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Cullin-4 regulates Wingless and JNK
signaling-mediated cell death in the Drosophila eye

Meghana Tare1,5, Ankita Sarkar1, Shimpi Bedi1, Madhuri Kango-Singh1,2,3 and Amit Singh*,1,2,3,4

In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during
organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of
cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and
growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying
regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4),
an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin
remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-
4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4
loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of
caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless
(Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-
localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways
demonstrated that activation of Wg and JNK signaling enhances cul-4mutant phenotype, whereas downregulation of Wg and JNK
signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in
restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our
studies provide insights into a novel role of cul-4 in promoting cell survival in the developing Drosophila eye.
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During organogenesis, regulation of conserved processes like
cell proliferation, cell survival and cell death is crucial for organ
growth and differentiation. A fine balance between control of
cell death and cell survival is responsible for final organ shape
and size during development. We used Drosophila eye model
to identify genes involved in promoting growth and cell
survival. The Drosophila adult eye contains 750–800 differ-
entiated ommatidia, and develops from a sac-like epithelial
structure called the imaginal disc housed in the larva. The
ommatidia differentiate in the wake of a synchronous wave of
retinal differentiation called the Morphogenetic Furrow (MF).1

The MF originates at the posterior eye margin, and the
Wingless (Wg) signaling pathway negatively regulates the
anterior movement of the MF.2–4 Wg, a secreted morphogen,
initiates an intracellular signaling cascade by binding to its
receptors Arrow (Arr) and Frizzled (Fz), which triggers down-
stream events to control the nuclear localization of the

Drosophila beta-catenin Arm, and the spatial expression of
Wg target genes.5–7 In Drosophila eye, Wg is also known to
induce the proapoptotic genes, head involution defective (hid),
reaper (rpr) and grim (together referred as HRG), to trigger
programmed cell death to remove extra cells from the
periphery of the pupal retina.8–13 Further, aberrant signaling
during development, e.g., abnormalWg signaling, also causes
stress-induced apoptosis.14

The intrinsic caspase-dependent cell death involves
activation of HRG,15–17 which are negatively regulated by
Drosophila inhibitor of apoptosis (DIAPs).18,19 Inactivation of
DIAP-1 can trigger cell death by the activation of cysteine
proteases Dronc and Drice, the Drosophila homolog of
Caspase-9 and Caspase-3, respectively.20,21–23 InDrosophila
expression of baculo-virus protein, P35 can block caspase-
dependent cell death.24 Besides Wg, activation of c-Jun
amino-terminal (NH2) Kinase (JNK) signaling triggers cell
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death through the activation of caspases.11,14,25–27 JNKbelongs
to a conserved MAP kinase super-family, which is involved in
cell proliferation and cell survival, and is activated through a
cascade of phosphorylation by MAP kinases.26,28–30 In Droso-
phila, JNK signaling is activated by binding of the tumor necrosis
factor (TNF) Eiger (Egr) to its receptor Wengen (Wgn), and a
conserved signaling cascade of Tak 1 (TGFβ activating kinase
1, a Jun kinase kinase kinase (JNKKK), hemipterous (hep) (Jun
kinase kinase), basket (bsk) (Jun kinase) and jun. Activation of
the pathway leads to expression of the downstream target
puckered (puc), a dual phosphatase, which participates in a
negative feedback loop by downregulating JNK activity.29,30

We argued that during early eye development, Wg or JNK
levels must be tightly regulated to allow differentiation to
proceed, and to prevent premature cell death that results in
small or reduced eye phenotype. In a genetic screen, we
identified cullin4 (cul-4) as a modifier that rescues the reduced
eye phenotype.31 During development cul-4 is globally
required. Analysis of cul-4 function revealed its new role in
promoting cell survival during early eye development. The
cul-4 gene belongs to an evolutionary conserved class of
Cullin-family E3 ubiquitin ligases.32 Earlier studies showed
that cul-4 is involved in maintenance of genomic integrity by
promoting the ubiquitylation and subsequent degradation of
key regulators of cell cycle progression.33–36 Here, we report
that cul-4 promotes cell survival by preventing Wg and JNK
signaling-mediated cell death in the developing eye.

