases (SENPs; which are related to 
yeast Ulp1), desumoylating isopeptidases (DESIs), and 
ubiquitin-specific protease-like 1 (USPL1) [16]. SUMO 
proteases of the SENP/ULP class are the most phyloge-
netically widespread.

 Nearly 100 DUBs have been identified in humans. 
Since the capacity for ubiquitin deconjugation in cells is 
extremely high, these activities must be kept under tight 
control. Accordingly, DUB (and ULP) activity is regulat-
ed by a host of factors. In many cases, DUBs and ULPs 
have domains extending from either end of their catalytic 
domains that help regulate their activity. Such regulation 

may occur by facilitating enzyme-cofactor interactions, 
targeting enzymes to specific cellular compartments, 
maintaining enzymes in an auto-inhibited state, and/or 
altering their affinity for substrate [20].

 DUBs and ULPs display high specificity toward their 
substrates. They can differentiate between ubiquitin and 
Ubls, show preferences for particular polymeric forms of 
ubiquitin or Ubls, and distinguish among distinct conju-
gated substrates. The molecular basis of this specificity is 
the subject of the present review. We focus on revelations 
about specificity derived from recent structural studies. 
We also discuss non-eukaryotic DUBs and ULPs and 
their sometimes surprising specificities.

Ubiquitin and Ubl recognition by DUBs and ULPs

Modifier properties
The modifier proteins sport surface features that aid in 

their recognition by DUBs and ULPs. Although ubiquitin 
is a small, compact protein with a rigid core, it contains 
several important motifs for interactions with other 
proteins. The two motifs most commonly observed con-
tacting DUBs are the so-called Ile44 patch (comprising 
Ile44, Leu8, Val70 and His68) and the Ile36 patch (Ile36, 
Leu71 and Leu73) [22, 23]. Other protein-binding el-
ements utilized by ubiquitin are the Phe4 patch (Gln2, 
Phe4 and Thr14), the TEK box (Lys6, Lys11, Thr12, 
Thr14 and Glu34), and the Asp58 patch (Arg54, Thr55, 
Ser57 and Asp58) [3].

Sequence alignment of ubiquitin and the Ubls SUMO, 
Nedd8, ISG15 and Fat10 reveals that, aside from Nedd8, 
the other Ubls exhibit very little sequence conservation 
with ubiquitin in these motifs (Figure 2). Both the Ile36 
and Ile44 patches are conserved in Nedd8, and the Nedd8 
Ile44 patch binds directly to the deneddylase Den1/
SENP8 [24, 25]. However, the Ile44 patch is not always 
a key DUB/ULP contact spot. SdeA, a bacterial DUB, 
does not engage in any interactions with this patch when 
bound to a ubiquitin suicide substrate [26]. Likewise, 
new crystal structures of the USP CYLD bound to either 
Met1- or Lys63-linked diubiquitin revealed that the Ile44 
patch of the distal ubiquitin (the one with its C-terminal 
carboxyl in amide linkage) has no direct interactions 
with the enzyme [27]. A similar observation was made 
previously for USP7 bound to ubiquitin aldehyde [28].

 Perhaps the most significant feature of ubiquitin and 
Ubls for cognate protease recognition is their flexible 
C-terminal tail [29]. The ubiquitin/Ubl tail is stabilized 
by several interactions in the protease active site cleft. 
DUB and ULP deconjugation of their cognate modifier 
proteins depends heavily on these C-terminal residues 
(labeled P6-P1 in Figure 2). For example, a single ami-



Judith A Ronau et al.
443

npg

www.cell-research.com | Cell Research

no-acid exchange of the Ala at position P5 in Nedd8 to 
an Arg, which is the ubiquitin P5 residue, markedly de-
creased the affinity of Den1 for the mutated Ubl, likely 
due to steric interference with the ULP [25]. Conversely, 
for USP21, which exhibits dual specificity for ubiquitin 
and ISG15, Arg72 at P5 of ubiquitin is stabilized through 
formation of a salt bridge with an invariant Glu in USP21 
[30]. This Arg residue is present in the sequence of 
ISG15 but not Nedd8. Were Arg72 not engaged in DUB 
binding, one might predict that discrimination against 
Nedd8 would not be seen; this is borne out for the pro-
karyotic DUB SdeA [26].

Other ubiquitin/Ubl features also contribute to binding 
of their cognate deconjugating enzymes. In the β-grasp 
fold, a central α-helix is cradled by a curved β-sheet (Fig-
ure 3) [31]. Most co-crystal structures of ubiquitin-DUB 
complexes reveal that the two-residue loop (Leu8-Thr9) 
that connects the β1 and β2 strands nestles into a binding 
pocket in DUBs well away from the active site [28, 32, 
33]. Binding by this loop in Nedd8 also generates several 
key van der Waals contacts with the ULP Den1 [24, 25]. 
By contrast, inspection of co-crystal structures of SUMO 
with SUMO proteases indicates that the SUMO β1-β2 
loop has little direct involvement in binding to the prote-

Figure 2 Sequence alignment of ubiquitin and Ubls (A) and ubiquitin surface elements important for protein binding (B). The 
various patches that ubiquitin (PDB code: 1UBQ [31]) uses to bind other proteins are highlighted as follows: the C-terminal 
LRLRGG motif is colored green, the Ile44 patch is red, the Ile36 patch is blue, the Phe4 patch is cyan, the TEK box is orange, 
the Asp58 patch is purple, and Ser65, which is phosphorylated by the kinase PINK1, is black.
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ases [34-36]. Interestingly, ubiquitin co-crystal structures 
with UCH and USP family DUBs suggest that this ubiq-
uitin loop adopts UCH-specific and USP-specific confor-
mations [37].

