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Principles of antibody-mediated TNF receptor
activation

H Wajant*,1

From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic
antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF
receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro
studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for
agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation
prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring
of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only
recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor
activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR
binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and
especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting
antibodies.
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Facts

� Ligands of the TNF superfamily (TNFSF) occur as trimeric
transmembrane proteins but also as soluble trimeric
molecules.

� A subgroup of the TNF receptor superfamily (TNFRSF) is
not or only slightly activated by soluble TNFSF ligands.

� Oligomerization and cell surface-anchoring of soluble
TNFSF ligands provide these molecules with membrane
TNFSF ligand-like activities.

� Dimeric TNFRSF receptor-specific antibodies have typi-
cally no or only a moderate agonistic activity.

� Oligomerization and Fcγ receptor-binding frequently
converts dimeric TNFRSF receptor-specific antibodies into
strong agonists.

Open Questions

� What is the molecular basis of the different responsiveness
of TNFRSF receptors toward binding of soluble TNFSF
ligands?

� How one can generate antibody-based TNFRSF receptor
agonists with oligomerization- and FcγR binding-independent
activity?

� What are the mechanisms underlying the FcγR binding-
independent agonistic activity of TNFRSF receptor-specific
human IgG2 isoform B antibodies?

General Principles of TNFRSF Receptor Activation by
Ligands of the TNF Superfamily

Receptors of the tumor necrosis factor (TNF) receptor super-
family (TNFRSF) are naturally activated by ligands of the TNF
superfamily.1,2 Cytokines are assigned to the TNF superfamily
(TNFSF) based on a conserved carboxy-terminal homology
domain called the TNF homology domain (THD) (Figure 1).1,2

The THD promotes the assembly of homotrimeric molecules,
or in rare cases the formation of dimeric (murine GITRL)3,4 or
heterotrimeric (LTαβ2)

5 ligands, and is essential for interaction
with receptors of the TNFRSF. With exception of LTα, TNFSF
ligands are expressed as trimeric type II transmembrane
proteins in which the THD is separated from the transmem-
brane domain by a stalk region of variable length (Figure 1).
Due to proteolytic processing in the stalk region or by
alternative splicing, TNFSF ligands can also be found in the
form of soluble trimeric molecules (Figure 1). Soluble TNFSF
ligands still contain the THD and thus retain the ability to
interact with TNFRSF receptors.1,2 X-ray crystallographic
studies of various soluble TNFSF ligands, alone or in complex
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with TNFRSF receptor ectodomains (Table 1), not only
confirmed the trimeric organization of TNFSF ligands deduced
from biochemical assays but also revealed that each of the
three protomer–protomer interfaces of a TNFSF ligand trimer
binds a single TNFRSF receptor molecule.
In view of the structural organization of TNFSF ligand/

TNFRSF receptor complexes, a sequential model of
TNFRSF receptor activation was initially assumed. According
to this model, a single TNFRSF receptor molecule initially
interacts with a TNFSF trimer and the resulting cell surface-
associated TNFSF ligand3–TNFRSF receptor complex then
recruits in two further steps two additional monomeric
TNFRSF receptor molecules to form an active TNFSF
ligand3–TNFRSF receptor3 complex (Figure 2a). This early
model of TNFRSF receptor activation, however, is incompa-
tible with some fundamental observations. First, ligand binding
studies gave no evidence for a sequential assembly of TNFSF

ligand–TNFRSF receptor complexes and consistently argued
for a single binding site interaction between TNFSF ligands
and TNFRSF receptors. Second, the affinity of a single soluble
TNFRSF receptor ectodomain for its ligand is usually rather
low (41 μM).6,7 Indeed, efficient functional neutralization of
TNFSF ligands with soluble TNFRSF receptor variants
requires the assembly of two or more receptor molecules, for
example, by genetic fusion with dimerizing or trimerizing
protein domains (e.g., Holler et al.8). Third, the sequential
TNFRSF receptor activation model cannot explain why some
mutants of the TNFRSF receptors CD95 and TACI, which are
defective in ligand binding, nevertheless act in a dominant-
negative manner and cause autoimmune lymphoproliferative
syndrome (ALPS)9 and common variable immunodeficiency
(CVID).10

The limitations of the sequential TNFRSF receptor activa-
tion model were solved by the discovery of a protein domain

Figure 1 Ligands of the TNF superfamily (TNFSF) stimulate receptors of the TNF receptor superfamily (TNFRSF). The TNFSF comprises 19 human ligands, which are
defined by a conserved C-terminal trimerization domain, designated as TNF homology domain (THD), and include TNF, CD40L, CD95L and TWEAK. LTα is a secreted ligand
while the other TNFSF ligands are single spanning transmembrane proteins. In many cases, however, soluble ligand molecules can be released from the membrane-bound
proteins by proteolytic cleavage in the stalk region by proteases of the furin, matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase89 family. TNFSF ligands
exert their activity by stimulation of TNFRSF receptors. The latter are characterized by having one or more cysteine-rich domains (CRDs) in their extracellular parts and can be
classified into three groups according to functional and structural similarities: (i) death receptors that have a cytoplasmic protein–protein interaction domain called death domain
that enables some death receptors to trigger cell death pathways, (ii) TRAF-interacting receptors that contain one to three binding motifs for adapter proteins of the TNF receptor-
associated factor (TRAF) family that link these receptors to proinflammatory signaling pathways, and (iii) decoy receptors without own signaling capabilities that control the activity
of other TNFRSF receptors. With regard to function the classification of the signaling competent TNFRSF receptors into cell death-inducing death receptors and proinflammatory
TRAF-interacting receptors is an oversimplification. Death receptors are also able to trigger proinflammatory pathways and TRAF-interacting receptors via versa can boast
apoptotic responses by blocking TRAF-dependent survival activities
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Table 1 Crystal structures of ligands and receptors of the TNF family
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within several TNFRSF receptors that mediates self-assembly
in the absence of ligand molecules.9,11–13 The interaction of
two (or three) receptor molecules by this so-called 'pre-ligand
assembly domain’ (PLAD) may create single high affinity
binding sites for TNFSF ligand trimers. This not only explains
the single binding site interaction typically found for TNFSF
ligands and cell bound TNFRSF receptors but also delivers a
rationale for the dominant-negative activity of ligand binding-
defective CD95/TACI mutants. If such mutants still contain a
functional PLAD, then this results in the trapping of wild-type
receptor molecules in complexes with mutant receptor
molecules. The latter do not contribute to ligand binding, thus
in this case dimerization of receptor molecules does not result
in a relevant increase in apparent affinity. It is noteworthy that
the affinity of the PLAD–PLAD interaction is rather low and
almost in themM range.14 This corresponds to the observation
that soluble TNFRSF receptor ectodomains are typically very
poor TNFSF ligand agonists unless they are fused with
multimerizing scaffolds. In view of the weak PLAD-PLAD