Results

Gain-of-function of cul-4 rescues reduced eye mutant
phenotype. In comparison with the wild-type larval eye disc
and the adult eye (Figures 1a and b), L mutant exhibits

reduced eye phenotype in larval eye disc (Figure 1c) and
adults (Figure 1d).11,37 Misexpression of cul-4 using
Gal4/UAS approach38 (L2; ey4cul-4) resulted in the rescue
of L2-reduced eye phenotype (Figures 1e and f). Misexpres-
sion of cul-4 (ey4cul-4) does not affect the eye size (not
shown) suggesting that cul-4 may not promote cell prolifera-
tion. We analyzed loss-of-function phenotype of cul-4 to
understand its role during eye development.

Loss-of-function of cul-4 fail to survive and exhibit
reduced eye phenotype. We generated cul-4 loss-of-
function clones by cell lethal (cl) approach, which results in
an eye disc comprising of nearly 80% mutant cells due
to elimination of the wild-type twin spot by a cl mutation.39

Loss-of-function clones of cul-4 alleles (Figure 2a)40 like
cul-4ExG1− 3 (Figure 2c) or cul-4JJ11 (Figures 2d and e)
resulted in a small eye phenotype as compared with the wild-
type eye (Figure 2b). It is to be noted that both cul-4JJ11 and
cul-4ExG1− 3 loss-of-function phenotypes were similar in the
eye. Downregulation of cul-4 expression in the dorso-ventral
(DV) margins of developing eye disc by using bi-Gal4 driver
(Figure 2f; bi4GFP) resulted in reduction of eye field on DV
margins (Figures 2g and h, arrows).41,42 It suggests that there
is no domain constraint in cul-4 function in the eye. It is
possible that reduced eye phenotype may be due to induction
of cell death. To test this, we used ey-Flippase (ey-Flp) to
induce somatic ‘twin clones’ using Ubi-GFP (1XGFP), where
cul-4−/− mutant cells (GFP-negative) were adjacent to their
wild-type twin spot (2XGFP). However, we found that only the
wild-type twin clone (2XGFP) and the heterozygous cells
(express 1XGFP) could be identified. However, we found
wild-type twin clones (2XGFP) but no cul-4 mutant clones
(GFP-negative) in the third-instar eye disc (not shown),
suggesting that the cul-4 mutant cells failed to survive. We

Figure 1 Gain-of-function of cul-4 can rescue reduced eye mutant phenotype. (a and b) Wild-type (a) eye-antennal imaginal disc and (b) adult eye. The eye disc is stained for
a membrane specific marker, Dlg (green); dorsal eye fate marker, Mirr (blue); and pan-neural marker, Elav (red). The white dotted line marks the boundary of eye field. (c and d)
L2 mutant exhibits reduced eye phenotype in (c) eye imaginal disc and (d) adult eye. (e and f) Misexpression of cul-4 in the L2 mutant eye background (L2; ey4 cul-4) results in
a significant rescue to a near wild-type eye as seen in (e) the eye disc and (f) the adult eye
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performed a 'twin spot' analyses in the heat-shock-Flippase
(hs-FLP) -induced clones, to test survival profiles of cul-4
mutant cells. The heat shock was administered in the first instar
larva and the resultant clones were examined in the second-
(24 h after clone formation (ACF)) and third-instar (48–72 h
after clone formation) disc to determine whether or not these
clones could survive. Very small clones were detected at
second instar stage (within 24 h after clone formation).
However, within 48 h after clone formation, the mutant clones
were lost. In comparison with the wild-type clones (Figure 3a),
the mutant clones generated at later time points (second instar
(48 h) or early third instar (60 h)) and examined at late third-
instar stage (within 24 h after clone formation), showed smaller
cul-4−/− clones (Figures 3b and c; clone boundary marked by
red dotted lines). These cul-4−/− clones failed to survive until
120 h of development. Quantification of clone size showed that
cul-4mutant clones are significantly smaller than their wild-type
twin clones (Figure 3c), suggesting that cul-4 mutant clones
either fail to survive or are slow growing compared with wild-
type cells. We tested if cul-4 mutant cells are eliminated by cell
death using TUNEL labeling.11,17 Wild-type eye disc showed
few TUNEL-positive dying cells (Figures 3d and d’), whereas
eye disc lacking cul-4 function in the entire eye disc (cul-4jj11-/-,