A newly identified feature of ubiquitin, that it can be 
phosphorylated at Ser65 by PINK1 [38, 39], provides 
an added element to consider in substrate specificity. Al-
though yeast lacks an ortholog for PINK1, phosphoryla-
tion of ubiquitin Ser65 has also been shown in yeast and 
may serve a conserved regulatory function [40]. Phos-
phorylated ubiquitin can adopt two states in solution; one 
may limit accessibility of its tail [41]. Most DUBs tested 
so far have only weak activity toward ubiquitin chains 
composed of phosphorylated ubiquitin [41, 42]. Ser65 
is conserved in both ISG15 and Nedd8, suggesting that 
they may also be susceptible to phosphorylation.

Recognition of polyubiquitin chains
For depolymerization of polyubiquitinated substrates, 

an important structural feature is the isopeptide linkage 
between ubiquitin monomers. The isopeptide bond link-
ing the proximal (lysine-donating) and distal (lysine-ac-
cepting) ubiquitin must be stabilized in the active site 
of the DUB. Comparison of Lys63- and Lys48-linked 
polyubiquitin chains shows that Lys63 linkages adopt 
an extended ‘beads-on-a-string’ conformation in which 
the only interaction between the ubiquitin moieties is 
through the isopeptide linkage [43, 44]. This confor-
mation is shared by Met1-linked diubiquitin [45]. By 

contrast, the ubiquitin moieties in Lys48-linked poly-
ubiquitin pack closely in a closed conformation through 
interactions of their Ile44 patches [46, 47]. Similarly, 
Lys11- and Lys6-linked diubiquitins also adopt more 
compact conformations, although the Ile44 patch is ex-
posed on both ubiquitins in Lys11-linked diubiquitin 
and one of the ubiquitins in Lys6-linked diubiquitin [48-
50]. Recent structural studies revealed that K33-linked 
ubiquitin chains adopt open and closed conformations in 
triubiquitin and diubiquitin, respectively [51]. Neverthe-
less, polyubiquitin chains are dynamic in solution, and a 
chain can adopt both closed and open conformations [52, 
53].

Compact chains likely cannot be recognized by DUBs 
unless they undergo significant conformational changes 
to expose the isopeptide bond. In the case of Lys48-link-
ages, this remodeling probably also involves exposure of 
the Ile44 patch so that it is free to interact with the DUB. 
To our knowledge, no DUB bound to a Lys48-linked 
diubiquitin has been crystallized. Specificity of DUBs 
toward different ubiquitin linkages varies among family 
members. Many JAMM proteases, such as AMSH, are 
only active against Lys63-linked chains [54, 55], primar-
ily due to interactions with the proximal ubiquitin moiety 
[33, 56]. On the other hand, most DUBs belonging to the 
USP family will hydrolyze many chain types, albeit with 
different preferences [20, 57]. The OTU DUBs show a 
striking range of chain linkage preferences. Structural 
analyses reveal that proper positioning of the proximal 
ubiquitin on the OTU DUB surface is paramount for this 
selectivity [58] and that the length of the ubiquitin poly-
mer also contributes to specificity [58, 59].

Ubiquitin/Ubl-induced active-site rearrangement
 

 Thiol protease DUBs and ULPs utilize variations of 
the classic papain-like Cys-His-Asp/Asn catalytic triad 
to catalyze hydrolysis of peptide or isopeptide bonds 
[18]. To facilitate activation of the nucleophilic Cys by 
His (serving as the general base), these residues must 
be precisely oriented in the active site with a His-Cys 
hydrogen-bond distance within ~3.8 Å. However, a com-
mon theme emerging from structural studies of these 
proteases is that the catalytic residues are often in unpro-
ductive orientations in the absence of substrate. This mis-
alignment involves displacement of the Cys, the His, or 
both [28, 60-64]. Substrate binding causes the active site 
residues to rearrange into a catalytically competent ori-
entation [32, 63, 65-67]. The earliest example of such a 
substrate-induced realignment of active site residues was 
the DUB USP7, which has been discussed extensively 
[20, 28, 68].