affinity an unclear aspect of the PLAD-based TNFRSF
receptor activation model concerns the equilibrium between
monomeric and PLAD-assembled TNFRSF receptors. At one
extreme, the PLAD-PLAD affinity, despite its weakness, is
possibly sufficient to drive the huge majority of receptors in the
PLAD-assembled state due to the spatial pre-orientation and
immobilization of the receptor molecules in the plasma
membrane (Figure 2b). However, at the other extreme, the
equilibrium point favors monomeric TNFRSF receptors and
suggests that there are only a few receptors in the PLAD-
assembled state at any given moment (Figure 2b). In this
second scenario, the binding of a TNFSF ligand trimer to the
rare PLAD-assembled receptor species would result in the
stabilization of the few assembled receptors and their removal
from the equilibrium with the monomeric receptor species.
According to the principle of LeChatelier, the pool of ligand-
free PLAD-assembled TNFRSF receptors is then recovered at
the expense of the pool of the monomeric receptor species.
Thus, with time almost the complete pool of TNFRSF receptor

Figure 2 PLAD-assisted oligomerization model of TNFRSF receptor activation. This model is based on the fundamental observation that at least some TNFRSF receptors
pre-assembles in the absence of ligand. The self-affinity of TNFRSF receptors would not only allow to explain TNFSF ligand binding by formation of high affinity dimeric or trimeric
TNFRSF complexes but may also drive secondary interaction of TNFSF ligand3–TNFRSF receptor3 complexes. The initially formed TNFSF ligand3–TNFRSF receptor3
complexes may already allow the recruitment of TNFRSF receptor-associated signaling molecules but do not ensure full activation of these molecules by transactivation. Please
note, the capacity of soluble TNFSF ligand-induced TNFSF ligand3–TNFRSF receptor3 complexes to secondary aggregate spontaneously into fully active receptor clusters may
vary considerably between TNFRSF receptors. In some cases (right, upper part) the self-affinity of TNFRSF receptors is maybe too low to trigger spontaneous clustering of
soluble TNFSF ligand-induced receptor complexes while in other cases (right, lower part) the self-affinity is high enough to trigger this
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molecules would become accessible for ligand binding via the
ligand-free PLAD-assembled TNFRSF receptors despite the
rare occurrence of this receptor species. Currently, it is not
possible to differentiate between the two extremes and there
are certainly TNFRSF receptor type-dependent quantitative
differences in the PLAD–PLAD interaction that may consider-
ably affect the dynamic equilibrium between monomeric and
PLAD-assembled TNFRSF receptors.
The PLAD-based model for the formation of TNFSF

ligand3–TNFRSF receptor3 complexes alone, however, does
not adequately explain one fundamental observation of
overwhelming functional importance namely why a significant
fraction of TNFRSF receptors bind soluble TNFSF ligandswith
high affinity but nevertheless fail to efficiently activate receptor-
associated signaling pathways. While interaction with a
membrane-bound TNFSF ligand in any case results in strong
receptor activation, TNFRSF receptors differ in their response
to binding of soluble ligand trimers. Some TNFRSF receptors
strongly stimulate intracellular signaling pathways in response
to soluble TNFSF ligands whereas another group of TNFRSF
receptors binds soluble ligand molecules with a limited effect
on signal transduction (Table 2). The limited responsiveness to
soluble TNFSF ligands of this second type of TNFRSF
receptors reflects an intrinsic quality of the TNFRSF receptor
type and not an insufficiency of the soluble ligand. For
example, soluble TNF efficiently stimulates TNFR1 signaling
but fails to properly activate TNFR2 despite efficient
binding.15,16 Similarly, soluble APRIL interacts with the
TNFRSF receptors TACI and Baff receptor-3 (BR3) but only
activates the latter.17,18 TNFRSF receptors that fail to signal
properly in response to binding of soluble ligand trimers,
typically respond quite well when the ligand molecules
become secondarily oligomerized (Table 2). The latter can
be achieved for example by antibodies recognizing a tag

attached to the cytokine molecules or by genetic fusion with
protein domains triggering the assembly of two or more ligand
trimers in a single molecule (Table 3). Because oligomeriza-
tion has no major effect on the apparent affinity of TNFSF
ligand–TNFRSF receptor interaction.19,20 This indicates that
secondary interaction of two or more TNFSF ligand3–TNFRSF
receptor3 complexes is a key event in stimulation of TNFRSF
receptor-associated signaling pathways.
There is, however, initial evidence that different types of

