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Haploidentical transplantation for pediatric patients with
acquired severe aplastic anemia
LP Xu1, XH Zhang1, FR Wang1, XD Mo1, TT Han1, W Han1, YH Chen1, YY Zhang1, JZ Wang1, CH Yan1, YQ Sun1, SN Zuo1 and XJ Huang1,2,3

Techniques for haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to treat severe aplastic anemia (SAA) have
recently improved, but no protocol has been evaluated in a large number of pediatric patients. Fifty-two children with SAA received
haplo-HSCT in our center. The treatment protocol used G-CSF-primed bone marrow with G-CSF-mobilized PBSCs without in vitro
T-cell depletion. The conditioning regimen included busulfan/cyclophosphamide and antithymocyte globulin. Fifty-one patients
achieved primary engraftment; one child died of regimen-related toxicity on the day +1. Secondary graft failure occurred in three
patients. The cumulative incidences of aGVHD grade II–IV and grade III–IV were 39.2 ± 0.5 and 13.7 ± 0.2%, respectively. The
cumulative incidence of cGVHD was 34.2 ± 0.5%. The 3-year overall and failure-free survival rates were 84.5 ± 5.0 and 82.7 ± 5.2%,
respectively, with a median follow-up time of 744.5 days (100–3294) for surviving patients. The Eastern Cooperative Oncology
Group score was the only predictor of overall and failure-free survival rates. Clinical outcomes were similar between the upfront and
salvage group. This result suggests that both newly diagnosed and refractory pediatric SAA patients benefit from haplo-HSCT,
especially when patients are in good general condition. Therefore, haplo-HSCT might be an alternative therapy for pediatric SAA
patients without HLA-matched sibling donors.
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INTRODUCTION
Severe aplastic anemia (SAA) is a life-threatening marrow
syndrome defined as pancytopenia with a hypocellular bone
marrow.1 An estimated 6–9 million cases of SAA occur each year in
Asia, three times as many as in Europe and America.2

SAA outcomes have significantly improved in recent decades,
thanks to hematopoietic stem cell transplantation (HSCT) and
immunosuppressive treatments (IST), including antithymocyte
globulin (ATG) and cyclosporine A (CsA). HLA-matched sibling
donor (MSD) HSCT is the first treatment choice for SAA patients
younger than 18 years of age.2 Data from different countries show
that long-term overall survival (OS) is above 90%3–5 in MSD cases.
However, more than 70% of pediatric patients lack the
opportunity for MSD,6 particularly in China where family sizes
are shrinking. IST is also an effective treatment for SAA, but
response rates at 6 months are only 55–60%, 5–6% patients have
clonal evolution within 10 years and relapse rates can reach 15%.7

Another treatment recommended by Associazione Italiana Ema-
tologia Oncologia Pediatrica guidelines is matched unrelated
donor HSCT.2 Treatment outcomes for matched unrelated donor
HSCT in children are as good as MSD HSCT,8 but difficulties finding
a matched unrelated donor and preparing for an HSCT can cost
precious time during which complications may occur. Meanwhile,
almost every patient has a haploidentical donor and haploiden-
tical HSCT (haplo-HSCT) can be prepared within several weeks.
Despite recent progress in haplo-HSCT, the OS is about 64.6–
79.7%, still worse than MSD HSCT.3,9,10 However, these studies
included small sample sizes (fewer than 20 patients) of both
children and adults. Furthermore, these studies either mixed
upfront and salvage therapy or only included salvage therapy. No

study including a sufficient number of patients has evaluated a
protocol focused on pediatric patients.

PATIENTS AND METHODS
Patients
Fifty-two children (under 18 years) with acquired SAA/VSAA who under-
went haplo-HSCT at the Institute of Hematology, Peking University were
enrolled in this study between February 2007 and November 2015. All
patients were diagnosed with SAA/VSAA as defined by the International
Aplastic Anemia Study Group.11 Patients had no active infection or severe
diseases of vital organs before transplantation. Informed consent was
obtained from all patients or their guardians and donors. This protocol
was approved by the Institutional Review Board of Peking University.
Twenty-nine patients were included in the clinical trial registered as
ChiCTR-ONC-12002107 at www.chictr.org.cn. Seven cases were previously
reported.10

Patients and their donors were haploidentical. Donor selection was
based on HLA compatibility for HLA-A, -B and -DRB1 (-C also included in
26 patients) by high-resolution techniques. Additional selection factors
included age (younger preferred), father or mother (father preferred),
non-inherited maternal antigens mismatch, and health status (healthier
preferred).