Figures 3e and e’) or on DV margins (bi4cul4RNAi, Figures 3f
and f’) showed a threefold increase in TUNEL-positive cells
suggesting that cul-4 mutant cells are eliminated by cell death.

cul-4 prevents cell death in the developing eye. We,
therefore, tested if Drosophila Caspases- Dronc and Drice
activation is part of the mechanism. In the eye disc,
cul-4JJ11loss-of-function clones generated by 'cell-lethal'
clonal approach,39 exhibited robust induction of activated
Caspase-3* (Cas-3*) and a signaling molecule Wg (Figures
4a and a’’). Similarly, in semi-quantitative western blots, Dronc
levels were nearly two fold higher in cul-4 mutant as compared
with the wild-type eye disc (Figure 4b). Thus, both Dronc and
Drice are induced in cul-4 mutant cells. Misexpression
of baculo-virus P35 in the cul-4 loss-of-function clones
(cul-4JJ11− /− , ey4P35) resulted in a significant rescue of the
reduced eye phenotype (Figures 4c and c”). In cul-4 loss-of-
function background reducing level of proapoptotic genes using
H99 deficiency43 (cul-4JJ11− /− , H99− /+) resulted in significant
rescue of the cul-4 mutant phenotype (Figures 4e and e”). It
suggests that activation of caspases triggers apoptosis in cul-4
mutant cells. Aberrant signaling from key developmental and

Figure 2 Loss-of-function of cul-4 results in reduced eye phenotype. (a) Schematic representation of wild-type and truncated Cul-4 protein encoded by different mutant alleles
of cul-4 used in the loss-of-function studies.40 (b) Wild-type eye disc stained for dorsal fate marker Mirr (blue), Dlg (green) and Elav (red). (c–e) Loss-of-function clones of cul-4 (e)
cul-4G1− 3 (d and e) cul-4JJ11 generated by using 'cell-lethal' approach39 results in reduced eye phenotype as seen in (c and d) eye imaginal disc and (e) adult eye. (f) bi-Gal4
drives expression of GFP reporter on DVof the eye imaginal disc. (g and h) Misexpression of cul-4 RNAi on DV margins of the eye using bi-Gal4 driver (bi4cul4RNAi) exhibits eye
fate suppression on both DV margins as seen in (h) eye disc and the (i) adult eye
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signaling pathways, like Wg/Wnt, can induce apoptosis to
prevent defective development.10,14

cul-4 represses Wg levels in the developing eye. In the
third-instar stage, Wg is expressed along the antero-lateral
margins of the wild-type eye disc (Figures 5a and a').
Reducing cul-4 function on DV margin of eye disc using
bi-Gal4 driver (bi4cul-4RNAi) resulted in strong ectopic
induction of Wg in DV domain of the eye (Figures 5b
and b'’; white arrows). Loss-of-function clones of cul-4 using
the cul-4ExG1− 3(Figures 5c and c') and cul-4JJ11(Figures 5d
and d') alleles showed a robust ectopic induction of Wg in
the eye disc (Figures 5c’, white arrows). Wg levels were

significantly upregulated in semi-quantitative western blots on
total protein isolated from eye imaginal discs from wild-type,
and cul-4ExG1−3and cul-4JJ11 (Figure 5e). These data suggest
that cul-4 may downregulate Wg in the eye imaginal disc.
Misexpression of wg on DV margins of eye disc bi4wg results
in ectopic wg transcription suggesting that wg is a target of
Wg pathway in developing eye (Supplementary Fig. S1). We
then tested if aberrant Wg signaling is responsible for cul-4
mutant phenotypes.

Wg signaling pathway alters the cul-4 mutant phenotype.
Arm translocates to the nucleus in response to Wg signaling
and binds with the transcription factor dTCF (LET/TCF family