TNFRSF receptor-associated signaling pathways differ
in the need for secondary interaction of two or more TNFSF
ligand3–TNFRSF receptor3 complexes for activation. The
need for clustering of TNFSF ligand3–TNFRSF receptor3
complexes for receptor activation has been typically observed
in experiments where apoptosis induction or activation of the
classical NFκB pathway has been investigated (see Table 2).
Recent studies indicated that soluble CD95L, at low concen-
trations where it typically fails to trigger apoptosis without
crosslinking, induces cell migration and proliferation (for
review, see Wajant21). Soluble TWEAK ((TNF)-like weak
inducer of apoptosis) furthermore stimulates strong and
efficient activation of the alternative NFκB pathway but
activates the classical NFκB pathway only weakly whereas
both NFκB pathways were strongly activated by membrane
TWEAK and oligomerized soluble TWEAK.22 The different
oligomerization requirement for CD95L-induced apoptosis
and CD95L-induced cell migration as well as the different
need of oligomerization for soluble TWEAK-triggered classical
and alternative NFκB signaling correspond in both cases to
different mechanisms how these pathways are activated.
Interestingly, form studies comparing ligand- and antibody-
induced activation of CD40 and Fn14, there is also evidence
for pathway-specific activation requirements of TNFRSF
receptors. For example, it has been reported that antibody
production and IL6 secretion in B cells are induced after CD40
stimulation with membrane-bound CD40L while an agonistic
CD40-specific antibody triggered antibody but not IL6
production.23 Fn14 targeting antibodies, furthermore, can
stimulate the alternative NFκB pathway without a significant
effect on the classical NFκB pathway.24

Fn14-mediated activation of the classical NFκB pathway
requires the recruitment of the adapter protein TRAF2 and the
TRAF2-interacting E3 ligases cIAP1 and cIAP2.25,26 TRAF2
forms homotrimeric molecules that binds tightly to a probably
monomeric and thus inactive cIAP1 or cIAP2 E3 ligase
molecule.27–30 Dimerization of two cIAPs results in an active
conformation with E3 activity and the capacity to promote
signaling via the classical NFκB pathway.27,31 Thus, in view of
the data discussed above soluble TWEAK seems to induce
the formation of complexes that only contain a single cIAP1/2
molecule (TWEAK3-Fn143-TRAF23-cIAP1/2) and which are
still unable to trigger the classical NFκB pathway but are
competent to do this upon cIAP1/2 transactivation-enabling
crosslinking. In contrast, the formation of TWEAK-Fn14
complexes containing only one TRAF2 trimer and a single
cIAP1/2 molecule is already sufficient to activate the alter-
native NFκB pathway, because in this case, it is sufficient to
withdraw TRAF2–cIAP1/2 complexes from the cytosol32,33

where they are involved in triggering the destruction of the
alternative NFκB inducing kinase NIK. In the case of CD95-

Table 2 Effect of anti-Flag oligomerization on the receptor stimulating activities
of soluble Flag-tagged TNFSF ligand trimers

aSoluble trimeric variant without oligomerizing collagen domain
bTransfectants expressing an artificial EDAR-CD95 chimeric receptor
cTransfectants expressing an artificial BCMA-CD95 chimeric receptor
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induced apoptosis, there is crystallographic evidence that a
pentameric/oligomeric complex of the CD95-recruited death
domain-containing adapter protein FADD has to be formed to
trigger efficient dimerization and activation of caspase-8 in
oligomeric structures.34–38 In contrast, soluble CD95L-
induced CD95-mediated cell migration and proliferation
are independent from FADD and occur by help of tyrosine
kinases that directly interact with CD95.39 In this case,
signaling pathway activation could already emerge from
CD95L3–CD953 complexes. In sum, the evidence for
oligomerization-independent selective activation of only cer-
tain receptor-associated signaling pathways by soluble
TWEAK and soluble CD95L favors a two-step model of
TNFRSF receptor activation. In a first step, there is ligand
induced formation of signaling competent TNFSF ligand3–
TNFRSF receptor3 complexes, which might already trigger
certain signaling pathways. In a second step, there is then
oligomerization of TNFSF ligand3–TNFRSF receptor3
complexes that eventually enables activation of signaling
pathways requiring transactivation/oligomerization of TNFSF
ligand3–TNFRSF receptor3 complex-associated signaling
intermediates (Figure 2b).
The capacity of membrane-bound TNFSF ligands to trigger

TNFRSF receptor clustering has not been extensively
investigated. The finding that membrane-bound CD95L but
not soluble CD95L induces the formation of durable supra-
molecular ligand-receptor clusters, however, is in good
accordance with this idea.40 In accordance with the evidence
discussed above that activation of only a subset of CD95-
induced signaling pathways, including apoptosis induction,
requires oligomerization of CD95L3–CD953 complexes and
thus membrane-bound CD95L, O’Reilly et al. reported that
mice expressing only soluble CD95L have defective CD95-
induced apoptosis but also obtained evidence for soluble
CD95L-mediated non-apoptotic activities.41 It is furthermore
worth mentioning that artificially anchoring soluble TNFSF

ligands to the cell surface is all that is required to equip these
molecules with the activity of the corresponding membrane-
bound cytokine. For example, soluble TNFSF ligand fusion
proteins with interaction domains recognizing a cell surface
exposed molecular structure/protein acquire membrane
ligand-like activity after target binding.42,43 Similarly, soluble
CD95L gain high apoptotic activity after fibronectin binding
and APRIL stimulates Baff-R when trapped by the extracelluar
matrix via a heparan sulfate proteoglycan binding motif in the
stalk region.18,44,45 Moreover, it has been observed that the
enhanced TNFR2-stimulating activity of a cell surface-
anchored fusion protein of soluble TNF is accompanied by
clustering of TNFR2 complexes.46

Ligand binding and self-assembly occur via different parts of
the ectodomain of TNFRSF receptors.9,11 TNFRSF receptors
have therefore the ability to interact with each other also when
complexed by their ligand suggesting a model of TNFRSF
receptor activation in which PLAD–PLAD interactions not only
facilitate the binding of TNFSF ligands to TNFRSF receptors to
form signaling competent TNFSF ligands3–TNFRSF recep-
tors3 complexes but also promote secondarily their clustering
into supramolecular aggregates where transactivation of
TNFRSF receptor3-associated signaling complexes become
possible (Figure 2b).
The two-step model of TNFRSF receptor activation is based

on data of the subgroup of TNFRSF receptors that do not or
only poorly activate apoptosis and classical NFκB signaling in
response to binding of soluble TNFSF ligands. An obvious
question that has not been addressed so far is how TNFRSF
receptors that are readily activated by soluble TNFSF ligands,
such as TNFR1, fit in the two-step model of TNFRSF
activation. One possibility is that the PLAD-dependent self-
affinity of these TNFRSF receptors is simply high enough to
drive secondary clustering of initially formed TNFSF ligand3–
TNFRSF receptor3 complexes. However, it cannot be ruled
out that this TNFRSF receptor type uses still unknown

