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Associations between acute gastrointestinal GvHD and the
baseline gut microbiota of allogeneic hematopoietic stem cell
transplant recipients and donors
C Liu1, DN Frank2, M Horch3, S Chau2, D Ir2, EA Horch3, K Tretina3, K van Besien3, CA Lozupone2,4 and VH Nguyen2,3,4

Growing evidence suggests that host-microbiota interactions influence GvHD risk following allogeneic hematopoietic stem cell
transplant. However, little is known about the influence of the transplant recipient’s pre-conditioning microbiota nor the influence
of the transplant donor’s microbiota. Our study examines associations between acute gastrointestinal GvHD (agGvHD) and 16S
rRNA fecal bacterial profiles in a prospective cohort of N= 57 recipients before preparative conditioning, as well as N= 22 of their
paired HLA-matched sibling donors. On average, recipients had lower fecal bacterial diversity (P= 0.0002) and different
phylogenetic membership (UniFrac P= 0.001) than the healthy transplant donors. Recipients with lower phylogenetic diversity had
higher overall mortality rates (hazard ratio = 0.37, P= 0.008), but no statistically significant difference in agGvHD risk. In contrast,
high bacterial donor diversity was associated with decreased agGvHD risk (odds ratio = 0.12, P= 0.038). Further investigation is
warranted as to whether selection of hematopoietic stem cell transplant donors with high gut microbiota diversity and/or other
specific compositional attributes may reduce agGvHD incidence, and by what mechanisms.
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INTRODUCTION
The success of allogeneic hematopoietic stem cell transplantation
(allo-HSCT) remains limited by GvHD. Even among transplants
sourced from ‘gold standard’ donors (HLA-matched siblings),
acute GvHD occurs in 35–45% of recipients,1,2 highlighting the
need to continue investigating GvHD etiology and new strategies
for prophylaxis.
The 16S rRNA sequencing has enabled a dramatic re-evaluation

of the relationships between GvHD and the intestinal bacteria.3–5

The pre-transplant microbiota of recipients has been reported to
approximate the diverse microbiota compositions of healthy
adults before transplant, but becomes dramatically altered
following transplant procedures.6–8 The extent of this ‘disruption’
may contribute to GvHD: lower bacterial diversity9–11 and lower
abundances of specific commensal bacteria like Blautia11 shortly
after transplant have been associated with increased GvHD
incidence and mortality. Mouse experiments further suggest a
possible therapeutic benefit of post-transplant microbiome-based
interventions: butyrate—one of many immunomodulatory short-
chain fatty acids12 produced by commensal bacteria—mitigated
GvHD when administered post transplant in mice.13

Mouse studies have also indicated that manipulation of the pre-
transplant microbiota may have therapeutic potential: pre-
transplant administration of Lactobacillus johnsonii14 and rhamno-
sus GG15 in mice resulted in decreased GvHD. Despite the promise
of these experiments, the focus of most recent human studies has
been the post-transplant time point,9–11,16,17 with relatively few
studies profiling pre-transplant microbiota,6–8 even fewer sam-
pling recipients prior to conditioning,7,18 and of these, none

reporting GvHD as the primary outcome. We hypothesized that
pre-conditioning gut microbiota features in allo-HSCT recipients
are associated with GvHD.
In addition, the influence of the stem cell donor’s microbiota on

GvHD is unknown. Throughout the neonatal period and early life,
the immune system establishes tolerance to ‘self’ through deletion
of self-reactive cells or their differentiation into suppressive
regulatory T cells. The nascent immune system similarly develops
central and peripheral tolerance to the microbiota.19,20 The
tolerance that one individual’s immune system may have for the
microbiota of another is unknown. We speculate that donor
immune cell recognition of the transplant recipient’s intestinal
microbiota as ‘non-self’ contributes to the immune response. Thus,
we examined the hypothesis that acute gastrointestinal GvHD
(agGvHD) is associated with dissimilarity in microbiota composi-
tions between the allo-HSCT recipient and donor.
The donor’s microbiota may also influence GvHD through

