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Transplant-associated thrombotic microangiopathy:
opening Pandora’s box
E Gavriilaki1,2, I Sakellari1, A Anagnostopoulos1 and RA Brodsky2

Transplant-associated thrombotic microangiopathy (TA-TMA) is an early complication of hematopoietic cell transplantation (HCT).
A high mortality rate is documented in patients who are refractory to calcineurin inhibitor cessation. Estimates of TA-TMA
prevalence vary significantly and are higher in allogeneic compared with autologous HCT. Furthermore, our understanding of the
pathophysiology that is strongly related to diagnosis and treatment options is limited. Recent evidence has linked TA-TMA with
atypical hemolytic uremic syndrome, a disease of excessive activation of the alternative pathway of complement, opening the
Pandora’s box in treatment options. As conventional treatment management is highly inefficient, detection of complement
activation may allow for early recognition of patients who will benefit from complement inhibition. Preliminary clinical results
showing successful eculizumab administration in children and adults with TA-TMA need to be carefully evaluated. Therefore,
realizing the unmet needs of better understanding TA-TMA in this complex setting, we aimed to summarize current knowledge
focusing on (1) critical evaluation of diagnostic criteria, (2) epidemiology and prognosis, (3) recent evidence of complement
activation and endothelial damage and (4) treatment options.
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INTRODUCTION
Transplant-associated thrombotic microangiopathy (TA-TMA)
represents a life-threatening complication following hemato-
poietic cell transplantation (HCT).1–9 The syndrome presents
with features of TMA including thrombocytopenia, nonimmune
hemolytic anemia, peripheral blood schistocytes and often other
end-organ damage to the kidneys and central nervous system.
The onset of renal failure and central nervous system dysfunction
such as seizure, stroke or encephalopathy, accompanied by
hypertension, hemolytic anemia and consumptive thrombocyto-
penia in the absence of coagulopathy, are the classic hallmarks of
the syndrome. Interestingly, this severe clinical manifestation is
not evident in all TA-TMA patients, as a number of them manifest
a syndrome that resolves after withdrawal of calcineurin inhibitors
(CNIs). This fact highlights that our understanding in terms of
diagnosis and pathophysiology remains unclear, although it has
been recognized for decades.
The lack of reliable diagnostic and prognostic markers hampers

prompt clinical management. Recent evidence suggests that the
syndrome manifests as a result of endothelial dysfunction because
of multiple triggers probably in a genetically predisposed
recipient.8,10 In this context, TA-TMA shares common features
with atypical hemolytic uremic syndrome (aHUS), a TMA
characterized by excessive activation of the alternative pathway
of complement, opening Pandora’s box in available therapeutic
options.11 aHUS is treated with a C5 monoclonal antibody that
safely and efficiently inhibits terminal complement inhibition,
eculizumab.12,13 Unlike aHUS, conventional therapeutic interven-
tions in TA-TMA have proven inefficient in refractory cases, leading
to increased mortality rates. Although successful eculizumab
administration has been reported in children and adults with

TA-TMA,14,15 preliminary clinical results need to be carefully
evaluated.
Realizing the unmet needs of better understanding TA-TMA

in this complex setting, we aimed to summarize current
knowledge focusing on (1) critical evaluation of diagnostic criteria,
(2) epidemiology and prognosis, (3) recent evidence of
complement activation and endothelial damage and (4) treatment
options. Accordingly, we performed a systematic MEDLINE search
using the terms: thrombotic microangiopathy, hematopoietic cell
transplantation, prognosis, GvHD, complement activation and
complement inhibition.

CRITICAL EVALUATION OF DIAGNOSTIC CRITERIA
TA-TMA diagnosis relies on clinical criteria proposed by the Bone
Marrow Transplant Clinical Trials Network (BMT-CTN) in 20057 and
the International Working Group (IWG) in 2007.16 Several pitfalls
have been identified in both diagnostic criteria that limit their
diagnostic sensitivity.17,18 First, schistocytosis that is required by
diagnostic criteria may be absent in severe forms of TA-TMA
because of the high vascular permeability and extravasation of
erythrocytes observed in TMA.11 Second, the criterion of normal
coagulation assays that is necessary to exclude disseminated
intravascular coagulation from the differential diagnosis is not
included in the current diagnostic criteria. Third, the CTN
diagnostic criteria require concurrent renal or neurologic dysfunc-
tion for diagnosis of TMA. However, several causes of nephropathy
not relevant to TMA may be recognized in HCT recipients.
In addition, neurologic abnormalities are not as common as in
thrombotic thrombocytopenic purpura (TTP).16,19 Fourth, the IWG
criteria require counting of a schistocyte percentage higher than
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4% that limits their accuracy because of the lack of a standardized
laboratory method for schistocyte counting. Finally, many patients
manifest TMA early after bone marrow transplant at a time when
their reticulocyte count is low from the conditioning regimen and
their transfusion burden is still high, making classic microangio-
pathic findings on the bloods smear inconspicuous. To overcome
these limitations, Cho et al.18 have introduced the entity of
probable TMA that requires normal coagulation studies, schisto-
cytes higher than 2 per high-power field but does not require
renal or neurologic dysfunction.
Based on their work on TA-TMA pathophysiology in children