Table 3 TNFSF ligand fusion protein molecules containing two or more TNF trimers

Abbreviations: ACRP, adiponectin collagen domain; EDH2, immunoglobulin E heavy-chain domain 2; Fc, constant IgG1 domain; ILZ, trimerizing isoleucine zipper
domain; scTNFSF, three THD domains connected by peptide linkers; SP-D, surfactant protein D scaffold; TNC, tenascin-C
aThe enhancing effect observed in this study depends on the TWEAK-induced pathway considered. Fc-TWEAK showed a 100-fold lower EC50 for classical NFκB
signaling compared with Flag-TWEAK while both molecules were equally effective in triggering p100 processing
bSoluble TNFSF ligand trimers have not been analyzed
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mechanisms/factors enabling these receptors to promote
oligomerization of TNFRSF-associated adapter proteins
without oligomerization of TNFSF ligand3–TNFRSF receptor3
complexes.

Relevance of Isotype and Oligomerization for Agonistic
Activity of TNFRSF Receptor-Specific Antibodies

Agonistic receptor-specific antibodies were important tools for
studying functions of TNFRSF receptors as long as their
corresponding TNFSF ligands were unknown and are
accordingly still of special relevance for the analysis of the
orphan TNFRSF receptors DR6, TROY and RELT. Agonistic
antibodies are also a great help for research on TNFRSF
receptors that share a common TNFSF ligand, as for example
the TNF-related apoptosis inducing ligand (TRAIL) receptors.
Above all, however, agonistic antibodies are still the means of
choice in scenarios where activation of TNFRSF receptors is
needed. Indeed, antibodies have superior pharmacokinetics
compared with recombinant TNFSF ligands that have quite
low serum half-life of around 10–30min47–49 and therefore
require elaborate clinical treatment regimes, such as infusion.
Moreover, there is broad experience in the development,
production and approval of antibodies. Accordingly, there are
various agonistic TNFRSF receptor-specific antibodies that
are currently under consideration in clinical trials (Table 4).
Typically, TNFRSF receptor-specific antibodies are used with
the intention to activate TNFRSF receptors on tumor cells to
trigger cell death (TRAILR1, TRAILR2) or to activate
costimulatory receptors on immune cells to promote antitumor
immunity (4-1BB, GITR, CD27, OX40 CD40). In some cases
(CD30, Fn14), the tumor-associated expression pattern of
certain TNFRSF receptors is exploited to target tumor cells
with ADCC-inducing antibodies or antibody immunotoxins.
Soon after the description of the first TNFRSF receptor-

specific agonistic antibodies, it turned out that the valency of
antibodies, thus the antigen binding sites per molecule, is of
crucial relevance for the agonistic activity. In a panel of 17
human TNFR1-specific IgG2a and IgG2b antibodies, Engel-
mann et al. identified only two antibodies that moderately
mimicked the cytotoxic activity of TNF while all of the these
antibodies showed strong TNFR1-mediated killing upon
cross-linking with secondary antibodies.50 Likewise, it was
found that cross-linking converts the antagonistic TNFR1-
specific IgG2a antibody H398 into a potent TNFR1 agonist.51

Another study characterized the in vitro activities of two IgG1
antibodies and an IgM specific for TNFR1 and reported
superior agonistic activity for the pentameric IgM variant.52

Related data have been reported for CD95-specific
antibodies. The highly agonistic CD95-specific antibody
APO-1 is an IgG3 and has thus a considerable tendency to
self-aggregate. In contrast, IgG1, IgG2a, IgG2b and IgA
variants of APO-1, that have no or only a low capacity to
aggregate, elicit no or less efficient CD95 activation in vitro.53

Cross-linking with protein A or secondary antibodies, however,
restored the high agonistic activity of these APO-1 variants.53

In line with this, various other CD95-specific mAbs of
the IgG1 and IgG2a/b subclass have been described that
only display strong agonistic activity after cross-linking while
the pentameric CD95-specific IgM CH-11, but not Fab2

fragments derived of this antibody, has high, aggregation-
independent agonistic activity.54–56 The potentiating, or even
uncovering, effect of cross-linking on the agonistic activity of
dimeric antibodies has also been broadly documented for
other TNFRSF receptors including CD40,57,58 CD27,59

TRAILR1/DR4,60 TRAILR2/DR561–65 and Fn14.24,66–68 The
relevance of cross-linking for the agonistic activity of dimeric
TNFRSF receptor-specific antibodies is also reflected by the
fact that antibodies recognizing non-overlapping epitopes
synergistically induce receptor activation.58 In a variation of
this theme, it has been recently demonstrated that the
therapeutic agonistic activity of the rat IgG2a murine 4-1BB-
specific antibody 3H3 in mouse models of experimental
autoimmune encephalomyelitis and allergic asthma is based
on the expression of galectin-9 which binds to 4-1BB without
affecting antibody binding.69 Thus, the endogenously present
galectin-9 molecule may act as a natural crosslinker here.
Although antibody-specific factors, such as affinity and
epitope localization in the targeted TNFRSF receptor, certainly
play a role for agonistic activity, the data discussed, in sum
suggest that the valency of TNFRSF receptor-specific
antibodies and antibody preparations is the dominant
factor that determines their receptor-stimulatory capacity. In
particular in view of the importance of clustering of trimeric
ligand–receptor complexes for the activation of TNFRSF
receptor-associated signaling pathways, it seems natural that
interaction of two or more receptor2–antibody complexes is
required to form active [receptor2–antibody]n aggregates
(Figure 3a).
The need for secondary interaction of initially formed