mechanisms independent of mismatch with the recipient’s
microbiota. The intestinal bacteria and their products influence
the activation and differentiation of immune cell populations like
regulatory T cells.21–23 This influence occurs not only in the gut,
but also in distant sites including the bone marrow.24–26 In
principle, different donor microbiota may promote different
compositions of transplanted allo-HSCT donor immune cells,
consequently impacting alloreactivity and GvHD. We thus
hypothesized that the composition and diversity of the donor
microbiota itself is associated with GvHD.
To examine these three non-competing hypotheses, we used

16S rRNA gene sequencing to characterize fecal bacterial
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compositions in a pilot prospective cohort of allo-HSCT recipients
and HLA-matched sibling donors at ‘baseline,’ defined respectively
as 0–7 days before preparative conditioning for recipients and
0–7 days before administration of hematopoietic growth factors in
donors. We explored associations between agGvHD incidence and
(1) the diversity and relative abundance of taxa in the baseline
recipient microbiota, (2) donor–recipient microbiota dissimilarity
and (3) the diversity and abundance profiles of the donor
microbiota.

SUBJECTS AND METHODS
Subject recruitment
We prospectively recruited allo-HSCT transplant recipients from the
University of Colorado Hospital between 2012 and 2014. If the transplant
was sourced from an HLA-matched sibling, we also recruited the stem cell
donor. All donors met healthy standards per National Marrow Donor
Program guidelines. Based on pre-established exclusion criteria, we did not
analyze recipients without a baseline (pre-conditioning) fecal sample or
clinical follow-up at +100 days or later (to identify most agGvHD cases).
Ultimately, our study featured 57 recipients and 22 paired donors, a sample
size that enables detection of high effect size microbiota associations
(odds ratios (ORs) ⩾ 2.6 or ⩽ 0.38 with 80% power in the full recipient
cohort; Supplementary File 1). The Multiple Institutional Review Board
approved this study (COMIRB-12-1571). We obtained informed consent for
all subjects.

Transplant regimen and diagnosis
Allo-HSCT recipients received chemotherapy ± radiation prior to transfer of
unmanipulated (that is, no T-cell depletion) hematopoietic stem cell graft
sourced from a sibling, unrelated donor or two cord blood units (double
cord). Low-intensity conditioning was most common: notably, low-dose
TBI at 200 Gy with fludarabine± cytoxan. Each conditioning regimen was
paired with one of four sets of GvHD prophylaxis medications: tacrolimus
or cyclosporine with mycophenolate mofetil or methotrexate. The
following antibiotics were used: Bactrim DS twice daily from day of
admission to Day − 2, levofloxacin 750 mg daily Day +1 until engraftment,
and Bactrim DS twice daily, twice a week from Day +21 through 6 months.
GvHD was diagnosed clinically and graded per the International Bone

Marrow Transplant Registry criteria.27 Half of our agGvHD-positive
diagnoses were also biopsied for confirmation. Further recipient char-
acteristics and transplant outcomes are summarized in Table 1.

Sample preparation and sequencing
We modeled fecal sample collection after the Human Microbiome Project’s
Core Microbiome Sampling Protocol A:28 within 24 h of the baseline clinical
visit, subjects collected stool from a single bowel movement for storage in
a provided cooler containing frozen gel packs. We homogenized stool
samples with a metal spatula under sterile conditions and stored them at
− 80 °C until DNA extraction with the PowerFecal DNA Isolation kit (MO BIO
Inc., Carlsbad, CA, USA), using manufacturer protocols.
We performed broad-range amplification and sequencing of bacterial

16S rRNA genes with previously described methods.29–31 After normalizing
each sample to ~ 106 template/microliter with quantitative PCR,32 we
generated PCR amplicons with barcoded primers33 targeting the V4
hypervariable region of 16S rRNA (primers 534 F: 5′-GTGCCAGCM
GCCGCGGTAA-3′ and 806 R: 5′-GGACTACHVGGGTWTCTAAT-3′). We
sequenced resulting 16S amplicon libraries on the Illumina MiSeq using
the 600-cycle MiSeq Reagent Kit v3 (Illumina, Inc., San Diego, CA, USA). The
paired-end sequencing reads are available from the European Nucleotide
Archive (accession ERP017899).