and young adults, Jodele et al.8 have recently proposed an
algorithm for TA-TMA diagnosis. According to this algorithm,
clinical criteria for TA-TMA diagnosis are the following: lactate
dehydrogenase above normal, presence of schistocytes or
histological evidence of TMA, thrombocytopenia, proteinuria and
hypertension. Acute elevation of lactate dehydrogenase,
proteinuria 430 mg/dL and hypertension more severe than
expected with calcineurin or steroid therapy, usually requiring
42 antihypertensive medications should raise clinical suspicion
for TA-TMA and be further investigated. Beyond diagnosis, the
same group has also proposed risk criteria for TA-TMA that will be
further discussed in the prognosis section.8 Table 1 summarizes
current diagnostic criteria.
Diversity among diagnostic criteria may lead to difficulty in

understanding clinically important syndromes that require
immediate intensification of treatment. In addition, in the
complicated setting of HCT, cytopenias and organ dysfunction,
such as renal, central nervous system and hepatic, are relatively
common and multifactorial. Common causes are drugs, infection,
or GvHD, making the diagnosis of TA-TMA even more difficult.
Furthermore, these criteria are strictly descriptive and do not take
into account the pathophysiology of the syndrome, because of
the absence of robust diagnostic testing. Therefore, updated
consensus criteria that would overcome the existing limitations
and take into account recent research findings are warranted.

EPIDEMIOLOGY AND PROGNOSIS
The lack of solid diagnostic criteria and testing hampers accurate
estimation of prevalence that vary significantly among studies.
TA-TMA is less common in autologous than in allogeneic HCT
(0–27% in autologous compared with 6–76% in allogeneic).1–9,19,20

TA-TMA is considered an early HCT complication that occurs
usually within the first 3 months, but late episodes (up to 2 years)
have also been described.21,22

TA-TMA was first recognized in 1980, as a side effect of
cyclosporine administration for GvHD prophylaxis in allogeneic
HCT.23 Since then, CNIs have been linked to the syndrome and are
immediately withdrawn after TA-TMA diagnosis. Other clinical
studies have identified a number of additional risk factors for

TA-TMA: age, donor type, conditioning regimen, mTOR (mechan-
istic target of rapamycin) inhibitors, acute GvHD and
infections.1,2,4,6,24–27 Interestingly, the presence of GvHD is the
common denominator in many studies suggesting that successful
prevention and treatment strategies for GvHD need to be timely
employed. However, the exposure to these factors following
allogeneic HCT in all patients is high, making their role in
pathogenesis difficult to determine. It is not clear whether one
factor alone can trigger the manifestation of TMA in HCT
recipients. For example, CNI withdrawal does not reliably reverse
TA-TMA. In addition, CNI administration in diseases, such as
aplastic anemia or red cell aplasia, does not cause TMA.28

Prognosis is poor with a high mortality rate of roughly
50–75%.1–9,29 The prognostic role of schistocytosis percentage
remains controversial.17,30,31 Nevertheless, accumulating evidence
strengthens the role of renal dysfunction as a poor prognostic
factor linked to lower survival rates.8,18,19 Recently, Jodele et al.8

proposed that patients with proteinuria 430 mg/dL and evidence
of terminal complement activation (elevated soluble C5b-9) have
poor prognosis and require immediate therapeutic interventions.

