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Immunosuppression in liver tumors: opening the portal to
effective immunotherapy
P Guha1,2, J Reha1,2 and SC Katz1,2

We have recently witnessed substantial progress with immunotherapy for selected diseases. Checkpoint inhibitors and chimeric
antigen receptor T (CAR-T) cells are among the most promising agents. Whereas much of the early success with CAR-T cells has
been demonstrated with hematological malignancies, important barriers remain for the application of CAR-T cell therapies for the
management of metastatic solid tumors. The challenges are particularly apparent when considering primary and metastatic tumors
in the liver. At baseline, the intrahepatic space is immunosuppressive and this feature is exploited by malignant cells. Fortunately,
our evolving understanding of liver immune cell biology is allowing the development of novel immunotherapeutic strategies for
the treatment of liver tumors. Furthermore, the unique anatomic features of the liver make possible highly selective immunothera-
peutic delivery approaches that may maximize antitumor efficacy while limiting off-target damage to healthy tissues. This review
summarizes the immunobiology of the intrahepatic space and how this knowledge enables identification of hurdles and potential
solutions to the barriers facing immunotherapy for liver tumors.
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INTRODUCTION
The liver is a unique immunological organ, with an abundance of
immune cells demonstrating a strong tendency toward promotion
of tolerance or immune suppression. The propensity toward
immune tolerance in the liver is advantageous for maintenance of
normal biological function, as the liver is constantly bathed in
foreign antigens and bacterial byproducts found in the portal
blood. Unfortunately, the capacity of intrahepatic immune cells to
suppress immunity and inflammation create fertile ground for
primary and metastatic liver tumors to develop and progress.
Suppressor cells in the liver are impediments to the development
of effective antitumor immunotherapy strategies. A deeper
understanding of liver immune cell biology will be essential for
the development of novel immunotherapeutic approaches for
liver tumors.

LIVER IMMUNOLOGY
A perfectly balanced immune system protects our bodies from
external pathogens and endogenous threats such as malignant
cells, while avoiding damage to healthy tissue. Two main arms of
the immune system work in concert toward this ideal—innate and
adaptive immunity (Figure 1). The innate immune system provides
a broad primary response that is not dependent on the exquisite
antigen specificity of antibodies or T-cell receptors. The innate
response is mediated by natural killer (NK) cells, macrophages and
dendritic cells (DCs). Innate immune cells have the capacity to
process and present antigen to cells capable of more specific and
long-lasting adaptive responses. T and B cells mediate highly
specific responses to particular antigens, in addition to rapid recall
or memory responses. Although immune cells offer important
protective functions, regulatory mechanisms to control immune

system activation are essential for prevention of damage to
normal tissues. This is particularly true in the liver.
The liver contains an abundance of innate and adaptive

immune cells, which are continuously exposed to ingested foreign
antigens and bacterial products derived from gut flora. The liver is
an immunologically rich and active organ, with a large number of
DCs, Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs),
T cells, NK cells and B cells. Vigorous responses by liver immune
cells to the steady stream of portal blood antigens would lead to a
precarious situation with respect to liver damage and systemic
inflammation.1 As such, intrahepatic immune cells are skewed
toward tolerance, with overtly suppressive functions or quies-
cence at baseline.
The tolerogenic properties of liver immune cells protect us from

overexuberant responses to portal venous antigens but limit the
ability of our immune systems to fight intrahepatic neoplasia. The
propensity of primary and metastatic tumors to thrive in the liver
is in part reflective of the tolerogenic nature of the intrahepatic
milieu.2,3 Intrahepatic tolerance to specific antigens is initiated
upon uptake, processing and presentation of soluble antigens by
antigen-presenting cells (APCs). LSECs capture and process
antigen but are unable to activate T cells on their own.4 DCs are
also thought to promote tolerance in the liver, as studies have
shown that these cells are less reactive than their counterparts
elsewhere in the body.5 Thorn et al.6 have also shown that B cells
can be suppressed in the liver that may also promote immune
suppression, and liver T cells demonstrate tolerogenic properties.5