Figure 3 Structural comparison depicting the conserved β-grasp 
fold of ubiquitin and Ubl proteins (PDB codes: 1UBQ [31], 1NDD 
[146], 1WM3 [147], 1Z2M [148], and 2KWC [149]). ISG15 has 
tandem ubiquitin folds. The C-terminal glycine of ubiquitin and 
Ubls is colored red, except for SUMO2 because it was not or-
dered in the crystal structure.
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 A striking example of how remote substrate binding 
induces realignment of the active-site His to a catalyti-
cally productive orientation can be seen with the free and 
ubiquitin-bound forms of UCHL1. Defects in UCHL1, 
the smallest member of the UCH family of DUBs, have 
been linked to a variety of diseases including Parkinson’s 
disease and various cancers [69, 70]. In the substrate-free 
form, the active site His has rotated away from the nucle-
ophilic Cys into a catalytically unproductive orientation, 
and the two residues are separated by 7.7 Å [60] (Figure 
4A). Docking of the β1-β2 hairpin loop of ubiquitin 
into a surface-exposed hydrophobic pocket of UCHL1 
located 17 Å from the catalytic triad elicits a cascade of 
conformational changes in highly conserved Phe residues 
that bridge the distal and active sites. To accommodate 
the β-hairpin loop of ubiquitin, UCHL1-Phe213 swings 
inward into the site normally occupied by Phe53, which, 
in turn, forces the aromatic side chain of Phe53 to ro-
tate into a steric conflict with the catalytic His161. This 
causes the His side chain to flip towards the nucleophilic 
Cys such that the Nδ1 atom of the imidazole ring is now 
3.9 Å away from the sulfur atom of Cys90 [65]. These 
results suggest that interactions with the substrate outside 
of the DUB active site can contribute to discrimination 
of ubiquitin from Ubl modifiers (Figure 2A).

 OTULIN (Fam105b, gumby) is a member of the OTU 
family of DUBs known to play roles in innate immune 
and Wnt signaling, as well as to bind and regulate the 
linear ubiquitin assembly complex (LUBAC). OTULIN 
harbors a Cys-His-Asn triad and only cleaves Met1-
linked polymers [63, 71, 72]. A high-resolution crystal 
structure of the apo form of OTULIN revealed mixed 

Figure 4 The active site residues of unliganded Ubl proteases 
(shown in white) are often misaligned, but undergo restructuring 
into productive conformations upon substrate binding (residues 
from ubiquitin-bound DUBs are colored green). (A) Binding of 
the β1-β2 hairpin loop of ubiquitin (ubiquitin is colored blue while 
the loop is magenta) into a hydrophobic pocket on the surface 
of UCHL1 triggers a series of conformational changes in aro-
matic side chains, forcing His161 to adopt a productive orienta-
tion (PDB codes: 2ETL [60], 3KW5 [65]). (B) The apo structure 
of OTULIN reveals that H339 is stabilized in an unproductive 
form by a salt bridge with a neighboring Asp residue (PDB code: 
3ZNV [63]). Binding of Met1-linked diubiquitin in the active site 
of OTULIN imposes a steric clash (magenta dashes) with M1 
and E16 of ubiquitin, forcing H339 to flip into the active site (PDB 
code: 3ZNZ [63]). (C) Binding of Met1-linked diubiquitin leads 
to stabilization of H801 in the active site via Q2 of the proximal 
ubiquitin (PDB codes: 2VHF [73], 3WXE [27]). However, the 
Gly-Gly motif (magenta) is displaced 8 Å from the active site 
due to E674 from a loop that is stabilized by substrate binding, 
which appears to block the active site.

occupancy of the His and Cys catalytic residues in which 
70% of the time, the residues are misaligned in an au-
to-inhibited state. A local non-catalytic Asp residue plays 
an inhibitory role by interacting with the catalytic His 
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and pulling it out of hydrogen-bonding distance with the 
catalytic Cys (Figure 4B). Substrate-assisted realignment 
of the OTULIN active site into a productive form is fa-
cilitated by two unique structural features of Met1-linked 
diubiquitin [63, 72]. First, the unproductive orientation of 
the His residue would sterically clash with the Met1 car-
bonyl group in the proximal ubiquitin moiety of bound 
linear diubiquitin. Binding of this diubiquitin forces the 
His residue to assume a productive orientation (Figure 
4B). Isopeptide ubiquitin linkages would not induce such 
a change. A second key to substrate-induced activation 
is the positioning of Glu16 of the proximal ubiquitin, 
which both expels the auto-inhibitory Asp from contact 
with the active site His and hydrogen bonds with the Asn 
of the catalytic triad to align it within hydrogen-bonding 
distance of the His residue [63], thus forming a catalyti-
cally competent active site.

 CYLD is a tumor suppressor that belongs to the USP 
family of DUBs and displays specificity for hydrolysis of 
both Met1- and Lys63-linked ubiquitin chains [45, 73]. 
It was crystallized in its ligand-free form with two mol-
ecules in the asymmetric unit, in which the active site 
residues in one molecule were oriented in a productive 
conformation, while in the other molecule, the side chain 
of the catalytic His residue was rotated away from the 
Cys nucleophile (Figure 4C) [73]. Recent structural char-
acterization of CYLD bound to Lys63-linked diubiquitin 
in the catalytic state and Met1-linked diubiquitin in both 
the pre-catalytic and catalytic states revealed that the His 
side chain is arranged in a catalytically competent orien-
tation with either diubiquitin [27]. However, no evidence 
of substrate-induced conformational crosstalk was seen. 
His is the first residue of a β-strand that follows a loop; 
thus, it is feasible that mobility of the loop enables the 
His to sample various conformations in the substrate-free 
form of CYLD. In both the Met1- and Lys63-linked 
diubiquitin complexes, the CYLD catalytic His is stabi-
lized by hydrogen-bonding with Gln2 of the proximal 
ubiquitin, promoting the active conformation.