EVIDENCE OF EXCESSIVE COMPLEMENT ACTIVATION AND
ENDOTHELIAL DAMAGE
Complement activation
An initial obstacle to our understanding of the syndrome has been
its limited association with deficiency of the plasma protease
ADAMTS13 (a disintegrin and metalloprotease with thrombos-
pondin type 1 motif, 13). Severe ADAMTS13 deficiency (usually
defined as o10%) is observed in TTP and is best treated with
plasma exchange.32,33 In a number of TA-TMA studies, ADAMTS13
has not proven a useful marker or predictor of the disease.34,35

This evidence is in line with the observation that TA-TMA is
generally unresponsive to therapeutic plasma exchange.9,36

As our understanding of aHUS has evolved, TA-TMA seems to
resemble more aHUS than other TMAs. Indeed, Laskin et al.11 have
concisely reviewed the analogies between TA-TMA and aHUS in
terms of pathophysiological and clinical evidence available until
2011. aHUS is most commonly caused by defects in the regulation
of the alternative pathway of complement. These defects are
usually inherited, including mutations in complement factor H
(CFH) and complement factor I (CFI), complement component C3,
membrane cofactor protein or thrombomodulin, but may also be
acquired, such as autoantibodies to CFH.37,38 Interestingly enough,
genetic mutations are found in 50–60% of patients diagnosed
with aHUS and triggers are considered crucial for the manifesta-
tion of the disease (two-hit hypothesis).37,39

Similarly, accumulating evidence of complement activation has
been recently reported in TA-TMA of children and young adults.
Jodele et al.40 have identified abnormalities in CFH-related genes
(CFHR) and autoantibodies to CFH, a major regulator of the APC, in

Table 1. Comparison of current diagnostic criteria of TA-TMA

BMT-CTN criteria IWG criteria Probable TMA (Cho et al.18) Criteria by Jodele et al.8

Schistocytes 42 Per high-power field 44% 42 Per high-power field Present
Elevated LDH + + + +
Thrombocytopenia − + + +
Decreased Hb or increased red cell transfusion − + + +
Negative Coombs test + − + −
Decreased haptoglobin − + + −
Renal and/or neurologic dysfunction + − − Proteinuria/hypertension
Normal coagulation studies − − + −
Elevated soluble C5b-9 − − − +

Abbreviations: BMT-CTN=Bone Marrow Transplant Clinical Trials Network; Hb=hemoglobin; IWG= International Working Group; LDH= lactate
dehydrogenase; TA-TMA= transplant-associated thrombotic microangiopathy; ‘+’= required; ‘− ’=not specified.
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six children with TA-TMA following HCT. If the two-hit hypothesis
of the aHUS is true for TA-TMA, genetic susceptibility may be the
first required hit for the development of the syndrome. A recent
prospective study of the same cohort has tested variants of genes
involved in complement activation before and after transplant.
This study provided evidence of pretransplant genetic suscept-
ibility in 65% of patients who developed TA-TMA. In addition,
variants in three or more genes were associated with increased
mortality.10 Although the functional role of gene variants was
evaluated in a subset of patients, connection of genotype to
phenotype needs to be further investigated. Complement-related
variants implicated in the pathophysiology of TA-TMA by
these studies are presented in Table 2. Ethnic differences in
complement-related variants may also explain differences in TMA
occurrence.
Reliable markers of complement activation have been a long-

standing need in the field of TMAs. Recently, products of terminal
complement activation, that is, C5a and soluble C5b-9 or
membrane attack complex, have been compared in aHUS and
TTP. Although C5a and C5b-9 plasma levels were increased in
aHUS, these markers were not reliable in distinguishing the two
diseases and do not have clear cutoff values.41 However, serum
C5b-9 levels have been included in a diagnostic algorithm for the
evaluation of TA-TMA.8 In an effort to develop a rapid and simple
in vitro diagnostic assay for aHUS, we have recently modified the
Ham test, traditionally used for diagnosis of paroxysmal nocturnal
hemoglobinuria. The principle of the Ham assay is that paroxysmal
nocturnal hemoglobinuria cells are more vulnerable to acidified
serum that serves to activate complement.42 The modified Ham
test utilizes paroxysmal nocturnal hemoglobinuria-like cell lines
that are susceptible to complement-mediated cell death induced
by activated serum, such as the aHUS serum. Results in aHUS have
been promising, showing that the modified Ham test effectively
distinguishes aHUS from TTP.43 Except for aHUS, the modified
Ham test has also successfully detected increased complement
activation in typical HUS44 and HELLP (hemolysis, elevated liver
enzyme levels, and low platelet levels) syndrome.45 Preliminary
data utilizing the modified Ham test have also shown increased
complement activation in TA-TMA patients compared with other
HCT recipients.46 However, these data need to be further validated
in larger TMA cohorts.

Other mechanisms of endothelial damage
Beyond complement-induced endothelial damage, HCT recipients
are vulnerable to endothelial injury by a number of clinical factors,
including CNI and/or mTOR inhibitors, GvHD and infections.

