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The unique structural and functional features of CXCL12

Rik Janssens, Sofie Struyf and Paul Proost

The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, including
embryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration of
hematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity is
tightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans,
each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNA
stability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathological
conditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3
(ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a proper
presentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can alter
their signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migration
assays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from the
environment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal of
NH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitration
of tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellular
environment and discusses the different levels of CXCL12 activity regulation.
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INTRODUCTION

Chemotactic cytokines or chemokines are a large group of low
molecular weight proteins that promote migration and adhe-
sion of their target cell populations. Structurally, they are
divided into four groups based on the position of their
conserved NH2-terminal cysteine residues. Whereas the largest
subgroup of chemokines, the CC chemokines, have two
adjacent conserved cysteine residues, C chemokines have only
one NH2-terminal cysteine residue. CXC and CX3C chemo-
kines have one or three other amino acids, respectively, in
between their conserved NH2-terminal cysteine residues.1

Chemokines fulfill their biological functions by activating their
respective seven-transmembrane domain G protein-coupled
receptors (GPCRs), similarly categorized as CC chemokine
receptors (CCRs), XCRs, CXCRs and CX3CRs.

2

Functionally, chemokines can be divided into inflammatory
and homeostatic chemokines based on their inducible or
constitutive production, respectively. One such homeostatic
CXC chemokine is CXCL12. CXCL12 was initially discovered

as pre-B cell growth factor (PBGF) and found to be indis-
pensable for homeostatic processes such as lymphopoiesis and
embryogenesis.3 Soon thereafter, it was found that PBGF was
expressed constitutively by bone marrow stromal cells and was
thus named stromal cell-derived factor-1 (SDF-1).4 In the bone
marrow, CXCL12 is responsible for the retention of hemato-
poietic progenitor and stem cells.5,6 CXCL12 stands out
compared to other members of the CXC chemokine family
regarding its chromosomal location. While most genes for
CXC chemokines are located on chromosome 4q21, the gene
encoding CXCL12 is located on chromosome 10q11.7,8 In
addition, CXCL12 is the only CXC chemokine with differential
mRNA splicing. Six different splice variants have been identi-
fied in humans (CXCL12α to ϕ) and three (CXCL12α to γ)
have been identified in mice.8,9 Furthermore, CXCL12 belongs
to a limited group of cytokines and growth factors that show
90% or higher homology between humans and mice on both
the genome and protein level.8 Orthologs of CXCL12 and
CXCR4 with a remarkably similar amino-acid sequence are
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also found in less evolved species like frogs (X. tropicalis) and
even zebrafish (D. rerio), suggesting an ancestral origin and an
important biological role for CXCL12 that provided the
evolutionary pressure to retain this protein and to prevent
mutations.10,11

In contrast to most receptors for inflammatory chemokines,
CXCR4 only has CXCL12 as a ligand. In addition, CXCR4 is
the only chemokine receptor of which knockout mice die
perinatally. Mice lacking CXCR4 show lethally defective cardiac
ventricular septa and embryonic hematopoiesis and neurogen-
esis, a phenotype similar to that of CXCL12 knockout
mice.3,12,13 ACKR3 knockout mice show defective and lethal
cardiac development, stressing the importance of the CXCL12/
CXCR4/ACKR3 system in cardiogenesis.14,15

Because CXCR4 and ACKR3 are expressed on many cell
types, regulation of CXCL12 activity is crucial for balanced
homeostasis. In this manuscript, we will discuss the regulatory
processes that control CXCL12 function, including controlled
transcription, tissue distribution of splice variants, protein
availability and cooperativity and posttranslational modifica-
tions, such as truncation, citrullination and nitration. The
importance of correct CXCL12 regulation will be stressed by

examples in which certain imbalances in the CXCL12/CXCR4/
ACKR3 axis are associated with diseases, including cancer,
multiple sclerosis and rheumatoid arthritis.

INTERACTIONS OF CXCL12 WITH ITS ENVIRONMENT

CXCL12 functions by activating CXCR4 and ACKR3
Signal transduction pathways downstream of CXCR4. CXCR4
(CD184) was initially discovered as leukocyte-derived seven-
transmembrane domain receptor (LESTR).16 It is a rhodopsin-
like chemokine receptor with seven transmembrane domains
that is typically categorized as a G protein-coupled receptor
(GPCR). Soon after, LESTR/fusin was shown to be a co-factor
for human immunodeficiency virus (HIV)-1 cell entry.17 The
same year, two groups separately showed that the chemokine
CXCL12, at that point still called SDF-1, acted as the natural
ligand for this receptor and could block infection of T cells by
HIV-1 strains that use LESTR/fusin as coreceptor.18,19 Based on
its connection with CXCL12, LESTR/fusin was renamed
CXCR4 and categorized as a chemokine receptor.