Figure 3 Loss-of-function clones of cul-4 fail to survive. (a and b) Genetic mosaics generated by using a Flp-FRT system in the eye results in GFP-positive and GFP-negative
patches of cells. (a) Note that in wild-type controls, clonal areas marked by the absence of GFP (red dotted lines) are comparable in terms of size to the wild-type clones (with strong
(2X) GFP-positive areas, marked by red dotted lines). (b) Loss-of-function clones of cul-4JJ11 mutant in the eye imaginal disc (no GFP, marked by red dotted line) are smaller
compared with the wild-type twin spot (2XGFP, marked by yellow dotted line). Note that these cul-4JJ11 mutant clones fail to survive 24 h after they are formed. Only GFP-positive
(wild-type) cells were seen. (c)The cell number of cul-4 clones was less than eightfold as compared with the wild-type clones based on counting five eye discs for each. (d–f’) TUNEL
staining was used to mark the dying cells nuclei in (d and d’) wild-type, (e and e’) cul-4jj11− /− clones and (f and f’) bi4cul4RNAi eye imaginal disc. (g) The dying nuclei were counted
from five imaginal discs from each of these category. There is more than fourfold increase in dying cell population in cul-4 mutant eye disc as compared with wild-type
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protein) to turn on the transcription of Wg target genes
(Figure 6a).44 In western blots a two fold increase in Arm
protein levels was observed in cul-4 mutant eye discs as
compared with wild-type (Figure 6b). We tested if modulating
Wg signaling levels can affect the cul-4 mutant phenotype. In
the eye imaginal discs, activation of Wg signaling by
misexpression of wg (ey4wg) (Figure 6c) or arm (ey4arm)
(Figure 6f) resulted in reduced eye phenotypes.11 Misexpres-
sion of wg (cul-4JJ11−/−, ey4wg) (Figures 6d and e) or arm
(cul-4JJ11, ey4arm) (Figures 6g and h) in cul-4 loss-of-function
background, resulted in near complete loss of eye. Blocking

Wg signaling by misexpression of a constitutive active form of
Shaggy/Zeste-White-3/GSK-3 (Sgg), a negative regulator
of the Wg signaling pathway4,45 (ey4sggS9A) (Figure 6i),11

or dominant negative form of TCF (dTCFDN)44 (ey4dTCFDN)
(Figure 6l) does not affect the size of the eye field. However,
in cul-4 loss-of-function background, misexpression of sgg
(cul-4JJ11− /− , ey4sgg) (Figures 6j and k) or dTCFDN

(cul-4JJ11− /− , ey4dTCFDN), (Figures 6m and n) resulted in
a significant rescue of the cul-4 loss-of-function phenotype to
a near wild-type eye. It suggests that cul-4 is involved in
downregulation of Wg signaling in the eye. JNK is known to

Figure 4 cul-4mutant cells are eliminated by activation of caspases. (a, a’ and a’’) Loss-of-function of cul-4 in eye results in enhanced caspase-3* (cas-3*, green) levels along
with Wg (blue) upregulation and suppression of eye fate based on Elav (red) expression. (b) In comparison with the wild-type controls, nearly twofold increase in activator
caspase-9 protein are seen in total protein extracted from eye imaginal discs of cul-4 loss-of-function background. Caspase band staining intensity calculated by Image –J. (c and
d) Loss-of-function phenotype of cul-4 can be rescued by misexpression of baculo-virus protein, P35 (cul-4−/−; ey4P35) as seen in (c, c’ and c”) eye imaginal disc and (d) adult
eye. (e and f) Reduction in the levels of Hid-Reaper-Grim (HRG) complex by using deficiency of H99 can rescue the loss-of-function phenotype of cul-4, as seen in (e, e’ and e”)
eye imaginal discs and (f) adult eye. (g) The dying nuclei were counted from five imaginal discs from each of these category. Misexpression of P35 can significantly reduce the
number of dying cell nuclei in cul-4 loss-of-function eye disc as compared with wild-type
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work in conjunction with Wg in multiple contexts including
correction of morphogen gradient discontinuities;26 and
differential levels of JNK signaling are associated with cell
survival.26,28

cul-4 prevents JNK-mediated cell death in the developing
eye. We tested if JNK pathway is associated with the cul-4
loss-of-function phenotypes (Figure 7). We tested JNK levels
in cul-4 loss-of-function background using puc (puc-lacZ) the
downstream target, which serves as the functional readout for
JNK pathway activation.30 In wild-type eye disc, puc is
expressed in differentiated photoreceptor neurons of eye disc
(Figure 7a). In cul-4 loss-of-function background, ectopic
induction of puc was seen in the eye as well antenna disc
(Figures 7b and b'), suggesting that JNK signaling is
activated in cul-4 mutant cells. To confirm, we checked levels
of p-JNK, a reporter for activated JNK signaling, in western
blots and found significant upregulation of p-JNK levels in cul-
4 mutants compared with wild-type eye disc (Figure 7c).
Blocking JNK signaling in the developing eye by misexpres-
sion of puc (ey4puc, Figure 7d) or bsk dominant negative
(bskDN) (ey4bskDN, Figure 7g)25 did not affect the eye size.
However, in cul-4 loss-of-function background misexpression
of puc (cul-4JJ11− /− , ey4puc, Figures 7e and e’) or bskDN