TUMOR-INFILTRATING LYMPHOCYTES (TILS)
Studies of TILs have provided important insight into the nature
and limitations of the endogenous response to intrahepatic
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neoplasms. TILs may be used for therapeutic or prognostic
purposes.7 They are believed to represent an immune response to
tumor antigens, although their presence does not imply effective
antitumor immunity. Liver tumors, both primary and metastatic,
have been evaluated extensively with regards to the presence of
TILs in resected specimens and their prognostic value. Several
types of TILs have been detected in liver malignancies, including
T cells, NK cells, macrophages and B cells. CD8+ and CD4+ T cells
are the most extensively studied liver TIL subsets as they are
critical mediators of antitumor cellular immune responses.
Regulatory T cells (Tregs), identified as FOXP3+, are often present
in liver tumors and represent mediators of intrahepatic
immunosuppression.8–10

TILs have been evaluated in an attempt to predict clinical
outcomes for primary liver tumors, including hepatocellular
carcinoma (HCC) and intrahepatic cholangiocarcinoma. Li et al.11

showed that elevated tumor-associated macrophage and memory
T-cell infiltration were a prognostic factor for disease-free survival
and overall survival in resectable HCC. Mathai et al.10 reported that
higher ratio of FOXP3+/CD8+ cells was associated with poorer
differentiated tumors, recurrence and decreased overall survival.
Interleukin 17 positive (IL17+) T cells and FOXP3+ cells are also
believed to promote the progression and affect the prognosis of
HCC by decreasing the level of CD8+ T cells within the tumor.12,13

Takagi et al.14 evaluated CD4+ and CD8+ levels in resected
intrahepatic cholangiocarcinoma and found that they correlated
with DC density and outcome.
The liver is also a common site of metastatic disease, particularly

from intra-abdominal cancers. Colorectal cancer liver metastasis
(LM) patients who present with resectable disease have a 10-year

survival of 17%, and fewer than 20% are surgical candidates at
presentation.15 Studies evaluating TILs in primary colorectal
cancer have shown the type, location and density of TILs to be
associated with outcomes.16 TILs are also present in colorectal
cancer LM specimens, with CD8+ T-cell density being predictive of
long-term survival.17 Major histocompatibility complex (MHC) class
I expression and its association with increased CD8+ T-cell density
was correlated with increased overall survival and time to
recurrence.18 Increased FOXP3 to CD8+ or CD4+ T-cell ratios were
predictors of poor outcome in resected colorectal cancer LM
patients, indicating the importance of suppressor–effector cell
interactions.8 Tregs have also been correlated with outcome
following resection of neuroendocrine tumor LM.19 Study of TILs
from primary hepatic tumors and hepatic metastases have
provided significant prognostic information regarding outcomes.
Although the prognostic utility of TILs has been well demon-
strated, a robust TIL response is generally insufficient to protect
most patients from disease progression and death. As noted
earlier, the suppressive tendencies of liver immune cells may have
a large role in rendering TIL responses ineffective in addition to
thwarting immununotherapeutic efforts.

BIOLOGY OF LIVER IMMUNOSUPPRESSIVE CELLS
As noted earlier, the liver has unique population of immune cells
that promote immune tolerance as evidenced by liver allografts
requiring less immunosuppressive therapy as compared with
other solid organ transplants.20 Although the tolerogenic nature of
liver immune cells facilitate allograft acceptance, it is an
impediment to cancer immunotherapy. Cancer immunotherapies
include chimeric antigen receptor T (CAR-T) cell, antibodies that
block immunoinhibitory or checkpoint molecules, and vaccines
that attempt to induce a natural immune response against cancer.
CAR-T cells are genetically engineered to express receptors that
recognize an antigen on tumor cells.21 However, hepatic
immunosuppressive cells limit CAR-T cell performance within the
intrahepatic space.22 Detailed studies of intrahepatic immune cells
have shed light on the mechanisms promoting liver tolerance and
opportunities for enhancing immunotherapy for liver tumors.