The importance of this receptor is highlighted by the
discovery of a continuously increasing number of cell types
that express it on their surface membrane. These cell types

Figure 1 Posttranslational modifications of CXCL12α. (a) The amino-acid sequence (using the one-letter code) of CXCL12α is shown with
the indicated GAG and receptor-binding domains. The enzymes responsible for NH2- and COOH-terminal truncation are indicated, and the
cleaved amino acids are shown in red. Arg residues susceptible to citrullination by PAD activity are shown in yellow, and Tyr residues that
may be nitrated are shown in green. (b) A 3D model of CXCL12α shows the localization of the potentially removed (red), citrullinated
(yellow) and nitrated (green) amino acids. These amino acids are indicated with their three-letter code on the 3D model drawn from PDB
accession code 2 kec.25
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comprise most leukocyte subsets, hematopoietic progenitor
and stem cells found in circulation and cells of lymphoid
organs like the bone marrow, thymus and lymph nodes.
Endothelial cells and stromal and epithelial cells in the bone
marrow, lung and small intestine also express CXCR4.20

Moreover, unlike other chemokine receptors, knocking out
CXCR4 causes perinatal death.21 Indeed, Cxcr4 knockout mice
show severe defects in hematopoiesis, neurogenesis, vascular-
ization and cardiogenesis.12 In addition, it was discovered that
CXCR4 exists as two splice variants, that is, CXCR4-A and
CXCR4-B. CXCR4-B is more abundantly expressed and is the
result of mRNA splicing. CXCR4-A is translated from
unspliced mRNA that has a different start codon than
CXCR4-B. As a result, the NH2 terminus of CXCR4-A is four
amino acids longer than that of CXCR4-B and differs by five
amino acids.22 While Duquenne et al.23 observed no difference
in activity between these two receptor splice variants, Gupta
et al.22 reported reduced activity for CXCR4-A. In any case,
both receptors are functional, and CXCR4-A is thought to
function as a safety back-up receptor for CXCR4-B. Indeed,
given the importance of CXCR4 expression in embryonic
development, in the case of absent CXCR4 mRNA splicing,
an unspliced mRNA can still be translated into a functional
receptor. Accordingly, a functional unspliced CXCR4 was
detected in mice.24 This is not surprising, as CXCR4 is highly
conserved among species and shows striking homology (89%)
between humans and mice.20

CXCL12 activation is dependent on the first eight NH2-
terminal amino acids of CXCL12, of which the first two amino
acids, Lys and Pro, are absolutely necessary. Furthermore, an
NH2-terminal CXCR4-binding motif with the amino-acid
sequence RFFESH improves the binding of CXCL12 to its
receptor (both CXCR4-binding sites are shown in Figure 1a).

The discovery of the necessity of these two sites for CXCR4
activation gave rise to a two-step model, as was previously
demonstrated for the complement protein and chemoattractant
C5a and its receptor.26 The RFFESH motif is responsible for
initial contact between CXCL12 and CXCR4 and induces a
conformational change that allows the NH2-terminal amino
acids to activate the receptor.27 However, recent studies have
shown that the interaction between chemokines and their
receptors is more complex and involves several other domains
in both the chemokine and the receptor. The evolution toward
a multi-step model is reviewed in detail by Kleist et al.28

Figure 2 summarizes the principal signal transduction path-
ways that are activated by CXCL12. Activation of CXCR4
mainly induces G protein-coupled signal transduction, starting
with the dissociation of the Gβγ and Gα subunits that are
bound to the DRYLAIV amino-acid sequence in the second
intracellular loop of the receptor. CXCR4 can be coupled to
Gαi, Gαq or Gα12/13, resulting in activation of diverse signaling
pathways.29 This results in a complex signaling cascade
involving, among others, the mitogen-activated protein kinase
(MAPK), phospholipase C and phosphatidylinositol-3-kinase
pathways and ending with cellular migration or activation of
adhesion molecules.30 Despite a lack of consensus in the
matter, it was shown that CXCR4 could also signal indepen-
dently of G proteins by the recruitment of Janus kinase (JAK)2
and JAK3 after receptor activation and homodimerization. The
recruited kinases activate each other through transphosphor-
ylation and subsequently phosphorylate CXCR4, allowing the
signal transducer and activator of transcription (STAT) mole-
cules STAT1, STAT2, STAT3 and STAT5 to be recruited and
activated.31–33 Activated STAT dimers are known transcription
factors and are additionally linked to Gαi-dependent intracel-
lular calcium mobilization and chemotaxis.34 However, another

Figure 2 Signal transduction pathways activated by CXCL12. Stimulation of both CXCR4 and ACKR3 triggers a signaling cascade involving
many second messengers. The primary pathways are depicted with green arrows, whereas inhibitory interactions are shown with a red line.
Dashed lines represent signaling pathways that are without consensus in the literature. ERK1/2, extracellular signal-regulated kinase 1/2;
GRK, G protein-coupled receptor kinase; IP3, inositol 3-phosphate; JAK2/3, Janus kinase 2/3; NF-κB, nuclear factor kappa-light-chain
enhancer of activated B cells; PI3K, phosphatidylinositol-3-kinase; PLC, phospholipase C; STAT, signal transducer and activator of
transcription.
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group of researchers opposed these findings, and in several cell
lines, JAK-deficient lymphocytes and primary human mono-
nuclear cells, they showed that CXCL12 did not initiate signal
transduction by JAK phosphorylation and did not subsequently
induce STAT phosphorylation.35 β-Arrestin is also recruited to
CXCR4 following its activation, showing diverse effects follow-
ing its recruitment. It can directly activate signaling pathways,
as has been shown for p38 MAPK,36 or it can serve as a scaffold
protein that clusters proteins in the same pathway closely
together.37 On the other hand, β-arrestin recruitment to
CXCR4 also sterically blocks other signal transduction path-
ways and actively stimulates receptor internalization by facil-
itating clathrin and adaptin recruitment to the cell
membrane.38