Intriguingly, an added layer of protection from un-
wanted cleavage is seen in the pre-catalytic binding state 
of CYLD with Met1-linked diubiquitin [27]. The scissile 
peptide bond of the dimer was offset from the active site 
Cys by 8 Å, and a nearby loop that had been disordered 
in the unliganded CYLD structure was stabilized in the 
Met1- (and Lys63-) linked diubiquitin complex. Most 
interestingly, a Glu side chain in the loop apparently lies 
sandwiched between the scissile bond and the nucleo-
philic Cys, preventing catalytic activation (Figure 4C). 
Mutation of this residue to Gln led to its displacement 
from the active site, permitting proper orientation of the 
scissile peptide bond.

 Substrate-induced rearrangement of catalytic residues 
into productive positions has also been observed in sev-
eral SENP SUMO protease family members [35, 74-76]. 
Misaligned active site residues have yet to be observed in 
Nedd8- or ISG15-cleaving enzymes, but few structures 
have been examined to date. Examples of such misalign-
ment may well be found in all types of DUBs and ULPs.

Rearrangement of active site residues prevents oxidation 
of catalytic cysteines

One rationale for why DUBs and ULPs might have 
evolved to adopt misaligned active sites in their sub-
strate-free forms would be to prevent spurious activity 
against cellular proteins, while ensuring specificity to-
ward the correct ubiquitin- or Ubl-linked conjugates [18]. 
Misalignment of catalytic residues may also limit oxi-
dation of active-site cysteines [77-79]. Reactive oxygen 
species accumulate in cells in response to various types 
of stress, including UV, heat, and low levels of NADPH 
and glutathione [80]. Recently, proteases from the DUB 
and SENP families were found to be highly susceptible 
to oxidation of their catalytic cysteines, leading to accu-
mulation of ubiquitin or SUMO conjugates in vivo [77, 
79, 81, 82]. The Atg4 protease, which cleaves the Atg8 
Ubl from phosphatidylethanolamine during autophagy, is 
also sensitive to oxidization [83].

Modification of a cysteine residue to sulfenic acid 
(-SOH) can be reversed in the presence of reducing 
agents while formation of Cys-sulfinic acid (-SO2) and 
Cys-sulfonic acid (-SO3) is irreversible. The catalytic 
cysteines in SENPs can form intermolecular disulfide 
bonds, which would protect the Cys sulfhydryl from ir-
reversible oxidation [79]. A20, a tumor suppressor that 
has both E3 ligase and OTU DUB domains, may use a 
distinct mechanism to protect the OTU active-site sulf-
hydryl. A crystal structure of A20 with its catalytic cyste-
ine modified to sulfenic acid revealed that Cys-SOH may 
limit further oxidation by engaging in several hydrogen 
bonds with a nearby loop [77].

The sulfhydryl group of most cysteine residues is less 
prone to oxidation since it maintains a pKa of ~8.5. How-
ever, in a catalytically competent active site, nucleophilic 
cysteines are more susceptible to oxidation because the 
His residue, acting as a general base, can deprotonate the 
Cys. The resulting thiolate anion can be readily oxidized 
(or can attack the scissile bond of a substrate). Thus, it 
seems plausible that by requiring realignment of active 
site residues in the presence of substrate, the reactive 
thiolate anion only forms when it can be used produc-
tively to catalyze cleavage of ubiquitin- or Ubl-linked 
conjugates.
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Active site loops that restrict substrates based on 
size

 An active-site crossover loop is a key structural ele-
ment unique to the UCH family of DUBs and has been 
proposed to play a critical role in selection of substrates 
[68]. This loop joins an α-helix and β-sheet on opposite 
sides of the catalytic groove and ranges from 11 to 21 
residues in length [84]. The UCHL1 crossover loop, the 
shortest known, assumes a somewhat rigid and open 
structure in the absence of substrate [60] that can accom-
modate the C-terminus of a ubiquitinated substrate [65]. 
In contrast, crystal structures of apo UCHL3 (Figure 

5A) and UCHL5 (UCH37) reveal that the loop is large-
ly disordered, suggesting that it can sample a variety of 
conformations in solution [62, 64, 85, 86]. Binding of 
ubiquitin leads to apparent stabilization of the crossover 
loop, as it was seen straddling the active site in co-crystal 
structures of ubiquitin aldehyde bound to UCHL3 (Figure 
5A and 5B) and the yeast UCH Yuh1 [62, 87]. The orien-
tation of the ubiquitin C-terminal tail beneath the cross-
over loop indicates that a ubiquitinated substrate must 
be threaded through the loop, but the loop is too small 
to accommodate large substrates, including a ubiquitin 
dimer [60, 87]. Accordingly, UCH enzymes on their own 
are largely incapable of disassembling ubiquitin dimers 