Bioinformatics pipeline
We translated sequencing reads into gut bacteria composition with
QIIME34 v1.9.1. After filtering reads containing Phred scores o30 or
chimeric sequences detected by USEARCH35 v6.1, we clustered forward
reads into de novo operational taxonomic units36 at a 97% similarity
threshold using UCLUSTref37 v1.2.22q and greengenes38 v13_8. We
translated operational taxonomic units to taxa (for example, genus and
species) using RDP39 v2.2. We constructed a phylogenetic tree of
operational taxonomic units with FastTree40 v2.1.3, to evaluate bacterial

Table 1. Recipient characteristics and transplant outcomes

All recipients ‘Sub-cohort’
(recipients with
recruited donors)

Recipient and transplant characteristics
N 57 22
Age (years) 57.7 (13.2) 56.6 (16.1)
Sex (male) 39 (68.4%) 15 (68.2%)
Obese (BMI ⩾ 30) 18 (31.6%) 6 (27.3%)
Underlying disease
AA 2 (3.51%) 1 (4.55%)
ALL 7 (12.3%) 4 (18.2%)
AML 24 (42.1%) 6 (27.3%)
CLL 4 (7.02%) 2 (9.09%)
CML 3 (5.26%) 0 (0%)
HD 1 (1.75%) 1 (4.55%)
MDS 6 (10.5%) 4 (18.2%)
NHL 5 (8.77%) 2 (9.09%)
TCL 5 (8.77%) 2 (9.09%)

Remission status at transplant
Remission 28 (49.1%) 10 (45.5%)
Refractory/not applicable 29 (50.9%) 12 (54.5%)

Donor HLA-match/relation
Matched related 26 (45.6%) 22 (100%)
Matched unrelated 9 (15.8%) 0 (0%)
Cord/Cord 21 (36.8%) 0 (0%)

Stem cell source
PBSC 33 (57.9%) 21 (95.5%)
Marrow 3 (5.26%) 1 (4.55%)
Cord/cord 21 (36.8%) 0 (0%)

Donor–patient sex match 19 (33.3%) 10 (45.5%)
Exposure to broad-spectrum
antibiotics in 30 days before
samplea

43 (75.4%) 15 (68.2%)

Conditioning regimen
Bu/Cy 7 (12.3%) 4 (18.2%)
Cy/ATG or Cy/TBI 2 (5.26%) 2 (9.10%)
Flu/Cy/TBI 11 (19.3%) 0 (0%)
Flu/Cy/Thio/TBI 7 (12.3%) 0 (0%)

Flu/Mel 5 (8.77%) 4 (18.2%)
Flu/TBI 22 (38.6%) 12 (54.5%)
Flu/Treo/TBI 3 (5.26%) 0 (0%)

Conditioning intensity
Low 24 (42.1%) 13 (59.1%)
Intermediate 24 (42.1%) 4 (18.2%)
High 9 (15.8%) 5 (22.7%)

GvHD prophylaxis
Cyclosporine/methotrexate 2 (3.51%) 1 (4.55%)
Cyclosporine/
mycophenolate

21 (36.8%) 0 (0%)

Tacrolimus/methotrexate 21 (36.8%) 12 (54.5%)
Tacrolimus/mycophenolate 13 (22.8%) 9 (40.9%)

Transplant outcomes
Time to last follow-up (days
after transplant)

145 (121) 173 (153)

Time to engraftment (days
after transplant)
ANC engraftment 20.3 (7.37) 18.5 (6.45)
Platelet engraftment 20.2 (11.1) 12.9 (4.41)

Acute GvHD incidence
Gastrointestinal (primary
outcome)