(cul-4JJ11− /− , ey4 bskDN, Figures 7h and h’), resulted in a

significant rescue of cul-4 loss-of-function phenotype of
reduced eye (Figure 2). Conversely, in cul-4 loss-of-function
background activation of the JNK signaling pathway by
misexpression of activated Jun (junaspv7) (cul-4JJ11− /− ,
ey4junaspv7) in the eye disc, strongly enhanced the reduced
eye- to a 'no-eye' phenotype (Figures 7k and k’). Misexpres-
sion of junaspv7(ey4junaspv7) alone in the eye results in a
highly reduced eye field (Figure 7j). It suggests that loss of
cul-4 leads to activation of JNK signaling in the eye.
To confirm that activation of Wg /JNK signaling pathway are

both associated with the induction of cell death observed in
cul-4 mutant cells, we monitored cell death using TUNEL
assay when Wg (Figure 8) and JNK (Figure 9) levels are
modulated in the wild-type, and in cul-4 mutant eye discs. We
found that cell death is reduced when Wg or JNK signaling is
downregulated in cul-4 mutant background. However, cell
death is elevated when Wg/ JNK signaling is activated. Thus,
cul-4 may be involved in limiting JNK as well as Wg activation
in the developing eye disc, and thereby promote cell survival
during development.

Discussion

Cul-4, an E3 ligase, is involved in regulation of chromatin
function through heterochromatin gene silencing, mainte-
nance of genomic integrity by promoting the ubiquitylation

Figure 5 Wg is ectopically induced in cul-4mutant background. Expression of Wg (blue) in (a,a’) Wild-type, (b and b’) bi4cul4RNAi, (cul-4 RNAi is misexpressed on DV margin
using bi-Gal4), (c and c’) cul-4ExG1− 3and (d and d’) cul-4JJ11 loss-of-function clones. Note robust ectopic Wg (blue) expression on (b’) DV margin (marked by white arrows) along
with suppression of eye fate. (c and d) The reduced eye phenotype of cul-4 loss-of-function clones generated by cell-lethal approach is accompanied by ectopic upregulation of
Wg (blue, marked by white arrow). (a’–d’) Shown is the split channel of Wg expression. (e) In western blot analysis, the Wg protein levels are more than twofolds in eye discs with
cul-4 loss-of-function clones as compared with wild-type eye disc. Wg band staining intensity calculated by Image-J

Figure 6 Activation of Wg pathway results in the cul-4 mutant’s reduced eye phenotype. (a) Cartoon showing Wg signaling pathway. (b) In the western blot performed by
using protein extracts prepared from the wild-type and cul-4mutant eye imaginal discs, the Armadillo (Arm) (a downstream cytoplasmic target of Wg signaling), protein levels are
enhanced (twofold) in cul-4 loss-of-function background as compared with the wild-type (WT) control. Activation of Wg signaling by misexpression of (d and e) wg (cul-4− /− ;
ey4wg), (g and h) arm (cul-4− /− ; ey4arm) results in enhancement of loss-of-function phenotype of cul-4 as seen in (d and g) eye disc as well as (e and h) adult eye. (c and f)
Misexpression of (c) wg (ey4wg) and (f) arm (ey4arm) results in small eye. Blocking Wg signaling by misexpression of negative regulators/ antagonists like (j and k) sggS9A