Figure 5 The active site crossover loop of UCH family enzymes is dynamic and restricts substrate size. In its substrate-free 
form, the crossover loop for UCHL3 is unstructured (A), but becomes ordered (green) when ubiquitin (colored blue) binds in 
the active site (B) (PDB codes: 1UCH [150], 1XD3 [87]). Surprisingly, even in the presence of ubiquitin, the active site cross-
over loop of UCHL5 remained disordered (PDB code: 4IG7 [32]) (C). Binding of its cofactor, Rpn13, to UCHL5’s C-terminal 
UCH37-like domain (ULD colored purple) (D), stabilizes a portion of the crossover loop (green; PDB code: 4WLR [67]). (E) 
Sequence alignment of the crossover loops indicates very little conservation.
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in vitro [55]. However, association of cellular cofactors, 
such as the proteasome ubiquitin receptor Rpn13 with 
UCHL5 or ASXL1 with BAP1, stimulates isopeptidase 
activity [88, 89].

Due to the steric constraints imposed by these cross-
over loops, especially in UCHL1 and UCHL3, which 
possess the shortest loops, it has been proposed that 
most substrates for this family of DUBs will have small 
leaving groups, including short precursor peptides, at 
the C-terminus of ubiquitin [90, 91]. Indeed, extending 
or shortening the crossover loop can alter UCH specific-
ity; at the same time, these loops are poorly conserved 
among UCH family members (Figure 5E). These results 
suggest that the size of the crossover loop, and not its 
sequence, is usually its key contribution to substrate se-
lectivity [84, 91].

 Surprisingly, even in the presence of ubiquitin, the 
crossover loop was found to be entirely unstructured in 
a UCHL5 ortholog from Trichinella spiralis (Figure 5C) 
[32]. Based on this observation, it was proposed that 
UCHL5 might require its proteasomal cofactor, Rpn13, 
to fully stabilize the loop. In fact, crystal structures of a 
ternary complex of UCHL5 bound to Rpn13 and ubiq-
uitin [66, 67] revealed that a segment of the crossover 
loop (Met148 and Phe149) interacts directly with Rpn13, 
while the rest remains disordered (Figure 5D). These in-
teractions pull a portion of the loop away from the active 
site, presumably opening it up for optimal binding of 
substrates. Rpn13 also binds to the C-terminal UCH37-
like domain (ULD) domain of the UCH, locking the 
ULD into a favorable conformation for ubiquitin binding. 
A recent study suggests that ASXL1 might activate Bap1 
in a similar manner [92].

Insertions in catalytic domains contribute to sub-
strate specificity

 The DUB and ULP enzyme families are defined by 
conserved sequence features of their catalytic domains. 
However, many bear unique terminal extensions or cat-
alytic domain insertions. Here we will discuss several 
examples of how these insertions can contribute to the 
substrate specificity of individual enzymes in a family.

Insertions in JAMM metalloproteases
The JAMM family of metalloproteases share a con-

served MPN core consisting of an 8-stranded β-sheet 
sandwiched between two α-helices, resembling a par-
tially curled β barrel [93, 94]. Although sequence con-
servation is poor among family members, superposition 
of their MPN domains points toward conservation of 
the structural core, with small differences in the length 

of secondary structure elements [95]. Typically, JAMM 
proteins are found as part of complexes of at least two 
proteins, in which one subunit has an MPN+ domain 
(the MPN+ domain bears all the residues required for 
active site Zn2+ coordination — the “JAMM motif”) and 
the other has an inactive MPN domain (JAMM motif 
absent). A key to substrate specificity in this class of en-
zymes originates from two divergent insertion segments, 
Ins-1 and Ins-2, which are unique to each family member 
(Figure 6A) [94, 96-101].

 AMSH is a JAMM protease involved in endosomal 
sorting of ubiquitinated cell surface receptors [102]. 
Crystal structures of AMSH-like protein (AMSH-LP) 
and an AMSH ortholog from S. pombe bound to Lys63-
linked diubiquitin revealed that the molecular basis for 
AMSH’s exquisite specificity for Lys63-linked chains 
arises largely from the Ins-2 segment and its binding to 
the proximal ubiquitin moiety [33, 103].

The C-terminal tail of the distal ubiquitin moiety binds 
the active site cleft in an extended β-strand conformation 
and is stabilized by extensive hydrogen bonding with 
a β-strand from the Ins-1 segment. These interactions 
between distal ubiquitin and Ins-1 position the scissile 
isopeptide bond for hydrolysis. The Ins-2 segment of 
AMSH is a loop that forms a flap structure near the ac-
tive site and is stabilized by coordination of a second, 
non-catalytic Zn2+ ion. Ins-2 dictates substrate specificity 
for Lys63-linked ubiquitin chains by hydrogen bonding 
with Gln62 and Glu64 of the proximal ubiquitin moiety 
while a conserved Phe from the flap region appears to 
clamp down on the isopeptide bond of diubiquitin [33, 
103]. Mutation of the conserved Phe led to reduced se-
lectivity for Lys63-linked diubiquitin, possibly due to 
increased flexibility of the Ins-2 loop [104]. Binding to 
its cofactor STAM2 stimulates AMSH deubiquitinating 
activity. A UIM-SH3 domain from STAM2 binds to both 
AMSH and the Ile44 patch on the proximal ubiquitin, 
serving to further stabilize the position of the proximal 
ubiquitin moiety on the DUB [102, 105, 106].