19 (33.3%) 6 (27.3%)

Skin 12 (22.8%) 5 (22.7%)
Liver 3 (5.26%) 1 (4.55%)

Overall GvHD grading
Grade 0 27 (47.4%) 11 (50%)
Grade 1–2 18 (31.6%) 5 (22.7%)
Grade 3–5 12 (21.0%) 6 (27.3%)

Recipient known to be
deceased

18 (31.6%) 7 (31.8%)
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diversity (phylogenetic diversity index,41 sums total phylogenetic branch
length observed in a subject) and donor–recipient dissimilarities
(unweighted and weighted UniFrac distances42 quantify unique versus
shared phylogenetic tree branch length between two samples). These
quantities were estimated from averages of 1,000 rarefactions at 70,490
reads/sample. Our bioinformatics analyses can be freely reproduced using
Qiita (qiita.ucsd.edu/study/description/10564).

Statistical analysis
We tested for compositional differences between recipients and donors
using the Welch t-test (for mean diversity, single taxa abundances) and
permutational multivariate analysis of variance43 (multivariate UniFrac
distribution; vegan44 R package v2.3-3). To quantify associations between
agGvHD and the microbiota (diversity and taxa relative abundances), we
modeled agGvHD as the outcome in multivariable logistic regression
models (profile likelihood confidence intervals, likelihood ratio test P-
values). Similarly, we used right-censored Cox proportional hazards
regression (survival45 v2.38-3) to evaluate associations between overall
mortality rate and the microbiota (post hoc; details in Supplementary File
2). Before statistical tests on taxa, we grouped operational taxonomic units
at the species level and filtered species observed in fewer than 15% of
subjects or o0.1% maximum relative abundance. Taxa relative abun-
dances were log-transformed and scaled with the z-transformation to
remove order of magnitude differences in interpreting ORs and hazard
ratios.46

Regression models included adjustment for the following covariates:
recipient age (years), obesity (body mass index ⩾ 30 versus o30),
underlying disease (leukemia/other), donor sex-match (yes/no), donor
CMV status (seropositive/seronegative or cord/cord), donor HLA-matched
and related (yes/no), and conditioning intensity (low, reduced and high). At
our center, conditioning intensity is paired with GvHD prophylaxis
medication and stem cell source (PBSC, bone marrow and cord/cord);
thus, we did not explicitly adjust for these two confounders due to
collinearity. As particular antibiotics administered peri- and post transplant
have been associated with GvHD,17,47 we also performed a sensitivity
analysis to examine whether including pre-transplant antibiotic exposures
in models altered our conclusions (Supplementary File 4).

RESULTS
Allo-HSCT recipients exhibit disrupted pre-conditioning
microbiota
We observed substantial variability among baseline recipient
microbiota compositions. Although the microbiota of some
recipients resembled that of the healthy donors, lower bacterial
diversity (Figure 1a; t-test, P= 0.0002) and different phylogenetic
membership (Figure 1b; permutational multivariate analysis of
variance, unweighted UniFrac, P= 0.001) were common. Namely,
recipients had up to 97% relative abundances of facultative
anaerobic bacteria (for example, Enterobacteriaceae, Lactobacilla-
ceae, Enterococcaceae and Streptococcaceae) typical to early
successional or disturbance-associated intestinal communities,48

in lieu of the obligate anaerobes (Bacteroidaceae, Lachnospiraceae
and Ruminococcaceae) considered typical of the distal gut in
healthy American adults49,50 and observed in our donors
(Figure 1c). In formal statistical tests, 58 species differed in
average relative abundance between recipients and donors
(Supplementary File 2).