CXCL12 is the only chemokine ligand for CXCR4, a unique
feature in the promiscuous chemokine-receptor relationships.
However, other non-chemokine ligands can bind and induce
signal transduction via CXCR4, that is, macrophage migration
inhibitory factor (MIF), extracellular ubiquitin and the HIV
envelope protein gp120. Antagonizing ligands for CXCR4 are
endogenous human β3-defensin and the viral chemokine
mimicry protein viral macrophage inflammatory protein-II
(vMIP-II). Interactions of these molecules with CXCR4 are
reviewed elsewhere.20

ACKR3 has both scavenging and signaling functions. ACKR3,
initially discovered as the orphan chemokine receptor RDC-1/
CXCR7, binds CXCL11 and CXCL12 with high affinity.39–41

Binding of CXCL12 occurs with an affinity that is ten times
higher than that for CXCR4 (KD of 0.4 nM for ACKR3).39

Similar to CXCR4, ACKR3 also binds gp120 from some viral
strains and serves as a coreceptor for HIV entry.42 MIF also
binds ACKR3 and activates platelets, stimulating their
survival.43 ACKR3 is expressed on many cell types, including
hematopoietic cells, neuronal progenitor cells and activated
endothelial cells.20 ACKR3 activation mediates increased cell
survival and adhesion, which are important characteristics that
stimulate tumor growth.44 Several tumor types have been
shown to express ACKR3.44,45 ACKR3− /− knockout mice
show defective cardiac development with increased postnatal
lethality.14,15 This phenotype is caused by loss of scavenging of
probably both CXCL12 and adrenomedullin, another non-
chemokine ligand of ACKR3.46,47 CXCL12- or CXCL11-
induced signal transduction through ACKR3 is not initiated
through the classical G proteins. Although ACKR3 has two
amino-acid substitutions in the typical DRYLAIV motif for G
protein binding, restoration of this motif does not enable
ACKR3 to signal through G proteins.46 Instead, signal trans-
duction is initiated by β-arrestins, and hence, it is categorized as
an atypical chemokine receptor.2,48 However, this was chal-
lenged by Ödemis et al.49 and colleagues, who reported
G protein-mediated signaling through ACKR3 in rodent
astrocytes and human glioma cells. Activation of ACKR3 by
CXCL12 also results in MAPK-mediated signal transduction
and migration of T cells and neural progenitor cells.39,50–52 In
addition to its signaling properties, ACKR3 primarily has a

scavenging function and removes CXCL12 from the
environment.45,53,54 Together with the high CXCL12 binding
affinity, this sequestering is achieved by the continuous
internalization and recycling of ACKR3. In contrast to CXCR4,
ACKR3 internalization occurs even without ligand binding and
does not result in receptor degradation.46

Dimerization of both CXCL12 and its receptors alters signal
transduction. Constitutive homodimerization of CXCR4 has
been demonstrated even without ligand stimulation.55–57 In the
other direction, sulfation of specific CXCR4 Tyr residues
stimulates CXCL12 dimerization and results in a preference
of CXCR4 for the dimerized ligand.58 This equilibrium of
monomeric versus dimeric CXCL12 is important because each
of these states triggers distinct signal transduction through
CXCR4. However, there is no consensus on the resulting biased
signaling; while one group reported equal G protein-mediated
signaling and bias for monomeric CXCL12 toward β-arrestin,
another group showed a bias toward G protein signal
transduction for monomeric and β-arrestin signaling for
dimeric CXCL12.59,60 In addition, ACKR3 preferentially
removes CXCL12 monomers from the environment.60

Heterodimerization of CXCL12 with other molecules also
occurs and has effects on CXCR4 signaling. For example,
heterodimerization of high-mobility group box 1 (HMGB1)
with CXCL12 is necessary for the attraction of monocytes
through CXCR4 to sites of tissue injury.61 Furthermore,
CXCL12 has been shown to heterodimerize with other platelet
chemokines (CCL5, CXCL4 and CXCL7).62,63 Heterodimeriza-
tion between ACKR3 and CXCR4 was demonstrated in
transfected cells and resulted in increased calcium mobilization
and an altered ERK1/2 phosphorylation pattern after CXCL12
stimulation.14 However, other groups reported that interaction
between CXCR4 and ACKR3 inhibited G protein-mediated
signaling through CXCR4.64,65 Decaillot et al.65 showed that
CXCR4 and ACKR3 heterodimers constitutively recruited
β-arrestin to the cell membrane instead, stimulating down-
stream second messengers, such as p38 and ERK1/2. Several
groups have reported that the in vitro chemotactic response of
several cell types is increased due to ACKR3 and CXCR4
heterodimerization.64–66 The complexity of the interplay
between CXCR4 and ACKR3 is further increased by the
observation that the CXCR4 levels on a cell membrane are
inversely correlated with those of ACKR3.67 CXCR4 also forms
heterodimers with many other membrane molecules, including
other chemokine receptors. These interactions are reviewed in
detail elsewhere.28