CSN5 is a JAMM protease that is a part of a protein 
complex known as the COP9 signalosome (CSN) [107]. 
The main role of CSN5 is to deneddylate Cullin-Ring E3 
ligases (CRLs) [108, 109]; however, the activity of CSN5 
is severely reduced when it is not part of the CSN [110, 
111]. The Ins-1 region of CSN5 was recently shown to 
occlude the active site, thus preventing Nedd8 binding, 
and its high crystallographic B factors point to a loop 
structure that can assume multiple conformations [96]. 
The crystal structure of CSN showed that like Rpn11 (see 
below), CSN5 is seemingly auto-inhibited by altering 
tetrahedral coordination of the active site Zn2+ ion [99]. 
Glu104 of the Ins-1 segment occupies the fourth coor-
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Figure 6 Insertions within the catalytic domain of ULPs also contribute to substrate specificity. (A) Ins-1 (black) and Ins-2 
(cyan) segments of AMSH-LP are shown within the JAMM core of AMSH-LP (PDB code: 2ZNR [33]), compared to the pro-
tease AfJAMM (PDB code: 1R5X [93]). (B) E104 of the Ins-1 segment of CSN5, colored black, stabilizes the Ins-1 loop in an 
inactive conformation (PDB code: 4D10 [99]). (C) N275 of a nearby proteasome lid subunit, Rpn5 (yellow), appears to inhibit 
Rpn11 by serving as the fourth ligand in a water-mediated interaction with the Rpn11 active site zinc (PDB code: 3JCK [116]). 
This locks the Ins-1 segment of Rpn11 in a closed conformation. (D) CYLD specificity for Met1- and Lys63-linked polyubiqui-
tin is linked to truncations of various structural elements within the catalytic domain compared to other USP family members 
(PDB codes: 3WXF [27], 1NB8 [28]). Shown in red are structural features of USP7 that are absent in CYLD. These trunca-
tions and an insertion unique to CYLD (purple) shift polyubiquitin recognition from the distal ubiquitin (blue) to the proximal 
ubiquitin (pink). (E) A chimeric construct of SENP2 containing the Loop-1 insertion of SENP6 (purple; PDB code: 3ZO5 [120]) 
illustrates SENP6/7 preference for SUMO2/3 (SUMO2 is colored blue), as the loop binds to a negative patch of residues (red) 
not conserved in SUMO1.
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dination spot of Zn2+, dispelling the nucleophilic water 
from the active site and stabilizing CSN5 in an inactive 
conformation (Figure 6B). Thus, activation of CSN5 
deneddylase activity likely requires a major conforma-
tional change of the Ins-1 segment, which is probably 
induced by binding of a neddylated CRL [99].

The proteasomal DUB Rpn11
 Another JAMM family DUB, Rpn11, is one of nine 

subunits of the proteasome ‘lid’, a subcomplex of the 
regulatory particle (RP) of the proteasome [112]. Sub-
strates that have been earmarked for degradation by the 
proteasome are deubiquitinated en bloc by Rpn11 in an 
ATP-dependent manner [89, 94]. Rpn11 is most active as 
part of the full proteasome; it is inactive when purified 
on its own or in the isolated lid subcomplex [113]. Rpn8, 
which possesses an inactive MPN domain, forms a het-
erodimer with Rpn11, and this complex displays residual 
DUB activity in vitro [114]. Recent crystal structures 
of the Rpn8-Rpn11 heterodimer revealed that the Ins-2 
segment of Rpn11 has a function entirely different from 
that of the Ins-2 loop of AMSH [115, 116]. In the Rpn8-
Rpn11 structures, the Ins-2 loop was disordered; howev-
er, modeling the crystal structure into the averaged elec-
tron density used for a proteasome cryoEM reconstruc-
tion indicated that the Ins-2 loop interacts with Rpn2, a 
subunit belonging to the subcomplex of the RP known as 
the ‘base’, to aid in the positioning of Rpn11. The ability 
of Rpn11 to cleave all seven polyubiqiuitin lysine linkag-
es may arise from the absence of structural elements that 
contact the proximal ubiquitin [116].

The structural studies also showed that Rpn11 Ins-1 
differs vastly in structure from Ins-1 of AMSH-LP and 
appears to occlude the Rpn11 active site. However, in-
stead of augmenting DUB activity, mutations in the Ins-1 
loop impair it, suggesting that the loop is not inhibitory, 
but is in fact necessary for catalysis. High crystallograph-
ic B-factors suggest that in the absence of substrates, 
the Ins-1 loop is dynamic. It was proposed that once an 
ubiquitinated substrate enters the catalytic site, Ins-1 
will clamp down over the substrate to help position it for 
cleavage [116].