Baseline recipient diversity is associated with co-morbidities and
mortality
As other centers6–8 have instead reported that the gut microbiota
of recipients resemble those of healthy adults before transplant,
we examined whether baseline recipient diversity was associated
with baseline co-morbidities in our cohort. We were able to
explain only 35% of the variation in recipient diversities using
clinical information (R2 values; Supplementary File 4), but found
lower diversities associated with more severe underlying hema-
tologic disease (using conditioning intensity as a proxy for
severity; analysis of variance Po1 × 10− 4), CMV seropositivity
(t-test; P= 0.006), gastrointestinal and/or hepatic conditions
(P= 0.004), recent microbial infection (P= 0.006) and pre-
baseline antibiotic use (P= 0.003; particularly antibiotics
expected to be disruptive to the gut microbiota; see
Supplementary File 4).
We also found one standard deviation increase in baseline

recipient diversity to be associated with 60% lower overall
mortality rates (Cox regression, P= 0.008; hazard ratio = 0.37,
95% confidence interval 0.18–0.77; causes of death summarized
in Table 1). A significant association persisted after adjusting for
the set of co-morbidities (absence/presence) described above.
Supplementary File 2 describes these analyses and co-morbidity
definitions in greater detail.

The baseline recipient microbiota and agGvHD
Recipient bacterial diversity was not significantly associated with
agGvHD incidence (Figure 2a; P= 0.28). Similarly, no taxa were
significantly associated with agGvHD following multiple test
correction, although this may follow from our low statistical
power (see Supplementary File 1). Supporting this, taxa that
trended with GvHD had large effect sizes (Table 2, and Figures 2b
and c) and have been associated with HSCT outcomes in other
studies8,18 (see Discussion).

Baseline donor–recipient dissimilarity and agGvHD
Among the N = 22 ‘sub-cohort’ of transplant recipients whose
HLA-matched sibling donor participated in the study, donor–
recipient compositional dissimilarity was not significantly
associated with agGvHD incidence (Figures 3a and b;
unweighted and weighted UniFrac, P = 0.36, P = 0.88). However,
due to the high variability in recipient microbiota but relative
uniformity in donor profiles (Figure 1), UniFrac distances were
strongly correlated with recipient diversity (Figures 3c and d),
suggesting that UniFrac distances primarily indicated the
recipient’s degree of microbiota disruption relative to the health

Table 1. (Continued )

All recipients ‘Sub-cohort’
(recipients with
recruited donors)

Time to death (days after
transplant)

272 (207) 181 (147)

Etiologies of death (non-
exclusive; percentages relative
to known deaths)b

GvHD 2 (11.1%) 1 (14.3%)
Infection/sepsis 4 (22.2%) 2 (28.6%)
Relapse 8 (44.4%) 5 (71.4%)
Respiratory failure 4 (22.2%) 1 (14.3%)

Abbreviations: AA= aplastic anemia; allo-HSCT= allogeneic hematopoietic
stem cell transplantation; BMI=body mass index; HL=Hodgkin’s lym-
phoma; MDS=myelodysplastic syndrome; NHL= non-Hodgkin’s lym-
phoma; TCL= T-cell leukemia/lymphoma. Recipient information is
summarized by mean (s.d.) for continuous variables and count (percen-
tage) for categorically coded variables. The first column refers to all allo-
HSCT transplant recipients, while the second column refers to the subset of
recipients for which HLA-matched, sibling donors were recruited. aOur
center permits admission of recipients who have used antibiotics before
hospitalization / conditioning. Recipients’ pre-baseline antibiotic exposures
are heterogeneous. We present a working definition of ‘broad-spectrum’

and alternative antibiotic grading schemes in Supplementary File 4. bThe
etiologies of death provided are non-exclusive. One mortality event may
be attributed to multiple categories.
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profile. This analysis thus primarily reiterates the nonsignificant
association between low recipient diversity and agGvHD.

The baseline donor microbiota and agGvHD
An increase of 1 s.d. in baseline donor diversity was significantly
associated with 88% lower odds of agGvHD in the corresponding
transplant recipient (Figure 4a; P= 0.038; OR= 0.12, 95% con-
fidence interval: 0.01–0.81). No donor taxa differentiated agGvHD
incidence, although we note that 17 species were significantly
correlated with donor diversity (Table 3), including disruption-
associated taxa in HSCT recipients, like Enterococcus and
Lactobacillus (Figure 4b).