Conditioning regimen
All patients received the following IV conditioning regimen: busulfan
(0.8 mg/kg every 6 h on days − 7 and − 6, total dose 6.4 mg/kg),
cyclophosphamide (50 mg/kg once daily on days − 5 to − 2, total dose
200 mg/kg), and rabbit ATG (SangStat, Lyon, France; 2.5 mg/kg once daily
on days − 5 to − 2, total dose 10 mg/kg).
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Stem cell harvest
All donors received 5 μg/kg recombinant human granulocyte CSF
(rhG-CSF) once daily for 5–6 consecutive days starting on day − 3. BM
cells were collected on day 01. The target volume was 10–12 ml/kg of
donor weight or the target mononuclear cell count is 2–4 × 108/kg of
recipient weight. PBSCs were harvested on day 02 or day 03 to achieve a
target mononuclear cell of 6–8× 108/kg of recipient weight from BM and
PBSCs. All patients received the BM transfusion on day 01, the PBSC
transfusion on day 02 (and day 03 if necessary). For patients with major
ABO blood group incompatibility with their donors, hydroxyethyl starch
was used for red blood cell sedimentation from BM cells.

GVHD prophylaxis and treatment
All patients received immunosuppressive agents including CsA, mycophe-
nolate mofetil and short-time methotrexate to prevent GVHD.12–14 Patients
received IV CsA (1.5 mg/kg) every 12 h from day − 9 until the patient’s
gastroenteric function returned to normal, then CsA could be given orally.
Patients received mycophenolate mofetil (250–500 mg every 12 h) from
day − 9 to day +30, and 250 mg once or every 12 h from day +30 to
day +60 based on body weight. Methotrexate was administered IV at
15 mg/m2 on day +1 and 10 mg/m2 on days +3, +6, and +11. CsA
concentrations were monitored and kept at 200–250 ng/ml for 12 months
after HSCT, then CsA was gradually reduced for the next 2–3 months.
Acute GVHD was treated as described by Huang et al.12–14

Prevention of other complications and supportive care
All patients received medicated baths and skin preparation before entering
the laminar airflow clean ward, where they remained until neutrophil
recovery. Nonabsorbable oral antibiotics (generally gentamycin for
children) were taken for gastrointestinal decontamination from day − 9
to myeloid recovery. Infection prevention measures were as described by
Huang et al.12–14

Patients received red blood cell transfusions when their hemoglobin
levels were below 70 g/L or platelet transfusions if their platelet levels
dropped below 20× 109/L. All patients received G-CSF (5 μg/kg once daily)
from day +6 until myeloid recovery. All blood products were irradiated
with 2500 cGy before infusion. Human Ig (400 mg/kg) was administered IV
on days +1, +11, +21 and +31.

Definitions and post-transplantation assessment
The day of myeloid engraftment was defined as the first of three
consecutive days with an ANC ⩾ 0.5 × 109/L, and the day of platelet
engraftment was defined as the first day with a platelet count ⩾ 20× 109/L
for consecutive 7 days without platelet transfusion. Hematopoietic
chimerism was evaluated by PCR amplification of STRs for all patients
using peripheral blood samples and buccal mucosa and by FISH for
sex-mismatched pairs using BM samples. Full donor chimerism was
defined as 495% donor hematopoietic cell and mixed chimerism was
defined as 5–95% donor cells. After HSCT, BM samples were drawn on
months +1, +2, +3, +6, +12, +24 and +36 for FISH, myelogram and biopsy.
Lymphocyte counts, cellular immune reconstitution (CD3+, CD4+ and
CD19+ cells from peripheral blood) and humoral immune reconstitution
(IgA, IgG and IgM) were monitored when BM samples were drawn.

The primary end point is myeloid engraftment
Graft failure involves rejection and poor graft function. Primary rejection
was defined as failure to achieve myeloid engraftment until day +28
post HSCT. Secondary rejection was defined as graft loss after initial
engraftment, that is, complete or partial recovery of donor-origin
hematopoiesis followed by recurrent pancytopenia with a markedly
hypocellular BM in the absence of moderate to severe acute GVHD.15,16

Poor graft function was defined as ANC o0.5 × 109/L and platelet counts
o20× 109/L (with or without hemoglobin decline) lasting for at least
2 weeks with full donor chimerism. Incidents caused by infection, GVHD or
drugs that could recover without donor lymphocyte infusion were not
included.
Acute and chronic GVHD was defined and graded as previously

described.17,18 The regimen-related toxicity (RRT) defined as toxicity
due to the preparative regimen was evaluated as previously reported.19

Death, engraftment failure and relapse were defined as treatment failures.
Failure-free survival (FFS) was defined as survival with response. Death

without disease progression was defined as transplantation-related
mortality (TRM).
Functional status was evaluated by the Eastern Cooperative Oncology

Group (ECOG) Performance Status score ranging from 0 (asymptomatic) to
5 (death) that has been adopted by the World Health Organization.20

Upfront therapy is when patients received IST for 0–4 months prior to
HSCT. Salvage therapy is when patients received IST for longer than
4 months or had experienced HSCT failure before haplo-HSCT.