(cul-4− /− ; ey4 sggS9A) and (m and n) dTCFDN(cul-4− /− ; ey4 dTCFDN) suppresses the reduced eye phenotype of cul-4 loss-of-function to near normal as seen in (j and m)
eye disc and (k and n) adult eye. Misexpression of (i) sgg (ey4sggS9A) and (l) dTCFDN(ey4dTCFDN) results in normal eye sizes
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and degradation of key cell cycle regulators.46–49 A number of
ligaseswork in concert with the signaling pathways (Notch (N),
Hedgehog (Hh), Wg and so on) for regulating gene expres-
sion. For example, Slimb, is involved in regulating Wg and Hh
signaling during eye development,50 Neuralized (Neu)51 and
Mind Bomb (Mib), are E3 ligases that are components of N
signaling pathway; and are required for Drosophila eye
development.52 Recently other functions for E3 ligases are
being recognized. For example, DIAP1 regulates Dronc/Hid
caspases,20,53 and is transcriptionally regulated by yorkie (yki)
for survival function.54 DIAP-1 in turn, is regulated by Cul-3
in the developing eye to regulate apoptosis.71 Our studies

provide evidences for a new function for cul-4 in cell survival
during eye development.
Homozygous larvae of some cul-4 alleles are larval lethal

that can survive until early third instar and produce smaller
imaginal discs than wild-type discs at comparable develop-
mental age.40 These phenotypes were attributed to problems
with cell division. Our twin spot analysis revealed an
interesting result that cul-4 mutant tissues in the developing
eye imaginal disc failed to survive (Figure 2), and are
eliminated by activation of caspases (Figure 3). Generating
cul-4 mutant clones by using multiple approaches (for
example, eyeless and heat-shock flippase) validated that

Figure 7 Aberrant JNK signaling in cul-4 loss-of-function background triggers cell death. (a) A functional readout of JNK signaling pathway, puc-lacZ (blue) is expressed in
differentiated photoreceptor neurons (marked by Elav, red) in the wild-type eye discs.60 (b and b’) Loss-of-function of cul-4 causes ectopic induction of puc-lacZ reporter in the eye
imaginal disc. (c) Activation of JNK signaling was detected by analyzing phospho-Jun (p-JNK) levels in western blots. Twofold increase in the levels of JNK signaling pathway was
detected in cul-4 loss-of-function backgrounds in comparison to the wild-type eye imaginal disc. (d–i) Blocking JNK signaling by misexpression of (e, e’ and f) puc (cul-4− /− ;
ey4puc) or (h, h’ and i) dominant negative bskDN(cul-4− /− ; ey4bskDN) in loss-of-function clones of cul-4 significantly restores their reduced eye phenotype as seen in the (e,
e’, h and h’) eye imaginal disc and the (f and i) adult flies. Misexpression of (d) puc (ey4puc) or (g) bsk dominant negative (ey4bskDN) does not affect the eye size. (j–l)
Misexpression of activated form of (j) jun (ey4junaspv7) in the developing eye results in reduced eye size, whereas (k, k’ and l) misexpression of activated jun (cul-4− /− ;
ey4junaspv7) results in further enhancement of cul-4 loss-of-function phenotype of reduced eye
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cul-4 mutant cells failed to survive when generated in early
embryonic or larval stages. Blocking caspase-mediated cell
death led to significant rescue of reduced eye phenotypes of
cul-4 loss-of-function (Figures 4c and d), supporting a role for
cul-4 in cell survival.
We tested several cell signaling pathways in cul-4 loss-of-

function background and found aberrant activation of Wg and
JNK signaling (Figure 10). Wg is required for patterning,
growth regulation and cell survival in multiple tissues including
the eye discs. Ectopic induction of Wg induces cell
death.9,10,11,55 We found that cells lacking cul-4 function also
undergo cell death and they express high levels of Wg. Arm,
the nuclear effector of the Wg signaling pathway, is a target of
E3 ubiquitin ligase-mediated degradation.56 Loss-of-function

phenotype of cul-4 mutants could be modified by modulating
the levels of canonical Wg signaling (Figures 6 and 7). Our
data suggests that cul-4may downregulateWg signaling in the
eye to promote cell survival in the eye disc. Since the cul-4
mutant phenotypewas not completely rescued by blockingWg
signaling, we also tested the JNK signaling in the cul-4mutant
clones. The possibility of indirect consequences responsible
for the mutant phenotype can be refuted because these
phenotypes can be rescued by blocking Wg as well as JNK-
mediated cell death. We found that Wg levels were affected
when JNK signaling was modulated in cul-4 mutant back-
ground (Figure 10a–c). However, the converse did not show
effect on phospho-JNK levels (Figure 10d–f). Our studies
generate insights into genetic mechanisms that regulate cell