trimeric ligand–receptor complexes for full TNFRSF receptor
activation is nicely reflected by the ability of some per se
non-agonistic TNFRSF receptor-specific antibodies to syner-
gistically stimulate receptor signaling in concert with soluble
TNFSF ligands. Already in the 1990s, we described the
TNFR2-specific monoclonal antibody 80M2 that allowed
robust TNFR2 activation by soluble TNF which alone is an
inefficient stimulator of TNFR2 signaling.15 Likewise, it has
been found that poorly active, soluble CD95L trimers
synergistically induce cell death with non-apoptotic CD95-
specific antibodies and that some CD40-specific antibodies
enhance soluble CD40L activity.58,70 Of course, a straightfor-
ward explanation of these observations is that these TNFRSF
receptor antibodies bring together individually assembled
trimeric ligand–receptor complexes.
The typically quite limited agonistic potential of bivalent

TNFRSF receptor-specific antibodiesmay further suggest that
monomeric receptors are the dominant receptor species in the
equilibrium of monomeric receptors and PLAD-assembled
receptors. In the case of a significant fraction of PLAD-
assembled receptors, one would predict the formation of
flexible ‘chains’ or clusters formed due to the bivalency of the
antibodies and the two or three epitopes present in dimeric (or
trimeric) PLAD-assembled receptors. It is not so obvious why
further cross-linking should have here the huge functional
relevance that has been observed experimentally. In the case
of a low degree of PLAD-driven complex formation, however,
cross-linking of dimeric antibodies would have an almost
obligate impact on the secondary interaction of receptor2–
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Table 4 TNFRSF receptor antibodies in clinical trials

Antibody Target Isotype Status ID Condition

Brentuximab-Vedotin
SGN-35

CD30 Drug conjugate,
chimerized IgG1

Approved, 470 studies — Lymphoma

XmAb2513 CD30 IgG1
Enhanced FcγR
binding

Phase 1 Completed NCT00606645 Hodgkin lymphoma
Anaplastic large cell lymphoma

MDX-1401 CD30 IgG1 Phase 1 Completed NCT00634452 Hodgkin lymphoma

HeFi-1 CD30 Murine IgG1
Agonist

Phase 1
Phase 1

Completed
Completed

NCT00048880
NCT00003741

Neoplasms
Lymphoma

PF-05082566 4-1BB IgG2
Agonist

Phase 1
Phase 1

Recruiting
Recruiting

NCT02179918
NCT01307267

Advanced solid tumors
NHL

Urelumab
BMS-663513

4-1BB IgG4
Agonist

Phase 1
Phase 1
Phase 1/2
Phase 1
Phase 1
Phase 1
Phase 1
Phase 1/2
Phase 2

Recruiting
Recruiting
Recruiting
Recruiting
Recruiting
Terminated
Terminated
Terminated
Completed

NCT01775631
NCT02252263
NCT02253992
NCT01471210
NCT02110082
NCT00461110
NCT00351325
NCT00309023
NCT00612664

B-cell malignancies
Multiple myeloma
Advanced solid tumors
Advanced B-cell NHL
Solid tumors, B-cell NHL
CRC, HNC
NSCLC
Solid malignancies
Advanced cancer
Melanoma

TRX518 GITR IgG1 N297
Fc-disabled

Phase 1 Recruiting NCT01239134 Stage III/IV melanoma Solid
tumors

MK-4166 GITR Phase 1 Recruiting NCT02132754 Solid tumors

Varlilumab CD27 IgG1 Phase 1 Recruiting NCT01460134 B-cell malignancies
CDX-1127 Solid tumors

Phase 1 Recruiting NCT02284971 Prostate cancer
Phase 1/2 Recruiting NCT02335918 NSCLC, CRC, HNC, OC,

Melanoma

MEDI6469 OX40 Murine Phase 1 Unknown NCT01644968 Advanced cancer
IgG1 Phase 1/2 Recruiting NCT01862900 Metastatic breast, lung and

liver cancer
Phase 1 Recruiting NCT02274155 HNC
Phase 1/2 Recruiting NCT01303705 Prostate cancer
Phase 1/2 Recruiting NCT02205333 Advanced solid tumors

MEDI0562 OX40 IgG1 humanized
Agonist

Phase 1 Recruiting NCT02318394 Solid tumors

CP-870,893 CD40 IgG2 Phase 1 Completed NCT01103635 Recurrent/IV melanoma
Agonist Phase 1 Completed NCT00607048 Neoplasms

Phase 1 Completed NCT02225002 Advanced solid tumors
Phase 1 Active NCT01008527 Melanoma
Phase 0 Completed NCT02157831 Solid tumors
Phase 1 Completed NCT01456585 Adenocarcinoma
Phase 1 Completed NCT00711191 Pancreatic neoplasm

PG102
FFP104

CD40 IgG4
Antagonist

Terminated
(poor recruitment)

NCT00787137 Psoriatic arthritis

Lucatumumab HCD122 CD40 IgG1
Antagonist

Phase 2
Phase 1

Completed
Terminated

NCT00231166
NCT00108108

Multiple myeloma
CLL

Chi Lob 7/4 CD40 IgG1 chimeric
Agonist

Phase 1 Completed NCT01561911 Cancer, lymphoma

ASKP1240 CD40 IgG4
Antagonist

Phase 1
Phase 2
Phase 2

Completed
Completed
Active

NCT01565681
NCT01585233
NCT01780844

Healthy volunteers
Psoriasis
Kidney transplantation

Enavatuzumab PDL192 Fn14 IgG1
humanized

Phase 1 Completed NCT00738764 Advanced solid tumors

Conatumumab AMG655 TRAILR2/DR5 IgG1
Agonist

Phase 1b
Phase 1b/2
Phase 1b/2
Phase 1b/2
Phase 1b/2
Phase 1b/2
Phase 2
Phase 2
Phase 1b/2