Statistics
The last follow-up for all surviving patients occurred on 28 February 2016.
OS and FFS were estimated using the Kaplan–Meier method as
implemented in SPSS. The cumulative incidence (CI) of engraftment and
acute and chronic GVHD was evaluated by the competing risk model in the
R package ‘cmprsk’. The patient who did not achieve primary engraftment
was excluded when calculating the GVHD. Statistical analyses were
conducted using SPSS 19.0 and R version 3.2.2.

RESULTS
Patient characteristics
Fifty-two SAA/VSAA pediatric patients (27 male) with a median
age of 9 (2–17) years were enrolled in this study. Twenty-nine
patients received haplo-HSCT as salvage treatment. Among these
patients, one received MSD HSCT previously, 15 received ATG
treatment for at least one course, and 13 patients previously
received CsA+ stanozolol or testosterone ± steroid treatments
lasting for at least 4 months. The median time from diagnosis to
transplantation was 7.5 (1–91) months. Details are shown in
Table 1.

Engraftment
Fifty-one patients achieved myeloid recovery after haplo-HSCT.
One patient died of toxicity during the conditioning regimen on
day +1, but no primary graft failure occurred. CI of engraftment
was 96.2 ± 0.1%. The median time of myeloid engraftment was 12
(10–22) days.
Three patients had secondary graft failure. One patient

experienced secondary rejection on day +20 and salvage therapy
using a combination of unrelated umbilical cord blood and a
second HSCT from original haplo-donor failed. This patient died
on day +84. Another patient experienced mixed chimerism and
rejection on day +25 after having achieved primary engraftment
on day +11. This patient recovered after a second HSCT from the
original haplo-donor combined with umbilical cord blood, and
achieved myeloid engraftment on day +45 after the second
transplantation. The third patient developed late poor graft
function caused by severe GVHD, CMV antigenemia and drugs
used in the treatment on day +110. This patient was treated with
G-CSF, but died on day +145.
Fifty patients (96.2%) reached the criteria of WBC ⩾ 1.5 × 109 for

consecutive 3 days on the median time of 13 (10–21) days.
Forty-seven patients (90.4%) achieved platelet engraftment with

a median time of 14 (7–180) days. The CI was 90.4 ± 0.2%.

GVHD
Among the 51 patients who achieved primary engraftment,
aGVHD was observed in 38 patients (74.5%), 18 cases (35.3%)
experienced grade I, 13 cases (25.5%) experienced grade II, 5 cases
(9.8%) experienced grade III and 2 cases (3.9%) experienced grade
IV. CI of aGVHD grades II–IV and grades III–IV was 39.2 ± 0.5% and
13.7 ± 0.2%, respectively.
Sixteen of the 42 patients who survived more than 100 days

after haplo-HSCT (38.1%) developed cGVHD. CI of cGVHD was
34.2 ± 0.5%. In 13 patients (81.3%) the GVHD involved the skin,
1 patient (6.3%) the liver and 1 patient (6.3%) the skin and
gastrointestinal tract. The patient with extensive cGVHD (liver,
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skin and gastrointestinal tract) on day +540 was treated with
corticosteroid, CsA and mycophenolate mofetil, and the GVHD
was well controlled.
Among 35 patients whose follow-up time was 415 months,

only 7 patients (20.0%) remained on immunosuppression after
month +15 because of cGVHD. Three patients have stopped
taking the immunosuppression on months +18, +25 and +17,
respectively. The other four remained on immunosuppression
until the end point of follow-up. The follow-up times were 18, 20,
24 and 26 months, respectively.

Infection and immune reconstitution
Of 52 SAA children, 11 (21.2%) had bacterial infections, 6 (11.5%)
had fungal infections and 41 (78.8%) had virus infections.

CMV antigenemia occurred in 36 patients (69.2%). EBV
antigenemia occurred in three patients (5.8%). Only one patient
developed post-transplant lymphoproliferative disorder and
recovered after rituximab treatment.
The median absolute lymphocyte count on day +30 was 390

(50–3080)/μL. Median IgA, IgG and IgM values were 0.4 (0.1–0.95),
9.4 (3.5–41.3) and 0.327 (0.096–1.19) g/L, respectively. Other data
of immune reconstitution after haplo-HSCT are shown in Table 2.
For the only successful second haplo-HSCT case, the absolute
lymphocyte count on day +30 and +60 were 100 and 300/μL. The
CD3+ T cells, CD4+ T cells, CD+19 T cells, IgA, IgG and IgM on day
+60 were 15.99 × 106/L, 30.99 × 106/L, 0.03 × 106/L, 0.57 g/L, 7.1 g/L
and 0.850 g/L, respectively.