DISCUSSION
The baseline microbiota profiles of allo-HSCT donors, but not
recipients, were significantly associated with agGvHD. Higher

donor bacterial diversity was associated with decreased agGvHD
risk (OR= 0.12, P= 0.038), an association potentially consistent
with either of our two donor-centric hypotheses.
First, we hypothesized that donor-recipient microbiota dissim-

ilarity at baseline would be associated with increased GvHD.
Measuring donor–patient dissimilarity using UniFrac was unin-
formative, as UniFrac was primarily driven by the degree of
recipient microbiota ‘disturbance,’ which was in turn not
significantly associated with GvHD (Figure 3). However, this
hypothesis may be supported by higher relative abundances of
facultative anaerobes like Enterococcus and Lactobacillus among
high diversity donors (Table 3). These species were often enriched
in our recipients before conditioning (Figure 1) and expand
following transplant procedures peri-engraftment and during
GvHD onset.6,14,51 Thus, higher diversity donors may be more
immunotolerant of the taxa characteristic of many allo-HSCT
recipients.

Table 2. Recipient taxa associated with agGvHD in multiple logistic regression

Taxa (grouped by species) OR (95% CI) P-value FDR AUC BIC

(No taxa model) — — — 0.727 100.8
Bacteroidales 4 Porphyromonadaceae 4 Parabacteroides 4 distasonis 0.28 (0.098–0.64) 0.0067 0.63 0.811 94.64
Bacteroidales 4 [Barnesiellaceae] 4 unknown 4 unknown 0.38 (0.14–0.86) 0.045 0.77 0.778 99.27
Pasteurellales 4 Pasteurellaceae 4 Haemophilus 4 unknown 2.04 (1.05–4.39) 0.044 0.77 0.762 100.3
Clostridiales 4 Lachnospiraceae 4 Lachnobacterium 4 unknown 2.37 (1.14–5.85) 0.034 0.77 0.765 99.3

Abbreviations: agGvHD= acute gastrointestinal GvHD; AUC= area under the curve statistic; BIC=Bayesian Information Criterion; CI= confidence interval;
FDR= false discovery rate; OR=odds ratio. Recipient relative abundances of these taxa had strong associations with GvHD, but lost significance following
multiple test correction. The null model in which agGvHD is modeled with only clinical covariates is also included for comparison with the AUC (higher
represents increased sensitivity/specificity) and the BIC (lower values indicate better model parsimony). Supplementary File 5 shows all taxa tested.
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The association between high donor diversity and decreased
agGvHD risk is also supportive of our hypothesis that the donor’s
microbiota may influence GvHD incidence through mechanisms
independent of the recipient’s microbiota. This could occur if
different donor microbiota promote different compositions and/or
alloreactivities of transplanted immune cells. Interestingly, higher
diversity donors harbored higher relative abundances of com-
mensal bacteria with evidence for anti-inflammatory effects
(Table 3), including bacteria associated with regulatory T cell
differentiation (for example, Bacteroides fragilis22,52 and
Bifidobacterium spp.53). Pairing donor microbiota profiles with
measurements of graft immune cell subsets or investigation of the
immune modulatory activities of donor microbiota in vitro may
yield more insight into this hypothesis.

To our knowledge, associations between the donor microbiome
and GvHD have only previously been explored in mice. The
absence/presence of a donor microbiota (that is, whether the
donor mouse was germ-free) did not affect donor T-cell
alloreactivity or GvHD severity.54 However, more nuanced features
(for example, diversity and membership) were not evaluated.
Moreover, the distorted immune system of germ-free mice22,55 is
of unknown generalizability to that of human donors, whose
immune system is shaped by the microbiota throughout life.56

Alternatively, donors with more ‘permissive’ immune systems due
to factors like host genetics57,58 and early life exposures59,60