Glycosaminoglycans are crucial elements in chemokine
presentation
Important interaction partners for chemokines, other than
their receptors, are glycosaminoglycans (GAGs) such as heparin
and heparan sulfate. GAGs are long, unbranched polymers of
negatively charged sulfated disaccharide units with enormous
heterogeneity. They make up the glycan part of proteoglycans
and form an extracellular, negatively charged matrix that allows
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interaction with positively charged protein structures. GAGs
are critical components for the chemotactic activity of chemo-
kines because the chemokine–GAG interaction is indispensable
in the formation of chemokine gradients.68 For CXCL12, the
importance of GAG binding for in vivo functionality has been
shown. Mutant mice expressing CXCL12α, β and γ isoforms,
which are functional on CXCR4 but unable to bind GAGs, had
an increased number of circulating CD34+ cells and showed
impaired revascularization due to the lack of infiltrating cells in
ischemic areas.69 Moreover, the interaction with GAGs is
crucial for proper in vivo CXCL12 function because the
interaction with GAGs protects CXCL12 from NH2-terminal
truncation and inactivation by CD26.70

Structural investigation of CXCL12 showed that a cluster of
positively charged amino acids is present in the first β-strand of
the amino-acid sequence, that is, the BBXB domain, where B
stands for a basic amino acid and X for any other residue. In

the case of CXCL12, this domain consists of Lys24, His25, Leu26

and Lys27, as shown in Figure 1a.71 Changing Lys and His
residues in this domain to Ser resulted in reduced GAG and
endothelial cell binding of CXCL12 and reduced transendothe-
lial migration of peripheral blood mononuclear cells (PBMCs)
in vitro.71,72 Moreover, due to this mutation, CXCL12 lost its
potency to attract lymphocytes and monocytes to air pouches
in vivo and even antagonized the functionality of wild-type
CXCL12.72 Although this domain is undoubtedly necessary for
GAG binding, other positively charged amino acids are also
involved in this interaction. It was shown that NH2-terminal
truncation of CXCL12 by one or two amino acids reduced the
heparin-binding potential, as a positively charged Lys is
removed.73–75 Furthermore, the splice variant CXCL12γ has a
COOH-terminal extension of 20 amino acids compared with
CXCL12α. This unstructured tail consists of 60% positively
charged amino acids, mostly arranged in BBXB GAG-binding

Figure 3 Levels of CXCL12 activity regulation. CXCL12 activity is controlled at multiple levels, starting with (a) controlled transcription and
mRNA splicing of CXCL12 variants and (b) subsequent regulation of mRNA stability by microRNA (miRNA). After translation, CXCL12 and
its receptor may be posttranslationally modified by several enzymes or chemical agents (c). On the endothelium, interaction of CXCL12
with GAGs is necessary for its immobilization on blood vessels and its presentation to passing leukocytes (d). This GAG interaction favors
CXCL12 homo- and heterodimerization (e) and protects CXCL12 from posttranslational modifications. The seven-transmembrane domain
receptors CXCR4 and ACKR3 are activated by CXCL12 and are able to form homo- or heterodimers among each other or with other
chemokine receptors (f). ACKR3 internalizes CXCL12 and alters its gradient (g), whereas synergy between CXCL12 and other chemokines
increases the response of target cells (h).
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domains. As a result, CXCL12γ has a 10 times higher affinity
for heparin compared to CXCL12α.76,77 Interaction of this
positively charged tail with GAGs is necessary for CXCL12γ to
achieve an appropriate orientation of its NH2 terminus to
activate CXCR4. In the absence of GAGs, the COOH terminus
of CXCL12γ interacts with sulfated amino acids of the CXCR4
NH2–terminus and blocks further activation.78

The tertiary and quaternary structure of CXCL12 is also
important for GAG binding. A linear peptide containing the
first 34 amino acids, including the BBXB domain, bound to
heparin with far less affinity compared with folded, intact
CXCL12.71 Sadir and colleagues showed that Arg41 and Lys43

are also involved in GAG binding and are located in close
proximity to the BBXB domain in the folded protein.
Furthermore, GAG-binding promotes CXCL12 homodimeri-
zation, which has effects on signaling through its receptors, as
explained in the previous section.79 Upon CXCL12 dimeriza-
tion, the GAG-binding tertiary structures of each CXCL12
monomer are oriented toward each other, creating a highly
positive cluster that further potentiates GAG interactions.73

REGULATORY PROCESSES FOR CXCL12 ACTIVITY

As CXCL12 is a crucial chemokine in many homeostatic
processes, such as neurogenesis, embryogenesis, angiogenesis
and lymphopoiesis, and plays a role in inflammatory processes,
its activity is tightly controlled. CXCL12 activity is regulated at
many levels, that is, transcription, differential mRNA splicing,
posttranslational modifications and protein availability and
cooperativity. These regulatory processes are summarized in
Figure 3.

Controlled transcription of CXCL12 splice variants
CXCL12 is an important chemokine in homeostasis and is
therefore continuously produced by different cell types. In
addition, conditions such as hypoxia and growth arrest are able
to induce increased CXCL12 expression.80 For example,
augmented CXCL12 production is necessary to increase
angiogenesis and assists in tissue healing and wound repair.
In these situations, hypoxia-inducible factor-1 (HIF-1) upre-
gulates the production of CXCL12 by endothelial cells, result-
ing in increased attraction of progenitor cells.81,82 Upregulation
of CXCL12 by hypoxia also occurs during cancer development
to promote angiogenesis, as has been demonstrated for ovarian
cancer.83 Hypoxia also induces expression of CXCL12 recep-
tors, for example, CXCR4 on endothelial and melanoma cells
and ACKR3 on glioma cells.84–86 For example, preconditioning
mesenchymal stem cells with hypoxia prior to engraftment
increases CXCR4 and ACKR3 expression through HIF-1 and
results in increased migration, adhesion and survival of these
cells.87 On the other hand, CXCL12 expression can also be
downregulated in tumor-associated mesenchymal stem cells by
interaction of these cells with transforming growth factor-β
(TGF-β), an event that promotes breast cancer metastasis.88