LYMPHOCYTES
The lymphocyte pool in the liver is comprised of conventional
T cells, γδ T cells, NK and NK T cells (NKT) and B cells.5,6,23,24,25

Conventional liver CD4+ and CD8+ T cells have unique functional
properties, while NKT and γδ T cells are particularly abundant.
Most human liver CD4+ and CD8+ T cells are in an activated state
and express CD25 and CD69.26 In mice, liver CD4+ T cells secrete
both interferon γ (IFN γ) and IL4, indicative of T helper type 1 (Th1)
and Th2 cell types.27 Among CD4+ T cells, Th1 programming is
suppressed in the liver, resulting in a functional bias toward Th2
functionality.28 Liver Th2 cells produce high levels of IL4 and IL10,
which thwart antitumor immune responses.
Intrahepatic CD4+ T cells are also reprogrammed into Tregs

under neoplastic and inflammatory conditions.8,29 Tregs with high
expression levels of CD25 and Foxp3 are responsible for peripheral
tolerance and protect the liver from immune-mediated damage.30

In HCC specimens, Tregs downregulate costimulatory molecules
and decrease the secretion of IL12 and tumor necrosis factor α
(TNFα) and promote tolerance.31 The liver also contains Th17 cells
which secrete inflammatory cytokines that promotes hepatic
inflammation and fibrosis. Liver Th17 cells may expand in
response to programmed death-1 (PD-1, CD279) signaling and
contribute to immunosuppression.12,32 Intrahepatic T-cell subsets
cooperate to create a tolerogenic milieu, which limits antitumor
immunity.
NK cells may promote hepatic tolerance by producing

suppressive factors such as transforming factor-beta (TGFβ) and

Figure 1. Innate and adaptive immunity. (a) Innate immunity
includes the body’s initial defences against infection. It includes
certain complement proteins, epithelial barriers, natural killer (NK)
cells, neutrophils (PMN), phagocytes such as macrophages (MAC)
and antigen-presenting cells such as dendritic cells (DCs). Innate
immune cells may directly kill tumor or infected cells and then
present antigen to adaptive immune cells. (b), Adaptive immunity
includes B-cell-mediated humoral (dissolved) and T-cell-mediated
cellular components. The innate and adaptive immune systems
communicate by direct cellular contact or cytokine secretion. We
obtained permission from Elsevier to use this figure, which is
appearing in an upcoming new edition of Jarnagin: Blumgart’s
Surgery of the Liver, Biliary Tract, and Pancreas, 6th edn., Chapter 10:
Liver immunology.
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IL10, which inhibit DC function. This in turn induces the expansion
of immunosuppressive Treg cells.33,34 NKT cells have properties of
both T cells and NK cells and share several of their surface
markers. Activated NKT cells secrete IFNγ and IL4 similar to Th1
and Th2 cells, respectively.35 NKT cells are known to clear hepatic
infections and have a role in the developing inflammatory
diseases. NKT cells are known to perform tumor surveillance and
mediate tumor rejection by secreting IFNγ.36 Also, NKT cells can
suppress T-cell proliferation and thereby cause immunosuppres-
sion in the liver.5 As such, liver NK and NKT function is highly
contextual.

LIVER SINUSOID ENDOTHELIAL CELLS
LSECs line the hepatic sinusoids and are thus well positioned to
take up and process the bulk of portal venous antigens.37 LSECs
are efficient APC and process antigens at levels similar to DCs.4,38

LSECs are also capable of recruiting hepatic leukocytes via CD54
(intercellular adhesion molecule-1), CD106 (vascular cell adhesion
molecule-1), vascular adhesion protein-1, CD44 and
hyaluronan.39,40 LSECs express low levels of MHCII and co-
stimulatory molecules41 and can induce CD4 T-cell reprogram-
ming into suppressive IL10- and IL4-producing cells.42 The
tolerogenic effect of LSECs are also mediated by IL10 secretion
and PD-1/programmed death-ligand 1 (PD-L1) signaling.43