Figure 8 Aberrant Wg signaling triggers cell death in cul-4 loss-of-function background. Eye imaginal discs showing TUNEL (blue) labeling in (a and a’) ey4wg, (b and b’)
cul-4−/−; ey4wg (c and c’) ey4sggS9A, (d and d’) cul-4−/−; ey4sggS9A, (e and e’) ey4dTCFDN and (f and f’) cul-4−/−; ey4 dTCFDN. (g) Graph shows quantification of the
number of dying cells in the wild-type, cul-4 loss-of-function and genotypes shown in (a–f). Note that in cul-4 loss-of-function background cell death is enhanced when Wg is
activated. Conversely, cell death is suppressed to near wild-type when Wg signaling is blocked in cul-4 loss-of-function background
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survival during normal development by demonstrating the role
of cul-4 in preventing inappropriate upregulation of Wg and
JNK signaling in the developing Drosophila eye during early
stages (Figure 10). A recent study showed that loss of
Godzilla, a member of the RNF family of membrane-anchored
E3 ubiquitin ligases regulates Wg levels on the basolateral
surface of the tissues through dynamin-dependent endo-
cytosis from the apical surface and subsequent trafficking
from early apical endosomes to the basolateral surface.57 Our
studies also generate mechanistic insights into genetic

mechanisms that regulate cell survival during normal
development.
Numerous studies have shown the role of ubiquitin-

mediated proteolysis in a broad array of cellular processes
like defects in organogenesis, growth, differentiation, metabo-
lism and aging in all organisms.58 Abnormal protein homeo-
stasis underlies various disorders ranging from growth defects
to neurodegenerative disorders.59 Our studies introduced new
role of cul-4 in cell survival in the developing Drosophila eye.
Since Drosophila serves as an excellent model to study

Figure 9 Aberrant JNK signaling triggers cell death in cul-4 loss-of-function background. Panels show TUNEL (blue) staining marking the dying cells nuclei in eye discs from
(a and a’) ey4junaspv7, (c and c’) ey4puc, (e and e’) ey4bskDN, (b and b’) cul4−/−; ey4junaspv7, (d and d’) cul4−/−; ey4puc or (f and f’) cul4−/−; ey4 bskDN. (g) Graph
shows a comparison of the number of dying cells in wild-type, cul-4 loss-of-function and the genotypes shown in a–f. Note that rate of cell death is enhanced when JNK signaling
is activated whereas the rate of cell death is suppressed when JNK signaling is blocked in cul-4 loss-of-function background
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development and human disease,60 these studies may shed
light on understanding genetic basis of neurodegenerative
orders in future.

Materials and Methods
Fly stocks. The fly stocks used are described on Flybase (http://flybase.bio.
indiana.edu). Cul-4 stocks used are EP 2518 (UAS-cul-4); cul-4 RNAi lines 8711
and 8711-R1 (from NIG).61 The N-terminal deletion mutants used were cul-4
ExG1− 3/CyO, which lack 340 amino acids from amino terminal. cul-4JJ11/ twi4GFP,
CyO carries a nonsense mutation at Trp199 position.40

Other stocks include Canton-S, y w eyFLP,39 L2/Cyo;37,62 wg-lacZ/CyO,63 UAS-wg,64

UAS-sggS9A,65 UAS-arm,66 UAS-dTCFDN,44 UAS-P35,24 Df(3L)H99/TM6B,43 pucE69,
UAS-puc,30 UAS-bskDN,25 and UAS-DJunaspv7.67 The Gal4/UAS system was used for
targeted misexpression studies38 using ey-Gal4,65 and bi-Gal4 (refs 41, 42) lines.

Mosaic analysis. To generate loss-of-function clones68 of cul-4 in the eye,
virgins of eyFlp; FRT42D, cl-w+/CyO-GFP were crossed to (i) FRT 42D, cul-4 ExG1− 3/
CyO, (ii) FRT 42D, cul-4 ExG3− 5, (iii) FRT 42D, cul-4 ExL2− 1/CyO and (iv) FRT 42D,
cul-4 JJ11/twi4GFP, CyO.