As mentioned before, CXCL12 exists in six different splice
variants in humans (CXCL12α to ϕ) and three in mice
(CXCL12α to γ).8,9 These splice variants are encoded by the

same Cxcl12 gene and share the first three exons. They differ by
the fourth exon, which determines the length of the splice
variant. Indeed, all the CXCL12 isoforms share the first 67
amino acids and differ in length, with 68, 72, 98, 119, 69 and
79 amino acids for CXCL12α to ϕ, respectively.9 The impor-
tance of these splice variants is demonstrated by the different
activities they show in various processes. For example,
CXCL12α, CXCL12β and CXCL12ε are able to increase the
survival rate of hematopoietic progenitor cells in vitro, while
the other isoforms do not. All CXCL12 variants show anti-
HIV-1 activity but with varying potencies, with CXCL12γ being
the most potent.89 This isoform is, on the other hand, rather
weak in inducing in vitro chemotaxis compared to the most
studied form CXCL12α.76–78,89 CXCL12γ also exhibits lower
activation of CXCR4-mediated signal transduction via
CXCR4.78 In contrast, CXCL12γ is the most active variant
regarding chemotaxis in vivo, probably due to the increased
resistance of this isoform toward enzymatic inactivation.77

Indeed, as already mentioned, CXCL12γ has the highest affinity
for GAGs, and this interaction offers protection toward
proteolytic inactivation.70,76,77

In general, CXCL12α and to a lesser extent CXCL12β are the
most abundant in adult tissues and are the only variants
detected in bone marrow. CXCL12γ is mostly present in the
heart, while CXCL12δ, CXCL12ε and CXCL12ϕ are most
abundantly expressed in the pancreas. Remarkably, a shift in
the expression pattern of the CXCL12 isoforms occurs from
fetal to adult tissues. CXCL12γ, for example, is not expressed in
fetal tissues. In addition to CXCL12α and CXCL12β, CXCL12δ
is mostly expressed in fetal liver and lungs, while this splice
variant is primarily present in the pancreas in adults.9 The
different tissue distribution of the CXCL12 splice variants
suggests a regulated mRNA splicing or a regulated stability of
the spliced mRNA. Recently, it was discovered that miRNA
miR-141 controlled CXCL12β mRNA stability.90 In inflamed
colon sections from Crohn’s disease patients, miR-141 down-
regulation coincided with increased CXCL12β mRNA and
protein levels, whereas healthy tissues showed high miR-141
levels and a low incidence of CXCL12β. The mRNA and
protein levels of the other CXCL12 splice variants were
unaltered in healthy or inflamed colon sections. Administration
of pre-miR-141 to mice with experimental colitis, an animal
model for Crohn’s disease, resulted in a reduction in CXCL12β
protein levels and an amelioration of the disease severity, thus
stressing the importance of correct regulation of CXCL12
variants at the mRNA level.90

CXCL12 protein availability and cooperativity
Further control of CXCL12 is exerted at the protein level.
CXCL12 can be removed from the environment by the activity
of its receptors CXCR4 and ACKR3. CXCR4 is only inter-
nalized after stimulation with CXCL12 and is subsequently
degraded, leading to downmodulation of CXCR4 expression on
the cell membrane. CXCR4 is therefore less suited for
continuous CXCL12 sequestration. However, ACKR3 interna-
lization following CXCL12 activation does not lead to receptor
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degradation. Moreover, ACKR3 continuously cycles between
the cell membrane and the cytoplasm and has a higher binding
affinity for CXCL12 than CXCR4.39,46 In this way, ACKR3
actively participates in maintaining CXCL12 gradients, which
is, as mentioned before, of critical importance for the migration
of target cells. This was demonstrated by the loss of polarity
and directional migration of primordial germ cells in zebrafish
mutants uniformly overexpressing CXCL12.53 High CXCL12
concentrations reduce the presence of CXCR4 on the target cell
membrane and therefore hamper continuous directional
migration. The same phenotype was observed in ACKR3
knockdown mutant zebrafish. Thus, high CXCL12 concentra-
tions do not induce a migratory response, and ACKR3 creates
functional CXCL12 gradients.53 Therefore, Luker and collea-
gues hypothesized that ACKR3 promotes tumor growth and
metastasis by scavenging CXCL12 from the tumor microenvir-
onment. By doing so, CXCR4+ cancer cells remain responsive
to CXCL12 and can escape from the primary tumor and
metastasize to other organs that express CXCL12.45 The
scavenging activity of ACKR3 is also important during the
onset of multiple sclerosis. It was shown that removal of
CXCL12 from the basolateral side of the blood brain barrier by
ACKR3 results in a shift in membrane polarity and a
subsequent infiltration of mononuclear cells into the central
nervous system.91