A recent 3.5 Å cryoEM structure of the proteasome 
lid offers further insight into what keeps Rpn11 inactive 
when outside of the full proteasome [117]. An α-helix 
of the lid subunit Rpn5 sterically blocks the top of the 
Rpn11 catalytic cleft, and several residues from the 
N-terminal end of the α-helix directly interact with loops 
surrounding the catalytic Zn2+ ion. Strikingly, Asn275 
from Rpn5 appears to insert itself near the Rpn11 active 
site and stabilize tetrahedral coordination of its Zn2+ 
through a bridging interaction with a coordinated water 

molecule (Figure 6C). These interactions may lock the 
Ins-1 loop in a closed conformation, occluding the active 
site. When the lid is incorporated into the proteasome, 
conformational changes in the Rpn11-Rpn8 heterodimer 
are proposed to lead to its activation through distortion 
of the Rpn5-Rpn11 and Rpn9-Rpn8 contact sites.

Insertions in the catalytic domains of USP DUBs and 
SENP ULPs

 Like JAMM domains, USP catalytic domains, which 
range in size from ~300 to ~900 residues, also often have 
insertions. A detailed analysis of USP domain architec-
ture revealed that within the conserved USP core there 
are five potential loop locations for insertions [118]. 
In most cases, the insertions are predicted to fold into 
independent domains, and depending on the location, 
may influence DUB activity [118]. A striking example of 
how an insertion in the catalytic domain affects substrate 
specificity comes again from CYLD, a USP that deviates 
from the canonical USP fold due to several truncations 
and an insertion [27, 73]. As mentioned earlier, CYLD 
is highly specific for Met1 and Lys63 ubiquitin linkages. 
Truncation of structural elements typically involved in 
distal ubiquitin binding in other USPs reduces the affinity 
of CYLD for ubiquitin (Figure 6D). At the same time, a 
unique insertion segment for CYLD, the β9-β10 strands, 
interacts with the Phe4 hydrophobic patch of the proxi-
mal ubiquitin (Figure 6D), an interaction specific to Met1 
and Lys63 linkages [27]. Deletion of the β9-β10 segment 
diminishes DUB activity against Lys63 ubiquitin link-
ages, underscoring its role in substrate specificity [73]. 
Furthermore, Glu16 of the proximal ubiquitin moiety 
occupies a CYLD binding pocket created as a result of 
truncation of the β6-β7 loop. These modifications to the 
CYLD USP domain architecture contribute to specificity 
by shifting the burden of ubiquitin recognition from the 
distal ubiquitin to the proximal ubiquitin molecule.

 The mammalian SUMO proteases SENP6 and 
SENP7 display high specificity for the SUMO2/3 iso-
forms (which are nearly identical) over the SUMO1 
protein. They are characterized by the presence of four 
loop insertions within their (poorly conserved) catalytic 
domains. The crystal structure of SENP7 revealed that 
the Loop-1 and Loop-2 insertions are found on the prote-
ase surface at positions that would likely contact SUMO 
[119]. Deletion of Loop-1, but not Loop-2, impaired 
SENP7 SUMO2/3-cleaving activity, suggesting that 
Loop-1 plays a key role in determining the specificity of 
SENP7 for SUMO2/3 [119]. The crystal structure of a 
chimeric SENP2 fusion harboring the Loop-1 segment 
from SENP6 bound to SUMO2 revealed that Loop-1, 
an eight-residue element, extends the binding interface 
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between the protease and SUMO2. A negative patch 
of amino acids unique to SUMO2 (Asn68, Asp71 and 
Glu77) directly contacts the SENP6 Loop-1 (Figure 6E) 
[120]. These residues are substituted to Ala, His and Gly 
in SUMO1, which implicates both the Loop-1 insertion 
in SENP6/7 and the negative patch of SUMO2 as key 
determinants in SUMO isoform specificity.

Substrate specificity of non-eukaryotic DUBs and 
ULPs

 Although ubiquitin/Ubl modification systems were 
originally thought to be unique to eukaryotes, anteced-
ents of all components of these systems have now been 
detected in archaea and bacteria [14, 121]. Among the 
proteases that (putatively) cleave Ubls from prokaryotic 
proteins, the JAMM proteases are the most common 
based on bioinformatic analyses [121]. Viruses also en-
code select components of these systems [122]. Interest-
ingly, a number of DUBs and ULPs have been identified 
in pathogenic bacteria and bacteria that reside within eu-
karyotic cells [123]. These enzymes are often most sim-
ilar in sequence to eukaryotic enzymes, suggesting pos-
sible horizontal gene transfer [26, 124, 125], although in 
some cases their ability to cleave ubiquitin or Ubls may 
have evolved independently from a primordial protease 
core [126]. No Ubl-type modifier systems exist in these 
bacteria; instead these ubiquitin- or Ubl-specific proteas-
es are injected as effector proteins through a specialized 
secretion apparatus into the eukaryotic host [127-129].