DENDRITIC CELLS
DCs are a rare population in the liver, have poor immunostimu-
latory capability and contribute to intrahepatic tolerance.44

Hepatic DCs are less immunostimulatory compared with splenic
DCs.45 There are four distinct DC subtypes (CD8α+CD11b−,
CD8α−CD11b+, CD8α+CD11blow/− , CD8αlow/−CD11blow/− ) with
specific functions. CD8α+CD11b− and CD8α−CD11b+, which
account for only 20% of total DC population in the liver, activate
T cells causing an immunostimulatory effect. However, the other
more predominant subtypes of hepatic DCs, CD8α+CD11blow/−

and CD8αlow/−CD11blow/− , are poor T-cell stimulators. Thus, these
two populations may contribute to tolerance. Direct physical
interaction between Tregs and DCs inhibit DC maturation even in
the presence of granulocyte macrophages colony-stimulating
factor (GM-CSF), TNFα or IFNγ.46 Human hepatic DCs are also
tolerogenic in comparison to autologous blood DCs.2

KUPFFER CELLS
KCs are found within the liver sinusoids and constitute 80–90% of
tissue macrophages in the body.47 Depletion of KCs causes loss
of oral tolerance and KC are less immunogenic than macrophages
in other organs.2,5 At baseline, they are more skewed
toward tolerance. KCs can secrete anti-inflammatory cytokines or
immunosuppressive factors (IL10, nitric oxide, TGFβ) in addition to
pro-inflammatory cytokines (TNFα, IL6).48–51 They can inhibit T-cell
proliferation and the secretion of IL10 can induce the activation of
Tregs thereby causing tolerance.52 KCs can also express both
PD-1 and PD-L1, which are known immunomodulatory molecules.
PD-L1–PD-1 interactions between KCs, effector T cells and LSECs
can modulate disease activity.53

MYELOID-DERIVED SUPPRESSOR CELLS (MDSCS)
MDSCs are a heterogeneous cell population of myeloid origin that
have been reported in association with in liver tumors and in
several inflammatory conditions, including sepsis, hepatitis and
viral infections. T-cell suppression caused by MDSCs is mediated in
part by L-arginine depletion by arginase 1 or by reactive oxygen
species.54 Liver MDSCs expand in response to GM-CSF secreted by
tumor cells and GM-CSF enhances their capacity to suppress

immune responses22,55 (Figure 2) through exploitation of STAT3,
indoleamine 2,3-dioxygenase (IDO) and PD-L1.22,56

HEPATIC STELLATE CELLS (HSCS)
HSCs are located in the luminal sinusoidal space of Disse. HSCs are
derived from bone marrow precursors in mice and store vitamin
A.57 Once activated, HSCs metabolize vitamin A and produce
extracellular matrix that induces hepatic fibrosis and cirrhosis.58,59

HSCs express MHCI/MHCII and CD86 but are poor APCs. HSCs are
capable of producing retinoic acid and TGFβ that induce Tregs.60

On contact with activated T cells, HSCs express PD-L1, which
attenuates T-cell response by increasing apoptosis.61

IMMUNOINHIBITORY SIGNALING
Immune checkpoint molecules prevent the development of
unregulated immune response and autoimmune tissue damage.
Some of the well-known immnuoinhibitory receptors include
cytotoxic T-lymphocyte antigen-4 (CTLA-4), PD-1, T-cell
immunoglobulin domain and mucin domain-3 (TIM3) and
lymphocyte-activation gene (LAG3).62–64 CTLA-4 counteracts
CD28 costimulatory receptor activity on T cells. CTLA-4 and CD28
have common ligands in CD80 and CD86. However, the affinity of
CTLA-4 for CD80 and CD86 is much higher than CD28 and thus
prevents engagement of CD28. CTLA-4 blockade is known to
enhance CD4 helper T cells and limit Treg suppressive activity.65–68