In addition to regulation of its availability, the chemotactic
potency of CXCL12 is fine-tuned through cooperation with
other chemokines. Chemokine synergy is an interesting

phenomenon with regard to protein cooperativity and occurs
when the stimulatory effect of two chemokines on the same cell
type is higher than the stimulation effect of each ligand
separately. CXCL12 can therefore empower the potency of
other chemokines. For example, CXCL12, which is a weak
neutrophil chemoattractant, synergizes with the potent neu-
trophil recruiting protein CXCL8 to increase neutrophil
migration. CXCL12 also synergizes with the CXCR3 ligands
CXCL9, CXCL10 and CXCL11 and multiple members of the
CC chemokine family to attract many other cell types, such as
B and T cells, dendritic cells, monocytes and CD34+ progenitor
cells.92,93 In addition, as previously mentioned, CXCL12 forms
heterodimers with HMGB1 to attract monocytes to sites of
injury in a CXCR4-dependent manner.61

Posttranslational modifications control CXCL12 activity
After controlled transcription and translation, CXCL12 activity
is further regulated posttranslationally through enzymatic or
chemical modifications. These changes alter several aspects of
CXCL12, including GAG-binding properties and receptor
binding and activation. The modifications that have been
detected to occur are NH2-terminal and COOH-terminal
truncation, citrullination of Arg residues and nitration of Tyr
residues. The modified amino acids and the responsible agents
are listed in Tables 1 and 2 and are indicated on the amino acid
sequence of CXCL12 shown in Figure 1a. To appreciate the
localization of these amino acids in the tertiary structure of

Table 1 CXCL12α truncations and their effects

Modifying enzyme Missing amino acids Effect on activity Effect on GAG binding Ref.

NH2-terminal truncation CD26 (DPP4)a

DPP8a
NH2-KP Inactivated on CXCR4

Reduced on ACKR3
Reduced 27,74,75,94–102

Leukocyte elastase NH2-KPV Inactivated Reduced 27,103

MMP-1, 2, 3, 9, 13, 14 NH2-KPVS Inactivated ND 27,104

Cathepsin G NH2-KPVSL Inactivated Reduced 27,105

ND NH2-KPVSLSY Inactivated Reduced 74

COOH-terminal truncation CPN K-COOH Reduced Reduced 97,106,107

CPM
Cathepsin Xa KLKWIGEYLEKALNK-COOH Reduced ND 108

Abbreviation: ND, not determined.
aActivity of this enzyme was also detected on CXCL12β.

Table 2 Side chain modifications and their effects on CXCL12α

Modifying agent Altered amino acids Effect on activity Effect on GAG binding Ref.

Arg citrullination PAD2 Arg8Cit Reduced on CXCR4
Unaltered on ACKR3

ND 109

Arg8Cit, Arg12Cit, Arg20Cit Inactivated on CXCR4
Reduced on ACKR3

ND 109

Arg8Cit, Arg12Cit, Arg20Cit, Arg41Cit, Arg46Cit Inactivated on CXCR4
Inactivated on ACKR3

ND 109

Tyr nitration Peroxynitrite Tyr7N-Tyr Reduced Unaltered 110,111

Abbreviations: ND, not determined; N-Tyr, nitrotyrosine.
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CXCL12, the modified amino acids are also highlighted in a 3D
model of the chemokine in Figure 1b.

Truncation by various enzymes inactivates CXCL12. An inten-
sively studied protease in the regulation of chemokine activity
is the serine protease dipeptidyl peptidase IV (DPP4; CD26).
This exopeptidase exists as a soluble enzyme or as a
membrane-bound protease on endothelial cells, activated
lymphocytes, fibroblasts and epithelial cells. CD26 specifically
cleaves proteins that contain an Ala or Pro residue at the
penultimate position in their amino acid sequence.112 CD26
can readily cleave CXCL12α and CXCL12β in vitro.94,95 In fact,
CXCL12α proved to be the most suited chemokine substrate
for CD26, showing the shortest half-life values in in vitro
truncation experiments.96 Later experiments showed that
CXCL12α is truncated after in vitro incubation with human
serum and after intravenous injection in mice.97,113 In vivo
circulating, CD26-cleaved CXCL12α was detected in murine,
rhesus monkey and human plasma.74,114,115 Moreover, the use
of CD26 knockout mice or treatment of mice and rhesus
monkeys with the CD26 inhibitor MK-0626 resulted in a
decreased level of truncated CXCL12α.114,115

Binding of CXCL12α to heparin protected it from CD26-
mediated cleavage, suggesting that CXCL12α in tissues is less
prone to enzymatic inactivation than CXCL12α in the blood
stream.70 Because all CXCL12 splice variants have the same
NH2 terminus, one could expect a similar disposition toward
truncation by CD26. Both CXCL12α and CXCL12β are
described as suitable substrates for CD26.94–97,113 However,
depending on the number of positively charged amino acids in
the additional fourth exon, the different CXCL12 splice
variants may be better protected from NH2-terminal truncation
by a stronger interaction with GAGs, as is the case for
CXCL12γ.76