Completed
Completed
Terminated
Completed
Completed
Completed
Completed
Ongoing
Completed

NCT00791011
NCT00625651
NCT00819169
NCT00626704
NCT00534027
NCT00630552
NCT00813605
NCT01327612
NCT00630786

Lymphoma
CRC
Solid tumors
Sarcoma
NSCLC
Pancreatic cancer
Metastatic CRC
Solid tumors, lymphoma
CRC

Lexatumumab HGS-ETR2 TRAILR2/DR5 IgG1
Agonist

Phase 1 Completed NCT00428272 Sarcoma neuroblastoma

TNF receptor activation by antibodies
H Wajant

1734

Cell Death and Differentiation



antibody complexes and thus on receptor2–antibody chain/
cluster formation.
The overwhelming importance of the intrinsically limited

activity of soluble TNFSF ligand trimers and dimeric anti-
TNFRSF receptor antibodies for the development of TNFRSF
receptor-targeting therapeutic concepts becomes particularly

apparent in the development of TRAIL death receptor-
targeting drugs. TRAIL has been initially identified due to its
homologies to TNF. TRAIL binds to five different receptor
types that all belong to the TNFRSF receptor family: TRAILR1
to TRAILR4 and osteoprotegerin (OPG). While TRAILR3,
TRAILR4 and OPG act as membrane-associated or soluble

Table 4 (Continued )

Antibody Target Isotype Status ID Condition

Mapatumumab HGS-ETR1 TRAILR1/DR4 IgG1
Agonist

Phase 2
Phase 2

Completed
Completed

NCT00092924
NCT00094848

NSCLC
NHL

Tigatuzumab TRAILR2/DR5 IgG1 humanized Phase 1 Completed NCT01220999 CRC neoplasms
CS-1008 Agonist Phase 2 Ongoing NCT01307891 Breast cancer

Phase 2 Terminated NCT00969033 Metastatic CRC
Phase 2 Completed NCT00991796 NSCLC
Phase 2 Completed NCT00521404 Pancreatic cancer
Phase 2 Completed NCT00945191 OC
Phase 1 Completed NCT01124630 Metastatic CRC
Phase 2 Ongoing NCT01033240 Liver cancer
Phase 1 Completed NCT00320827 Malignancies, lymphoma

Drozitumab TRAILR2/DR5 IgG1 Phase 2 Terminated NCT00543712 Chondrosarcoma
PRO95780 Agonist Phase 2 Completed NCT00480831 NSCLC

Phase 1 Completed NCT00497497 CRC
Phase 2 Completed NCT00517049 NHL
Phase 1 Completed NCT00851136 Metastatic CRC

LBY135 TRAILR2/DR5 IgG1 chimeric
Agonist

Sharma
et al.159

Advanced solid tumors

TAS266 TRAILR2/DR5 Tetrameric nanobody Phase 1 Terminated NCT01529307 Advanced solid tumors

Abbreviations: CLL, chronic lymphocytic leukemia; CRC, colorectal cancer; HNC, head and neck cancer; NHL, non-Hodgkin lymphoma; NSCLC, non-small cell lung
cancer; OC, ovarian cancer

Figure 3 TNFRSF receptor activation by oligomerized and FcγR-bound dimeric antibodies. The binding of two TNFRSF molecules by a bivalent antibody may lead, to some
extent, to the recruitment of TNFRSF-associated proteins but with lower efficiency than in the case of stimulation by trimeric ligand. There is, however, no transactivation of
TNFRSF receptor3-associated signaling complexes. Optimal recruitment of adapter proteins as well as transactivation of receptor-bound effector molecules, thus full receptor
activation, only occurs after secondary crosslinking of antibody–TNFRSF receptor2 complexes by protein A or G or secondary antibodies (a) or can be promoted by the self-affinity
of the TNFRSF receptors when there is assistance by the spatial and mobility constraints given by binding to plasma membrane localized FcγRs (b)
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decoy receptors, TRAILR1 and TRAILR2 are typical repre-
sentatives of the death receptor type of TNFRSF receptors.71

Early on, it has been observed that TRAIL triggers apoptosis in
a variety of transformed cell lines but not or only rarely in
non-transformed cell types. Accordingly, there were/are
considerable efforts of a variety of research groups and
companies to develop TRAIL death receptor-targeting ther-
apeutics for tumor treatment.71 Indeed, recombinant soluble
TRAIL (Dulanermin) and several TRAIL death receptor-
specific antibodies have been subjected to clinical trials
(Table 4). As monotherapy but also in combination with other
anticancer drugs, all these TRAIL death receptor-targeting
therapeutics have found to be well tolerated to date.71

Unfortunately, however, there was also no or quite limited
clinical efficacy. From the beginning a variety of in vitro studies
demonstrated that oligomerization potentiates the activity of
soluble TRAIL (e.g., Schneider et al.72 and Wiley et al.73) and
TRAILR1/2 targeting antibodies (see above). Thus, the TRAIL
death receptor-targeting reagents tested so far in the clinic
obviously failed to unleash the full apoptotic activity of the two
TRAIL death receptors and the poor therapeutic activity, but
also the excellent tolerability, is therefore perhaps no real
surprise. It is noteworthy that in accordance with the already
discussed fact that poorly active soluble TNFSF ligand trimers
can co-operate with barely active TNFRSF receptor-specific
antibodies to trigger maximal receptor activation, it has been
recently shown in vitro and in vivo that co-treatment with
soluble TRAIL and the TRAILR2-specific antibody AMG655
(Conatumumab) results in enhanced apoptosis induction and
improved antitumor responses.74,75 Soluble TRAIL and the
murine TRAILR2-specific antibody MD5-1 also synergistically
induce cell death in vitro in various murine cell lines.74 More
importantly, the combined treatment with these reagents
showed superior antitumor activity and good tolerability
in vivo.74 This suggests that it is possible to target at least
TRAILR2 with highly active agonists without paying with
detrimental off-target effects.