PD-1 causes immune tolerance in the tumor
microenvironment.69–72 Unlike CTLA-4, PD-1 limits T-cell activity
in the peripheral tissue during inflammation and autoimmunity.
PD-1 gets overexpressed during T-cell activation and is associated
with proliferation of Tregs in the presence of its ligands PD-L1 (B7-
H1) and PD-L2 (B7-DC).70 Recently, it was reported that there was
a molecular interaction between PD-L1 expressed on APCs and
CD80 expressed on T cells thereby eliciting inhibitory signals.73,74

PD-1 is also expressed on other cell types such as B cells and NK
cells, which limit their lytic activities.75,76 However, PD-1 pre-
dominantly regulates effector T-cell proliferation and cytokine
production, while CTLA-4 regulates early T-cell activation.
Other immune checkpoint markers of interest are LAG3 and

TIM3, which are implicated in inhibiting lymphocyte activity and in
anergy. These receptors are upregulated during T-cell activation.
LAG3 signaling enhances immunosuppressive activity of Treg cells
and inhibits the effector activity of CD8 T cells.77,78 LAG3–MHCII
interaction enhances T-cell proliferation and effector T-cell
function in vivo and in vitro. PD-1 and LAG3 are co-expressed on
anergic or exhausted T cells.79,80 TIM3 co-expresses with PD-1 on
tumor-specific CD8 T cells and their dual blockade enhance T-cell
proliferation and cytokine secretion.81–83

OVERCOMING IMMUNE SUPPRESSION IN THE LIVER FOR
ANTITUMOR IMMUNOTHERAPY
Few attempts have been made to specifically target intrahepatic
neoplasms with immunotherapy and augment therapy through
modulation of liver immune cells. Effective immunotherapy for
liver tumors will require an effective tumor killing strategy,
efficient intrahepatic delivery and agents capable of reversing
suppressive function of liver immune cells. Intrahepatic tolerance
can be reversed by depleting suppressor cells, activating hepatic
immune cells or blocking the immune checkpoints. CAR-T cells are
among the more promising immunotherapy technologies to
emerge in recent years, given that highly specific immune
responses can be manufactured as opposed to induced.
CAR-T cells have demonstrated success in hematological

malignancies and have shown activity in solid tumors. CAR-T cells
are autologous T cells that are bioengineered to express an
immune receptor that is activated upon tumor antigen binding.
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We have reported the biological activity and safety of anti-
carcinoembryonic antigen (anti-CEA) CAR-T cell hepatic artery
infusions (HAIs) in patients with heavily pretreated large tumor
burdens.84,85 CAR-T cell therapies for LM will likely be enhanced by
strategies to inhibit the function of intrahepatic-suppressor cells,

among which MDSC are particularly problematic. Liver MDSCs
may be susceptible to inhibition of PD-1/PD-L1 interactions or
IDO.22 MDSCs express IDO and PD-L1, which mediate T-cell
suppression.56 Combinatorial immunotherapeutic approaches will
enhance the antitumor activity of CAR-T cells.
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Figure 2. Tumor-derived granulocyte macrophages colony-stimulating factor (GM-CSF) drives indoleamine 2,3-dioxygenase (IDO) and
programmed death-ligand 1 (PD-L1) expression in liver myeloid-derived suppressor cells (L-MDSCs). In all, 2.5 × 105 L-MDSCs were cultured
with or without 5 × 104 MC38 tumor cells. Anti-GM-CSF and anti-GM-CSF receptor antibodies were added at the start or after 1 day of culture.
After 48 h, L-MDSCs were purified for IDO and PD-L1 expression measurement (a and b). Isotype controls were used to define background
staining and to set the threshold for positive IDO and PD-L1 expression. IDO/PD-L1 co-expression was visualized in L-MDSCs/MC38 cultures
with or without anti-GM-CSF and anti-GM-CSF receptor (c). Bars show the expression averages of L-MDSCs isolated from four tumor-bearing
livers and are representative of three experiments. Error bars are based on s.e.m. values. P-values were calculated using a two-tailed t-test.
Previously published in Thorn et al.89
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ENHANCING THE EFFICACY AND SAFETY OF LIVER
IMMUNOTHERAPY THROUGH TARGETED DELIVERY
In addition to addressing intrahepatic immunosuppression, regional
delivery approaches have shown promise as a strategy to enhance
biological activity and reduce off-target toxicity when targeting liver
tumors with cellular immunotherapeutics.84,85 The rationale for
regional, intrahepatic infusion of CAR-T cell stems from the
experiences with regional chemotherapy and immune cell treat-
ments. Delivery of chemotherapy directly into the liver for
metastasis treatment permits maximal exposure of the tumors to
the agent, while minimizing the effects on healthy tissues
elsewhere. This principle has been well demonstrated in patients
receiving HAI of chemotherapy for LM. Response rates are
consistently higher with HAI and systemic effects are
minimized.86 The regional infusion of lymphocytes into the liver
has been demonstrated to be feasible and safe, with up to 80% of
radiolabeled lymphocytes infused via the hepatic artery persist in
the liver for up to 120 h.87