Once truncated, the resulting CXCL12α form, CXCL12(3–
68), had reduced heparin and CXCR4 binding capacity and was
unable to activate CXCR4, as was indicated by the loss of
calcium-dependent signaling and chemotaxis in peripheral
blood-derived lymphocytes.27,94,95,97 Although CXCL12(3–68)
no longer activated CXCR4, it still had enough receptor-
binding affinity to desensitize CXCR4 for further calcium
signaling.94 In addition, phosphorylation of the second mes-
sengers Akt and ERK was abolished in T cells and cells
transfected with CXCR4.75,98 Interestingly, while CXCL12
(3–68) was unable to recruit β-arrestin 2 to the cell membrane
following CXCR4 activation, this recruitment still occurred
after ACKR3 activation, albeit to a lesser extent.75 Furthermore,
CD26 inhibited the angiogenic properties of CXCL12 in vitro.
Loss of Akt and ERK1/2 phosphorylation and impaired in vitro
tube formation and cell migration was observed after stimula-
tion of endothelial cells with CXCL12(3–68).75,99 Moreover,
in vitro migration of CD34+ hematopoietic progenitor cells
improved when a CD26 inhibitor (diprotin A) or CD26− /−

cells were used, indicating that the chemotactic activity of
CXCL12α is reduced due to CD26 activity on progenitor
cells.100

In vivo, CXCL12-induced lymphocyte extravasation was
successfully maintained by administering the CD26 inhibitor
sitagliptin to mice,75 and homing of progenitor cells after
engraftment was also greatly increased after administration of
diprotin A to mice or by using CD26− /− progenitor cells.101

Interestingly, CD26 is upregulated on CD34+ progenitor cells
by granulocyte-colony stimulating factor (G-CSF).116 Thus,
G-CSF contributes to the mobilization of bone marrow
progenitor cells into circulation through inactivation of
CXCL12 by increasing CD26 expression and stimulating release
of the granulocyte-derived serine proteases elastase and cathe-
psin G in the bone marrow.117 Administration of the CXCR4
small molecule antagonist AMD3100 in combination with
G-CSF is therefore now an approved treatment for stem cell
mobilization in patients suffering from non-Hodgkin’s lym-
phoma or multiple myeloma.118

Leukocyte elastase inactivates CXCL12 by removing the first
three amino acids because it specifically cleaves after an NH2-
terminal Xaa-Pro-Val sequence.103 Removal of the first five
amino acids by cathepsin G also inactivates CXCL12.105

Another soluble protease that cleaves CXCL12, DPP8, is related
to DPP4 and shows the same substrate specificity. However,
the half-life of CXCL12α and CXCL12β is far greater when
incubated with DPP8 compared with DPP4. Moreover, DPP8
is an intracellular protease and can therefore only cleave
CXCL12 after its internalization or when DPP8 is released
into the environment by cell lysis.102 Finally, NH2-terminal
truncation and inactivation by several members of the matrix
metalloproteinase family have also been described to occur;
MMP-1, -2, -3, -9, -13 and -14 remove the first four amino
acids of CXCL12.104 The presence of circulating truncated
CXCL12 variants in the blood of patients treated with G-CSF
was assessed using mass spectrometry, and intact CXCL12 was
detected, as well as truncated variants missing 2, 3, 5 and 7
amino acids.74

In addition to the NH2 terminus, the COOH terminus of
CXCL12 can be enzymatically truncated. The COOH-terminal
Lys of CXCL12α can be removed by both the soluble
carboxypeptidase N (CPN) and the anchored CPM.106,107

Removal of this Lys results in a moderate decrease in the
ability of CXCL12a to induce chemotaxis and cell proliferation
and to bind GAGs, making CXCL12α more available for
further NH2-terminal truncation.97,106,107 However, the redu-
cing effects are far less pronounced compared to the NH2-
terminal truncation of CXCL12α. Moreover, CXCL12α is the
only CXCL12 splice variant that contains a COOH-terminal
Lys, since the other splice variants have an additional COOH-
terminal exon. Only CXCL12ϕ can be an additional substrate
for CPN because this protease also cleaves COOH-terminal Arg
residues. However, to date, this modification has not been
detected in this CXCL12 splice variant. In contrast, all
CXCL12α detected in human plasma had its COOH-terminal
Lys removed.74 Another enzyme reported to cleave the
CXCL12 COOH-terminus is cathepsin X. This enzyme is
secreted by hematopoietic cells and non-hematopoietic bone
marrow cells and has exopeptidase activity. In vitro digestion
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experiments on CXCL12α and CXCL12β showed that they
both are COOH-terminally truncated by cathepsin X activity,
an event that reduced their activity. The removal of amino
acids proceeds sequentially until a Pro residue is present in the
amino acid sequence, as cathepsin X is unable to remove this
amino acid.108

Citrullination of CXCL12 is a subtle modification that reduces its
activity. Citrullination, or deimination, is a posttranslational
modification in which the imine group of an Arg is hydrolyzed
to a ketone group, resulting in citrulline (Cit). This modifica-
tion is catalyzed by peptidylarginine deiminase (PAD) and can
only occur to Arg residues that are part of a peptide.119 In
mammals, PAD has five paralogs that originated by gene
duplication. These five PAD isozymes are expressed in distinct
cell types; hematopoietic cells, such as monocytes and granu-
locytes, express PAD2 and PAD4.119 Although this modifica-
tion is subtle, with a loss of only 1 Da, the conversion of a
positively charged Arg to a neutral Cit residue can alter the
protein structure and possibly influence interactions with other
proteins. Citrullination is a homeostatic process, and histone
citrullination is described as one of the posttranslational
modifications that controls DNA condensation and therefore
gene transcription.120 Moreover, citrullination is also involved
in the release of neutrophil extracellular traps (NETs) where
highly decondensed DNA is extruded together with antimicro-
bial proteins to trap pathogens.121 However, citrullination is
also an important factor in autoimmune diseases, such as
multiple sclerosis (MS) and rheumatoid arthritis (RA), because
citrullinated proteins may trigger autoreactive T cells and can
result in the production of autoantibodies. In MS, citrullination
of myelin basic protein (MBP) is an important factor in disease
development.122 In RA, anti-citrulline autoantibodies are used
as an early diagnostic marker.123