(which may not vary among laboratory mice) may enable
colonization by a greater variety of microbes. Thus, higher donor
microbiota diversity may indicate higher donor immunologic
tolerance.
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Figure 4. Associations between donor microbiota and agGvHD incidence. (a) Scatterplot with superimposed median and interquartile range
(IQR) shows association between high donor bacterial diversity and lower agGvHD odds. One donor associated with an agGvHD-negative
recipient appears to have an outlying phylogenetic diversity (PD) value of 517, but the association between donor diversity and lower agGvHD
odds remains significant with the putative outlier’s removal (resulting OR= 0.20, P= 0.049). (b) Spearman's correlations between bacterial
diversity and taxa relative abundances, where blue indicates higher Spearman correlation (that is, taxa enriched in high diversity donors or
recipients). Rows (taxa at the family resolution) were sorted by unsupervised hierarchical clustering (Euclidean distance).

Table 3. Taxa significantly correlated with donor microbiota diversity, following FDR correction

Taxa (grouped by species) Spearman’s correlation (95% CI) P-value FDR

Bacteroidales 4 Prevotellaceae 4 Prevotella 4 copri 0.74 (0.47–0.89) o1 ×10− 4 0.010
Clostridiales 4 Lachnospiraceae 4 Coprococcus 4 eutactus 0.73 (0.44–0.88) o1 ×10− 4 0.010
Clostridiales 4 Veillonellaceae 4 Megasphaera 4 unknown 0.70 (0.39–0.86) o1 ×10− 4 0.020
Bifidobacteriales 4 Bifidobacteriaceae 4 unknown 4 unknown 0.67 (0.35–0.85) 0.001 0.030
Bifidobacteriales 4 Bifidobacteriaceae 4 Bifidobacterium 4 adolescentis 0.67 (0.34–0.85) 0.001 0.030
Bifidobacteriales 4 Bifidobacteriaceae 4 Bifidobacterium 4 unknown 0.66 (0.33–0.84) 0.001 0.030
Bacteroidales 4 Bacteroidaceae 4 Bacteroides 4 fragilis 0.60 (0.24–0.82) 0.003 0.090
Coriobacteriales 4 Coriobacteriaceae 4 unknown 4 unknown 0.59 (0.22–0.81) 0.004 0.100
Coriobacteriales 4 Coriobacteriaceae 4 Collinsella 4 unknown 0.58 (0.21–0.80) 0.005 0.110
Erysipelotrichales 4 Erysipelotrichaceae 4 [Eubacterium] 4 biforme 0.56 (0.18–0.80) 0.007 0.120
Lactobacillales 4 Enterococcaceae 4 unknown 4 unknown 0.56 (0.18–0.79) 0.007 0.120
Coriobacteriales 4 Coriobacteriaceae 4 Collinsella 4 aerofaciens 0.54 (0.15–0.78) 0.010 0.170
Bacteroidales 4 Bacteroidaceae 4 Bacteroides 4 acidifaciens 0.53 (0.14–0.78) 0.011 0.170
Lactobacillales 4 Enterococcaceae 4 Enterococcus 4 casseliflavus 0.52 (0.13–0.77) 0.012 0.170
Erysipelotrichales 4 Erysipelotrichaceae 4 Catenibacterium 4 unknown 0.52 (0.13–0.77) 0.013 0.170
Lactobacillales 4 Lactobacillaceae 4 Lactobacillus 4 unknown 0.51 (0.12–0.77) 0.014 0.180
Bacteroidales 4 [Paraprevotellaceae] 4 unknown 4 unknown 0.51 (0.11–0.77) 0.016 0.190