We recently completed a phase I trial to test CAR-T cell HAI to
determine whether direct regional delivery of CAR-T cell to LM is
safe and associated with signals of clinical efficacy.84,85 Six patients
completed the protocol, and three received anti-CEA CAR-T cell
HAIs alone in dose-escalation manner (108, 109 and 1010 cells). We
treated three additional patients with the maximum planned CAR-T
cell HAI dose (1010 cells × 3) along with IL2 infusional support. Four
patients had 410 LMs, and patients were heavily pretreated with
conventional systemic therapy.
No patient suffered a grade 3 or 4 adverse events related to the

CAR-T cell HAIs and there were no deaths related to the study
intervention. Importantly, regional infusion seemed to avoid
severe cytokine release syndrome and significant off-target effects
from direct destruction of normal CEA+ tissue by CAR-T cells.
Febrile adverse events were observed in four patients. A single
patient experienced a marked increase in the peripheral
eosinophil count. Given the reported association between IL2
infusion and cardiac thrombosis with other features of Loeffler’s
syndrome,88 we obtained an echocardiogram and electrocardio-
gram, which were normal
Normal liver parenchyma and biliary structures were well

preserved following CAR-T cell HAIs. Biopsies from normal liver did
not demonstrate increased levels of inflammation or fibrosis
following CAR-T cell HAI whether or not systemic IL2 was
administered. Although all patients experienced transient elevations
of alkaline phosphatase, total bilirubin and aspartate aminotransfer-
ase levels, the majority of values did not deviate significantly from
baseline levels. Portal pressures and liver synthetic function were not
adversely affected by the CAR-T cell HAIs, as reflected by no patient
becoming thrombocytopenic or coagulopathic.
One patient remains alive with stable disease at 44 months

following CAR-T cell HAI and five patients died of progressive
disease. Among the patients in the cohort who received systemic
IL2 support, CEA levels decreased 37% (range 19–48%) from
baseline. Biopsies demonstrated an increase in LM necrosis or
fibrosis in four of the six patients. Elevated serum IFNγ levels
correlated with serum CEA responses. As CAR-T cell HAIs were well
tolerated and associated with evidence of tumor cell killing in our
subjects, further clinical testing of this approach alone and in
combinatorial manner is underway. HAI of CAR-T cells for the
treatment of liver tumor is a promising approach for enhancing
clinical activity while avoiding some of the more problematic
systemic effects of CAR-T cell infusions, including severe cytokine
release syndrome.

SUMMARY
The liver contains an abundance of diverse immune cells that
work in concert to create a highly tolerogenic milieu. Though

hepatic tolerance is beneficial in liver transplantation and
maintenance of normal physiological homeostasis, intrahepatic
immunosuppression limits the effectiveness of endogenous and
therapeutic antitumor immunity. Hepatic immunosuppression is
mediated by a variety of cell types, cytokines and immunoinhi-
bitory molecules. Reversal of intrahepatic immunosuppression will
be an important element in combinatorial immunotherapy
approaches designed to target intrahepatic tumors.
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