Twin spot analysis. We used hsFlp; FRT42D ubi-GFP to generate loss-of-
function clones of cul-4 ExG1− 3 and cul-4 JJ11in the eye imaginal disc at different
larval development stages. Egg laying were collected from synchronous cultures
maintained at 25 °C. The cultures were heat shocked at 24 and 48 h after egg
laying (AEL) at 37 °C for 50 min in order to induce loss-of-function clones. Eye discs
were dissected in second and third-instar stages to analyze/identify cul-4 loss-of-
function clones marked by the absence of GFP expression.

Immunohistochemistry. Eye-antennal imaginal discs were dissected from
wandering third-instar larvae and stained following the standard protocol.62

Antibodies used were rat anti-Elav (1:100), mouse anti-Wg (1:50), mouse anti-β
galactosidase (1:200) (Developmental Studies Hybridoma Bank, DSHB, Iowa City,
IA, USA), rabbit anti-Dlg (1:250) (gift from Kyung- Ok Cho), rat anti-Mirror (1:200)
(gift from Kwang Wook Choi), rabbit anti-caspase-3* (1:200) and rabbit Phospho-
SAPK/JNK (Cell Signaling Thr183/Tyr185) (81E11) (Cell Signaling Technology,
Danvers, MA, USA). Secondary antibodies (Jackson Immuno Research Labora-
tories Inc., West Grove, PA, USA) were goat anti-rat IgG conjugated with Cy5
(1:200), donkey anti-rabbit IgG conjugated to Cy3 (1:250), donkey anti-rabbit IgG
conjugated to FITC and donkey anti-mouse IgG conjugated to Cy3 (1:200). The
discs were mounted in Vectashield (Vector Laboratories Inc., Burlingame, CA, USA)
and imaged using Olympus Fluoview 1000 microscope (Olympus America,
Scientific Solutions Group, Center Valley, PA, USA). Images were analyzed using

the Adobe Photoshop CS4 (Adobe Systems, San Jose, CA, USA) and image
intensity was calculated using the Image J software.

TUNEL assays. Apoptotic cell death was assayed using TUNEL assays in the
mutant clones generated via twin spot analysis and cell lethal approach. Eye discs,
after secondary antibody staining,62 were blocked in 10% Normal Goat Serum in
Phosphate Buffered Saline with 0.2% Triton X-100.TUNEL assays were done using
the Cell-death Detection Kit from Roche Diagnostics following the standardized
protocol.11,17 The TUNEL-positive nuclei were counted from five eye imaginal discs
for each genotype using Image-J and statistical analysis was performed using
Microsoft Excel 2013. The P-values were calculated and the error bars represent
Standard Deviation.

Adult eye imaging. Adult Drosophila eye images were taken70 using a
Zeiss Apotome Imager.Z1 microscope (Carl Zeiss Microscopy GmbH, Jena,
Germany). The flies were prepared by freezing them at − 20 °C for ~ 2 h. The legs
and wings of the flies were removed and flies were mounted on a dissection needle,
and the fly was positioned on a glass slide using mounting putty. Images were
captured by using extended depth of focus function of the Axiovision software
version 4.6.3 (Carl Zeiss Microscopy GmbH, Jena, Germany) by compiling the
individual stacks from the Z-sectioning approach. The final images and figures were
prepared using Adobe Photoshop CS4 software.

Western blot analysis. Protein samples were prepared from third-instar eye-
antennal imaginal discs of different cul-4 mutants dissected in ice-cold PBS.
Samples were transferred to sample buffer containing SDS-β-mercaptoethanol,
boiled for 10 min, stored in − 80 °C. Protein samples were separated on 10% SDS-
PAGE and transferred to nitrocellulose membrane. The membrane was blocked in
blocking solution (AMRESCO LLC, Solon, OH, USA) and incubated with primary
antibody. The antibodies used were anti- mouse Wg (1:100) (DSHB); anti-mouse
arm (1:2000) (DSHB), anti-rabbit p-JNK (1:2000) (Cell signaling Technologies), anti-
rabbit Caspase-9 (1:1000) (Cell signaling Technologies) or anti- mouse tubulin
(1:5000) (Sigma-Aldrich Corp., St. Louis, MO, USA). Secondary antibodies were
horseradish peroxidaseconjugated goat anti-rabbit IgG, and the signal was detected
using super-signal chemiluminiscence substrate (Pierce Biotechnology, Thermo-
fisher Scientific, Rockford, IL USA).
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