TNFRSF Receptor Activation by Fcγ Receptor-Bound
Antibodies

TNFRSF receptor-specific bivalent antibodies not only resem-
ble soluble TNFSF ligands with respect to the agonistic
activity-potentiating effect of oligomerization but also mirror
the differential ability of soluble and membrane-bound TNFSF
ligands to activate certain types of TNFRSF receptors. Similar
to soluble TNFSF ligand fusion proteins that functionally
mimic membrane TNFSF ligands upon anchoring to cell
surface-exposed molecules (Figure 3b), antigen-bound
antibodies naturally anchor to certain cell types in an
antigen-independent manner by interaction with Fc receptors
recognizing the constant parts of antibodies. For the clinically
most important IgG isotypes, there are five human and four
murine Fc receptors, the so-called Fcγ receptors (FcγR;
Table 5) that are expressed to a varying extent on B cells and
myeloid cell types.76,77 After binding of antigen–antibody
complexes the activatory Fcγ receptors (human: FcγRI,
FcγRIIA, FcγRIIC, FcγRIIIA, FcγRIIIB; murine: FcγRI, FcγRIII,
FcγRIV) trigger immune effector functions, such as cytokine
release, phagocytosis, antibody-dependent cellular cyto-

toxicity (ADCC) and complement-dependent cytotoxicity
(CDC). The activity of these activatory Fcγ receptors is
antagonized by the inhibitory FcγRIIB.76,77 There is now broad
in vitro and in vivo evidence that Fcγ receptor-bound
antibodies display strongly enhanced agonistic activity.
Crystallographic studies showed that a single IgG molecule
interacts with a single FcγR molecule78–82 arguing against
activation of TNFRSF receptors by sole FcγR-mediated cross-
linking of receptor2–antibody complexes as discussed above
for protein A and secondary antibodies. Instead, it is tempting
to speculate that in analogy to membrane-bound TNFSF
ligands and cell surface anchored fusion proteins of soluble
TNFSF ligands, the plasmamembrane-associated spatial and
mobility constraints of FcγR-bound antibodies assist TNFRSF
receptor self-affinity driven clustering of receptor2–antibody
complexes (Figure 3b).
The potential relevance of FcγR binding for TNFRSF

antibody activity in vivo became already indirectly obvious in
the early studies with antibody class switch variants of
the CD95 targeting APO-1 antibody. While it turned out
that the IgG2b isoform of APO-1 is inactive in vitro, it
nevertheless displayed significant antitumor activity in vivo.53

Although, it was not clarified in an early report to which extent
antibody-dependent effector functions, such as ADCC and
CDC, and FcγR binding-dependent agonistic activity of APO-1
IgG2b contributed to the antitumoral effect, in vitro studies
performed with the hamster IgG2 anti-mouse CD95 mAb Jo2
revealed later strong FcγR binding-dependent agonistic
activity.83 Most importantly, however, in vivo studies with Jo2
and various mice strains with defective expression of one or
more FcγRs revealed a crucial role of the inhibitory FcγRII
receptor in Jo2-induced hepatotoxicity, the deadly hallmark
of systemic CD95 activation.84,85 This straightforwardly
showed for the first time that the FcγR binding-dependent
agonistic activity of a TNFRSF receptor-specific IgG antibody,
and thus receptor activation, is decisive for the observed
in vivo effects.
Some important factors that determine the FcγR binding-

dependent agonistic activity of TNFRSF receptor-specific
antibodies have been revealed in recent years in preclinical
studies by investigating the mode of action of CD40- and
TRAILR2-specific antibodies by help of FcγR-deficient mice
and FcγR discriminating antibody panels. In a vaccination
model where the mouse CD40-reactive rat anti-CD40 IgG2a
mAb 1C10 has been used as an adjuvant, Li and Ravetch86

observed abrogation of CD40-dependent T-cell expansion/
activation and antitumor activity in mice without the common
Fc receptor γ (FcRγ) chain. As all three activating FcγRs in
mice require the common FcRγ chain for expression and
signaling, this observation pointed to a crucial role of the
remaining inhibitory FcγRII for the adjuvant activity of 1C10
and ruled out a major role of ADCC. In line with the idea of a
FcγRII-dependent mode of CD40 activation, it turned out
furthermore that 1C10-derived Fab2 preparations and a
deglycosylated form of 1C10, thus 1C10 variants that fail to
interact with Fcγ receptors, elicit no adjuvant activity in this
model, too.86 Similar findings were made with 3/23, another
murine CD40-specific rat IgG2a. A chimeric murine IgG1
variant of 3/23, which significantly binds to FcγRII and the
activating FcγRIII, showed in vitro and in vivo strong
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stimulatory effects on antigen-presenting cells (B cells,
dendritic cells) that are indicative for CD40 activation.87 In
contrast, a chimeric murine IgG2a variant of 3/23 displaying
strong binding to the murine activating Fcγ receptors but only
poor binding to FcγRII showed no or only marginal immune
stimulatory activities.87 Analogous results were also revealed
in studies with the murine TRAILR2/DR5-specific hamster
IgG2 antibody MD5-1 and the human TRAILR2/DR5-specific
human IgG1 Drozitumab.88,89 Again, the activating FcγRs
were found to be dispensable for agonistic antibody activity
in vivo. A murine IgG1 variant of Drozitumab, which does
not interact with FcγRIV, retained antitumoral activity in
FcγRI/FcγRIII double deficient mice.89 Similarly, the well-
documented mouse strain-specific hepatotoxicity and tumor-
icidial activity of MD5-190,91 was completely abrogated in
FcγRII mice.88 Moreover, Fc domain mutants of MD5-1 and

Drozitumab devoid of FcγR binding lost in vivo activity and a
variant of MD5-1 with enhanced binding to human FcγRIIB
showed improved activity in FcγRII KO mice with a human
FcγRIIB transgene.88