CNI and/or mTOR inhibitors. Cyclosporine, sirolimus and
tacrolimus are widely used immunosuppressants in both
hematopoietic cell and organ transplantations. Endothelial dys-
function predisposing to TA-TMA is evident post treatment with
these agents,47,48 although mechanistic evidence relies basically in

renal transplant studies. It is well known that CNIs decrease
prostacyclin, nitric oxide and activated protein C and increase
thromboxane A2 and endothelin.49–51 More recent studies have
shown an increase of endothelial cell progenitors, induction of
endothelial cell apoptosis and dysregulation of metalloproteinases
in endothelial cells.52–55 Interestingly, thrombomodulin, a protein
also involved in complement regulation, has been documented to
protect from cyclosporine-induced vascular damage.56 In HCT
recipients, tacrolimus and sirolimus had a proinflammatory effect,
but only cyclosporine exhibited an additional prothrombotic
effect.57

GvHD. The endothelium has been long considered a key
mediator of end-organ damage in acute and chronic GvHD.58–60

Furthermore, endothelial cell vulnerability and dysfunction
may also contribute to steroid refractoriness in GvHD.61,62

More recent studies also support the importance of vascular
alterations in GvHD.63,64 Similar to the above-mentioned study on
cyclosporine, the complement regulator thrombomodulin exerts
beneficial effects on immune GvHD too.65

Table 2. Complement-related variants implicated in the pathophysiology of TA-TMA

Genes Mechanism of actions Site of dysregulation Clinical relevance in aHUS

Complement factor H (CFH) Complement regulator Serum and membrane Yes
Complement factor I (CFI) Complement regulator Serum Yes
Thrombomodulin (THBD) Complement regulator Membrane Unknown
CD46 or membrane cofactor protein (MCP) Complement regulator Membrane Unknown
CD55 Complement regulator Membrane Not dysregulated
Complement factor B (CFB) Complement activator Serum Yes
C3 Complement activator Serum Yes
C5 Complement activator Serum Yes

Abbreviations: aHUS= atypical hemolytic uremic syndrome; TA-TMA= transplant-associated thrombotic microangiopathy.

TA-TMA Diagnosis

ADAMTS13% testing
Complement studies
(genetic or functional)

Consider
TPE (x4-5)

Evaluate response / ADAMTS13 %
/ complement testing

ADAMTS13≤10% (rare)
Antibodies to CFH

Continue TPE
Intensify

immunosuppression
(if necessary)

Consider
eculizumab
treatment

poor response or
positive complement

 testing or renal
involvement

Stop CNI/mTOR inhibitors
Control infection / GVHD

Figure 1. Algorithm for TA-TMA management. Complement studies:
complement-related genetic mutations or functional assays
(serum C3, C4, C5b-9); CFH, complement factor H; CNI, calcineurin
inhibitor; GVHD, graft-versus-host disease; mTOR, mechanistic target
of rapamycin; TA-TMA, transplant-associated thrombotic microan-
giopathy; TPE, therapeutic plasma exchange.
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Infections. The pathophysiology linking infections to TA-TMA is
not well defined. It possibly involves both complement activation
and endothelial dysfunction through the cytokine storm. An
interesting finding in the field is that neutrophil extracellular traps
have been found increased in TA-TMA patients.66

TREATMENT OPTIONS
Conventional management
Conventional management of TA-TMA has been unsatisfying, with
resultant high mortality rates in patients not responding to CNI
cessation. Available treatment strategies require first the with-
drawal of CNIs or mTOR inhibitors. Second, treating physicians
need to optimally control GvHD or concomitant infections that are
common in TA-TMA patients. Among infectious agents, Aspergillus,
CMV and adenovirus have been mostly implicated in TA-TMA.1,6,9

The next steps in conventional management depend largely
on availability of relevant testing (ADAMTS13 activity, comple-
ment testing) and the center’s policy. Plasma exchange has been
traditionally considered the standard of care in TMA and
continues to be used in many centers. Theoretically, plasma
exchange would be efficient only in patients with ADAMTS13
deficiency or antibodies to CFH.67,68 Interestingly, Jodele and
colleagues11 in a study of a small pediatric cohort have suggested
that earlier the initiation of plasma exchange the better. It has
also been hypothesized that plasma exchange might provide
additional benefit by removal of excessive complement proteins,
inflammatory cytokines or circulating endothelial cells.
However, the role of plasma exchange is largely questioned.