ULPs and DUBs have been described in the genomes 
of obligate intracellular and pathogenic gram-negative 
strains of bacteria. These enzymes include the ChlaDUBs 
and ChlaOTU of Chlamydia [128, 130, 131], the putative 
wPa_0283 ULP of Wolbachia [124], a putative USP from 
Cardinium [132], SdeA of Legionella [26, 133], SseL 
of Salmonella [134], XopD of Xanthomonas [129, 135], 
and ElaD of E. coli [125]. Certain viruses also encode 
ULPs or DUBs. Examples include DNA viruses of the 
Adenoviridae, Poxviridae and Herpesviridae families 
[122, 136], and RNA viruses such as Crimean Congo 
Hemorrhagic Fever Virus (CCHFV) and Turnip Yellow 
Mosaic Virus (TYMV), which have OTU proteases [137]. 

These bacterial and viral proteases have provided 
useful models for predicting the ubiquitin and Ubl speci-
ficity of DUBs and ULPs. Surprisingly, many turn out to 
have specificities different from the eukaryotic enzymes 
to which they are most closely related. For example, the 
C48 Ulp1-like family of enzymes that includes yeast 
Ulp1, ElaD, and SdeA are all expected to share similar 
folds and catalytic sites and thus might have been ex-
pected to cleave SUMO conjugates based on the original 

studies on Ulp1 [126]. However, these enzymes have 
very different Ubl preferences: Ulp1 cleaves SUMO [126, 
138]; ElaD cleaves ubiquitin [125]; and SdeA cleaves 
both ubiquitin and Nedd8 [26].

Viral ULPs generally cleave both viral precursor pro-
teins and host Ubl-protein conjugates. A well-studied 
example is the adenovirus proteinase (AVP) which is a 
member of the C48 Ulp1-like protease family [139]. AVP 
cleaves specific virion precursor proteins to their mature 
forms [140, 141]. Interestingly, AVP was identified in a 
screen for DUBs using an ubiquitin-aldehyde inhibitor 
and found to have DUB activity against both ubiquitin 
and ISG15 [122]. Despite its closest eukaryotic coun-
terparts being the SUMO-cleaving ULPs, AVP fails to 
cleave SUMO substrates. Its inability to cleave SUMO 
can be explained by the lack of specific sequence ele-
ments upstream of the core Ulp1 protease domain that 
contact SUMO [74, 126]; however, its dual specificity for 
ubiquitin and ISG15 has not yet been rationalized [122].

Viral OTU proteases, such as the enzyme from CCH-
FV, also cleave both ubiquitin and ISG15 conjugates 
[142]. This broadened specificity compared to eukaryotic 
OTU enzymes, which are ubiquitin-specific, was traced 
to the manner by which the CCHFV OTU protease po-
sitions its substrates. From crystallographic data, the 
bound ubiquitin and C-terminal Ubl domain of ISG15 
were rotated 75° on the viral protease surface relative to 
ubiquitin bound to a yeast OTU protease. Different viral 
enzyme determinants direct ISG15 and ubiquitin bind-
ing, allowing its specificity to be manipulated by specific 
mutations [143, 144]. A similar rotation was observed for 
substrate binding to an arterivirus OTU [145]. These re-
sults show that structural data from DUB/ULP-substrate 
complexes permit ubiquitin and Ubl specificity to be dis-
sected experimentally.

 An interesting example of the challenges in predicting 
Ubl protease substrate specificity comes from a study 
of XopD, a C48 Ulp1-like protease derived from a plant 
pathogen [138]. XopD is the only verified prokaryotic 
SUMO protease. The XopD crystal structure showed a 
similar fold to yeast Ulp1 from a Ulp1-SUMO co-crystal 
structure [74], but the two enzymes have distinct speci-
ficities. C-terminal residues in particular plant SUMOs 
upstream of the cleavage site appear to guide XopD bind-
ing to these specific SUMO isoforms. By contrast, Ulp1 
is far more promiscuous and can cleave not only these 
plant SUMOs, but also yeast and mammalian SUMO-fu-
sion substrates. Among other differences, a conserved 
hydrophobic residue in Ulp1, Phe474, which is required 
for its function, has been replaced in XopD orthologs by 
glutamine. Similarly, this residue is altered in the Ulp1-
like ChlaDUBs, but these enzymes hydrolyze ubiquitin 
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rather than SUMO; it is also a glutamine in SENP8/
Den1, which is a deneddylase [138]. Therefore, the 
Phe474-equivalent position in Ulp1-like enzymes may 
be important for dictating Ubl preferences, but it remains 
difficult to predict what those preferences are.

Concluding remarks

 Although many advances have been made over the 
past ~25 years in understanding the molecular basis of 
substrate specificity of DUBs and ULPs, many questions 
linger. An issue we sought to address at the outset of 
this review concerned whether Ubl or ubiquitin (chain) 
specificity for a particular DUB or ULP could be inferred 
solely from its amino acid sequence. This remains very 
challenging due, as outlined here, to the multiple mech-
anisms used for discrimination among substrates. Low 
sequence conservation among DUBs and ULPs adds to 
the difficulty. Further structural and biochemical studies 
of ubiquitin/Ubl proteases and their substrates should 
enhance our ability to predict the function and specificity 
of these proteases and to understand their detailed mech-
anisms.
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