It is worth note that upon immobilization on plastic the
aforementioned murine 3/23 chimeras were highly effective
with respect to triggering CD40 activation irrespective of their
FcγR preferences.87 In vitro studies with cells expressing a
cytoplasmic deletion mutant of FcγRII indicated furthermore
that triggering of intracellular signaling pathways is dispen-
sable for FcγRII to unleash the agonistic activity of 3/23.87 Last
but not least, it has been shown that all the activating FcγRs
also promote CD40 activation by anti-CD40 IgGs and
TRAILR2 activation by Drozitumab in vitro and a similar
FcγR type-independent enhanced activity of FcγR-bound IgGs
have also been reported for Fn14-specific antibodies.24,68,87,89

Table 5 Fcγ receptors
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bSee Luo et al.160
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fSee White et al.87
gsee White et al.164
hH131 allele of FcγRIIA
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lHuman FcγRIIIB variant NA1 (R36 N65 D82 V106)
mHuman FcγRIIIB variant NA2 (S36 S65 N82 I106)
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At the first glance, in sum these data suggest that the sole
binding of dimeric antibodies to cell surface-expressed
molecules or a plastic surface is sufficient to enable these
molecules to activate TNFRSF receptors. However, this
simple view is challenged by the observation that inhibitors
of the actin cytoskeleton strongly inhibit the receptor-
stimulating activity of CD95- and DR5-specific IgG antibodies
without affecting their binding to FcγRs.83,89

Against the background that binding to all FcγR types is
sufficient to confer strong agonistic activity to TNFRSF
receptor-specific antibodies in vitro, it is tempting to speculate
that the observed dominant role of the inhibitory FcγRII in vivo
reflects its better bioavailability compared with the activating
FcγRs. In further accordance with the idea that the available
number of Fcγ receptors is important for the in vivo activity of
dimeric anti-TNFRSF receptor antibodies, Li and Ravetch92

reported that the agonistic in vivo activities of the CD40-
specific 1C10 and the TRAILR2-specific mAb MD5-1 are
abrogated not only in FcγRII KOmice but also in heterozygous
FcγRII animals.
Taken together, FcγR-bound bivalent antibodies display

high, membrane-bound TNFSF ligand mimicking TNFRSF
receptor-stimulating activity and resemble in this regard
extracellular matrix-bound soluble TNFSF ligands and soluble
TNFSF ligand fusion proteins that have been anchored to a
cell surface-expressed molecular target. Of course, this does
not mean that ‘conventional’ Fc effector activities of anti-
bodies, such as ADCC or CDC, are unimportant for the in vivo
effects of TNFRSF receptor-specific antibodies. Indeed, the
antitumoral activity of IgGs targeting the costimulatory
TNFRSF receptors GITR and OX40 have been found to
be dominated by ADCC of tumor-associated regulatory
T cells.93,94

Conclusion and Perspective

The knowledge accumulated in recent years on the relevance
of valency, oligomerization and FcγR binding for the agonistic
activity of TNFRSF receptor-targeted antibodies will certainly
improve the rational design of antibody-derived TNFRSF
receptor agonists but will also help to avoid pitfalls. The
agonism-generating effects of oligomerization and FcγR
binding are also of obvious relevance for the development of
antagonistic ligand binding-blocking TNFRSF antibodies.
Corresponding efforts have not only to avoid the use of
antibody variants that bind FcγRs but must also ensure lack of
immunogenicity to prevent the development of cross-linking
secondary antibodies.
The recognition of the overwhelming importance of FcγRII/

FcγRIIB binding for the agonistic activity of most TNFRSF
receptor-specific IgGs may revitalize/enhance efforts to target
the TRAIL death receptors in cancer therapy with antibody
variants with FcγRIIB-binding properties superior to the
antibodies used so far. In cases where FcγRIIB anchoring
has its limitations, for example, due to poor bioavailability of
FcγRIIB expressing cells, artificial oliogmerization of TNFRSF
receptor-specific antibodies or antibodies fragments may
deliver an alternative solution to overcome the poor agonistic
activity of conventional IgGs. Indeed, high, secondary
oligomerization-independent activity has been described for

trimeric, tetrameric and pentameric TRAILR2/DR5-specific
nanobody/scFv variants.95,96 A first clinical trial with the
tetravalent nanobody TAS266 revealed reversible
hepatoxicity.97 Thus, multivalent highly active TRAILR2-
targeting antibody constructs may offer the promise of
increased antitumoral activity but there is also a need to
reconsider the possible side effects of systemic TRAILR2
activation when potent agonists are used in vivo.
The relevance of oligomerization and FcγRIIB anchoring for

the agonistic activity of bivalent TNFRSF receptor-specific
antibodies has been clearly recognized yet and corresponds
very well with current concepts of TNFRSF receptor activation
by secondary interaction of TNFSF ligand3–TNFRSF recep-
tor3 complexes. Oligomerization and FcγRIIB anchoring of
bivalent antibodies, however, are presumably not the only
factors that determine agonistic activity of TNFRSF-specific
IgGs. There are at least two basal observations that cannot be
straightforwardly integrated in a TNFRSF receptor activation
model where oligomerized and cell surface-anchored IgGs
promote the clustering of TNFSF ligand3–TNFRSF receptor3
complexes. First, only just, an unexpected, clinically poten-
tially relevant, FcγR binding-independent agonistic activity has
been observed for CD40-targeting human IgG2 isoform B
antibodies.98 Here, future studiesmust showwhether this type
of bivalent antibody indeed activates TNFRSF receptor-
associated pathways without TNFRSF receptor clustering or
have to clarify how this antibody type triggers TNFRSF
receptor clustering without an obvious capacity to auto-
aggregate and without evidence for antigen-independent cell
surface binding. Second, it is currently not understood why the
agonistic activity of FcγR-bound CD95- and TRAILR2/DR5-
specific IgG antibodies is abrogated by pretreatment of the
FcγR-expressing cells with actin inhibitors although this do not
interfere with antibody binding.83,89
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