In vitro incubation of CXCL12 with PAD2 showed that
CXCL12 Arg residues were readily converted into Cit, weak-
ening or abolishing CXCL12 activity, including receptor bind-
ing, signal transduction and chemotaxis. CXCL12 contains
several NH2-terminal Arg residues, and the higher the number
of citrullinated Arg, the lower the remaining CXCL12 activity
on CXCR4. Interestingly, the effects of CXCL12 citrullination
were less severe on ACKR3.109 In addition to CXCL12, the
chemokines CXCL5, CXCL8, CXCL10 and CXCL11 are also
citrullinated, generally resulting in reduced activity.124–127

Tyrosine nitration reduces CXCL12 activity. Nitration of aro-
matic Tyr or Trp residues occurs chemically in the presence of
the highly reactive oxidant peroxynitrite that is formed by the
reaction of superoxide anion and the radical nitric oxide (NO).
NO fulfills many functions and is produced by nitric oxide
synthases (NOS). These enzymes are constitutively expressed as
neuronal (nNOS), endothelial (eNOS) and mitochondrial
(mtNOS) NOS. A fourth NOS has an inducible expression
(iNOS) that is controlled by inflammatory triggers and occurs
mainly in macrophages, neutrophils and eosinophils that use
NO to fight against pathogens and tumors.128 Nitrotyrosine

formation occurs in many different proteins and is considered
a marker for inflammation. Nitration of proteins can increase
or decrease their activity or have no effect at all.129

In vitro nitration of chemokines has only been described for
CCL2, CCL3, CCL5, CCL11, CXCL8 and CXCL12. Biochem-
ical identification of the nitrated residues by mass spectrometry
or Edman degradation sequencing has been confirmed for
CCL2 and CXCL12.110,111 Eosinophil chemotaxis toward CCL5
or CCL11 that were incubated with peroxynitrite was
reduced,130,131 and the neutrophil and monocyte chemotactic
activity of CCL3 and neutrophil attractant potency of CXCL8
was reduced by incubation with peroxynitrite.132,133 Nitrated
CCL2 was detected in tissue sections of human prostate and
colon carcinoma, and colocalization of CCL2 and nitrotyrosine
was found in kidneys after ischemia reperfusion injury.110,134

As a result of in vitro nitration of CCL2 by peroxynitrite,
Molon et al.110 observed abolished CD8+ T-cell migration and
reduced CD14+ monocyte chemotaxis. Other groups also
reported reduced monocyte chemotaxis and transendothelial
migration following stimulation with nitrated CCL2.134,135

Remarkably, i.v. administration of nitrated CCL2 inhibited
CCL2-mediated recruitment of leukocytes to air pouches in
mice, suggesting that nitrated chemokines in circulation aid in
the resolution of tissue inflammation.134 In vitro, CXCL12 is
nitrated chemically by peroxynitrite incubation, but nitration
also occurs naturally, as nitrated CXCL12 was isolated from
cocultures of CXCL12-producing bone marrow stromal cells
with leukocytes under inflammatory conditions.110,111 NH2-
terminal nitration of CXCL12, designated [3-NT7]CXCL12,
reduced intracellular calcium mobilization, IP3 accumulation
and ERK1/2 phosphorylation, resulting in reduced in vitro
lymphocyte and monocyte chemotaxis. Moreover, [3-NT7]
CXCL12 was unable to induce lymphocyte extravasation after
intraarticular injection in mice.111

CONCLUDING REMARKS

CXCL12 has many interaction partners, specifically glycosami-
noglycans and seven-transmembrane domain receptors.
Furthermore, stimulation of either CXCR4 or ACKR3 may
result in activation of several different signal transduction
pathways. Therefore, it is not sufficient to assess only one
aspect of these interactions when addressing possible changes
in CXCL12 functionality. Certainly, concerning receptor bias,
there have been reports of CXCL12 homodimerization or
truncation resulting in skewed receptor usage.59,60,75 Moreover,
when investigating the presence of different CXCL12 splice
variants in different tissues, combining splice variant-specific
antibodies and splice variant-specific primers to examine
CXCL12 at both the protein and mRNA level ensures a
cautious strategy not to miss subtle alterations in the expression
of CXCL12 variants. Lastly, the array of modifying agents
removing or altering amino acids from CXCL12 and thereby
altering its activity cannot be overlooked. Here, mRNA cannot
distinguish between native and specifically modified forms.
Whereas antibodies have recently been developed that are able
to specifically detect citrullinated or nitrated residues in
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chemokines, limited proteolytic truncation is hard to detect
using immunoassays. Additional techniques, such as mass
spectrometry, might prove useful to determine the fraction of
CXCL12 that is posttranslationally modified. For example,
Richter et al.74 detected a COOH-terminal truncated, and thus
less active, form of CXCL12α in human plasma using mass
spectrometry. Therefore, it is important to approach the
determination of the levels of CXCL12, or by extension any
chemokine, with appropriate caution, taking into consideration
the extensive regulation at multiple levels. A combination of
complementary techniques is therefore necessary for a thor-
ough understanding of the effects of chemokines in homeo-
static or pathological processes.
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