Abbreviations: CI= confidence interval; FDR= false discovery rate. Spearman’s correlation coefficients are shown, with significance and CIs based on the
asymptotic t-distribution.
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Although the association between high donor diversity and
lower GvHD risk remained significant after adjusting for measured
donor-based risk factors (for example, CMV seropositivity and sex
match), other donor traits (for example, age and obesity) were not
collected and thus should be thoroughly examined in follow-up
donor studies. However, regardless of the underlying mechanistic
relationships (that is, even if not directly causal), donor diversity
could be a useful indicator of a complex collection of GvHD risk
factors.
In contrast, we did not find significant associations between the

pre-conditioning microbiota of the allo-HSCT recipient and
agGvHD, although four species trended with GvHD risk before
multiple test correction (Table 2). We found the decreased GvHD
risks associated with Parabacteroides distasonis (OR = 0.28) and
Barnesiellaceae spp. (OR= 0.38) notable due to the underpowered
nature of our pilot study (Supplementary File 1), large effect sizes,
and biological rationale building on previous allo-HSCT and
microbiome literature. In a pediatric allo-HSCT cohort, Parabacter-
oides was higher among GvHD-negative recipients and was
correlated with fecal propionate concentrations.8 Pre-
conditioning Barnesiellaceae predicted lower risk of
chemotherapy-related bloodstream infection among an adult
allo-HSCT cohort.18 In addition, both taxa have been associated
with anti-inflammatory cytokine profiles (for example, decreases in
TNF-α61,62). The baseline microbiota may thus contribute immu-
nomodulatory or mucosal integrity functions that reduce future
GvHD risk. Conversely, taxa like Lachnobacterium spp. (OR= 2.37)
and Haemophilus parainfluenzae (OR = 2.04)—which have not
previously been reported in HSCT/microbiome literature—may
be pro-inflammatory microbes that increase GvHD risk. Thus,
associations between the pre-conditioning recipient microbiota
and GvHD may merit further investigation in studies with
higher power.
More generally, baseline recipient disruption—characterized by

significantly lower diversity and lower relative abundances of
obligate anaerobes compared with healthy donors (Figure 1)—
may warrant exploration at other centers. In our recipients,
baseline disruption was significantly associated with overall
mortality rates (hazard ratio for diversity = 0.37, P= 0.008). In
contrast, two previous 16S rRNA studies that sampled adult allo-
HSCT recipients alongside healthy controls reported recipients to
approximate the typical healthy adult profile,6,7 despite similarly
permissive inclusion criteria (for example, mixes of underlying
hematologic diseases, no reported exclusion on recent antibiotic
use or co-morbidities). However, given that low baseline diversity
was associated with conditions common to many allo-HSCT
recipients like pre-conditioning microbial infection and antibiotic
use (Supplementary File 3), we suspect that our findings are
generalizable to other centers.
These findings compliment pioneering studies observing

improved recipient outcomes with less disrupted post-transplant
microbiota, while also suggesting potential benefits of clinical
interventions prior to conditioning. However, further studies at the
pre-conditioning time point are needed to clarify the causes and
clinical implications of baseline recipient disruption. The pre-
conditioning microbiota may mediate the effects of existing gut
decontamination practices or prospective prebiotic/probiotic
treatments:63,64 thus, fostering ‘protective’ microbiota composi-
tions prior to admission may compliment later interventions on
recipients’ intestinal bacteria. Thus, if observed in more centers,
further study of baseline recipient disruption may lead to insight
about the generalizability of and/or best practices for microbiome-
targeted interventions in allo-HSCT recipients.
Our study also provides preliminary evidence for a previously

undescribed GvHD risk factor: low microbiota diversity of the stem
cell donor. However, our pilot study was limited in sample size and
donor characteristics (N= 22 HLA-matched siblings from a single
center, unmanipulated graft and 21/22 PBSC). It is critical to

reexamine this association in broader transplant settings—
particularly as other populations (for example, recipients with no
suitable ‘gold standard’ donor) may benefit most from new donor
screening criteria. Moreover, while we have presented speculation
on the mechanisms underlying the association between high
donor diversity and decreased agGvHD risk, future investigations
of the donor gut microbiota that aim to characterize causes of
donor diversity and to integrate 16S rRNA data with immunolo-
gical measurements may yield novel insights about the etiology
of GvHD.
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