A number of studies have shown poor survival in TA-TMA patients
managed with plasma exchange, despite initial responses that
may also be attributed in part to CNI or sirolimus withdrawal.69–74

It should also be noted that clinical and laboratory estimation of
response to plasma exchange is particularly difficult in HCT
recipients. In addition, comorbidities such as severe GvHD or
infection might also contribute to morbidity and mortality in
these patients. Finally, it is difficult to use plasma exchange
simultaneously with novel agents, such as eculizumab, because
the dosage of the agents needs to be readministered after each
session.
In refractory TA-TMA cases, intensification of immunosuppres-

sive treatment is often recommended. In particular, rituximab, an
anti-CD20 antibody, has been successfully used in refractory TTP
and other TMA cases, although some patients still remain
refractory as shown by a recent phase-II study in nontransplant
patients.75 In TA-TMA, successful rituximab administration has also
been reported.76,77 Alternative agents used for refractory cases
also include defibrotide and daclizumab. Based on its beneficial
effects against endothelial dysfunction, a polydisperse oligonu-
cleotide, defibrotide, has promising results in TA-TMA as reported
by retrospective studies.6,78,79 Limited reports also exist on the
potential benefits of daclizumab, a humanized antibody against
interleukin-2 receptor, in patients with TA-TMA and GvHD.80

Complement inhibition
More recently, complement inhibition has been introduced as a
novel treatment strategy for complement-mediated diseases. The
first-in-class complement inhibitor, eculizumab, is a monoclonal
antibody that binds C5 and effectively inhibits the formation
of membrane attack complex/C5b-9. Terminal complement
inhibition by eculizumab is highly effective and FDA (Food and
Drug Administration) approved for treating aHUS.12,13 However,
given the lack of a definitive diagnostic assay and the high cost of
the drug therapy is often delayed or not administered.
Favorable outcomes of eculizumab treatment have also been

described in patients with TA-TMA. Retrospective evaluation of 12
patients who received eculizumab by the French group has shown

hematological response and overall survival at 50% and 33%,
respectively.81 It should be noted that eculizumab dosage was
appropriate in all patients as measured by total hemolytic
complement activity. As pointed out by the authors, results are
encouraging compared with mortality rates in the pre-eculizumab
era, and early initiation of eculizumab treatment may be even
more promising. TMA resolution after early administration of
eculizumab has also been documented in case reports.82,83

A more recent case series has reported response to eculizumab
in four out of five adult TA-TMA patients achieving transfusion
independence and improvement in renal function.15 However, the
nonresponder and one responder to eculizumab succumbed to
fatal infections. In the pediatric cohort, Jodele et al.14 reported
safety of eculizumab administration in 30 pediatric HCT recipients
with TA-TMA, even without meningococcal vaccination in the
early post transplant period. TMA-related mortality was observed
in only 4 out of 30 patients.14 This group adjusted eculizumab
dosing using total complement activity (CH50) and terminal
complement activation (sC5b-9) monitoring.84 Figure 1 proposes
an algorithm for TA-TMA management.
Beyond eculizumab, novel complement inhibitors are in the

developmental pipeline for complement-related diseases. Among
them, engineered complement receptor 2/factor H fusion protein
TT30,85 members of the peptide C3 inhibitor compstatin family,86

C1 esterase inhibitor C1INH (Cinryze)87 and factor D inhibitors88

are promising in terms of overcoming limitations of eculizumab
observed in treated patients with paroxysmal nocturnal
hemoglobinuria. However, their safety and efficacy remains to
be proven in clinical studies. Furthermore, their potential
usefulness in patients with TA-TMA will be determined when
the role of complement activation in TA-TMA is clarified.

CONCLUSIONS AND FUTURE PERSPECTIVES
In conclusion, TA-TMA remains an unresolved complication of
HCT, leading to increased morbidity and mortality mainly in
allogeneic HCT recipients. Its pathophysiology, diagnosis and
treatment options have not been fully elucidated. In this complex
setting, recent evidence of increased complement activation
needs to be confirmed in larger cohorts utilizing both genetic and
functional assays. Connecting the genotype to phenotype remains
a research challenge in diseases of increased complement
activation. In addition, better understanding of the patho-
physiology may lead to more accurate diagnostic criteria and
targeted treatment. In the era of precision medicine, reliable
detection of complement activation may allow for early initiation
of complement in selected patients and, thus, to improved clinical
outcomes. Patient selection, time of treatment initiation, duration
of treatment, response and impact on survival remain to be
confirmed in future prospective studies of larger cohorts.
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