Regimen-related toxicity
All patients received the conditioning regimen on schedule, and
31 patients did not experience RRT. Grades I and II RRT occurred in
17 and 3 patients, respectively. One patient suffered Grade IV RRT,
and died of acute myocardial, renal and gastrointestinal injury on
day +1. Sixteen cases had gastrointestinal involvement, two
patients experienced liver injury and one patient had hemorrhagic
cystitis.

Survival and TRM
Forty-four (84.3%) patients survived to the final follow-up date.
Three-year OS was 84.5 ± 5.0% and FFS was 82.7 ± 5.2% with a
median follow-up time of 744.5 (100–3294) days for surviving
patients (Figures 1a and b). TRM at day +100 and year +1 was
13.5 ± 4.7% and 15.5 ± 5.0%, respectively. Causes of death
included RRT (one case), GVHD (three cases), graft failure (two
cases), cerebral fungal infection (one case) and cerebral hemor-
rhage (one case). Forty-three of all 44 surviving patients achieved
hematologic CR. One patient required transfusions after the
second transplantation until the end of follow-up period.
Kaplan–Meier analysis revealed that the ECOG score before

transplantation was the only predictor for OS and FFS (P= 0.004
and 0.014, respectively) (Figures 2a and b). Other factors are
shown in Table 3.

Donors
Among all 52 donors, 36 were fathers, 14 were mothers and
two were siblings. Clinical outcomes were similar for father and
mother donors: myeloid engraftment time (P= 0.973), platelet
engraftment time (P= 0.779), aGVHD grade II–IV (P= 0.475),
cGVHD (P= 0.578), bacterial infection (P= 0.520), fungal infection
(P= 0.102), virus infection (P= 0.520), OS (P= 0.490) and FFS
(P= 0.720).
Thirty-six patients had three HLA-mismatched loci and16

patients 0–2 HLA-mismatched loci for all the patients whose
HLA compatibility was for HLA-A, -B and -DRB1. No significant
difference was found between these two groups: myeloid
engraftment time (P= 0.385), platelet engraftment time
(P= 0.657), aGVHD grade II–IV (P= 0.664), cGVHD (P= 0.093), OS
(P= 0.233) and FFS (P= 0.347).
HLA-C was detected in 26 patients and their donors.

Eight patients had 1–3 HLA-mismatched loci and other
18 patients had 4 HLA-mismatched loci. There was also no
significant difference between these two groups: myeloid
engraftment time (P= 0.170), platelet engraftment time
(P= 0.414), aGVHD grade II–IV (P= 0.142), cGVHD (P= 0.458), OS
(P= 0.962) and FFS (P= 0.808).

Similar outcomes between upfront therapy and salvage therapy
Among all 52 cases, 23 cases received haplo-HSCT as upfront
therapy and 29 as salvage therapy. There were no significant
differences in baseline data (age, recipient gender, donor gender,

Table 1. Patient characteristics

Disease status at transplantation
SAA 32
VSAA 20

ECOG
0 3
1 28
2 16
3 5

HLA-mismatched loci
0 1
1 2
-B 1
-DRB1 1

2 13
-A, -B 6
-A, -DRB1 4
-B, -DRB1 3

3
-A, -B, -DRB1 36

HLA-mismatched loci including -C 26
1 (-DRB1) 1
2 6
-A, -B 1
-A, -C 1
-B, -C 1
-A, -DRB1 1
-B, -DRB1 1
-C, -DRB1 1

3 (-A, -B, -C) 1
4 (-A, -B, -C, -DRB1) 18

Serum ferritin (28) 1738 ng/mL (259.1–7434)

Transfusion before haplo-HSCT
Red cells (42) 19U (0–120 U)
Platelets (42) 15U (2–120 U)

Cells infused (×108/kg)
MNC 8.9750 (7.11–18.57)
CD3+ T cells 2.1809 (0.2609–4.2793)
CD4+ T cells 1.1784 (0.1309–2.51)
CD8+ T cells 0.7542 (0.1113–22.5116)
CD34+ cells 3.2850 (1.0371–17.57)

CD4/CD8 ratio
BM 1.16 (0–2.75)
PBSC 1.61 (0.64–5.71)
Total 1.50 (0.09–5.15)

Follow-up for surviving patients (days) 632.5 (18–3182)

Abbreviations: ATG= antithymocyte globulin; CsA= cyclosporine A;
ECOG= Eastern Cooperative Oncology Group Performance Status;
SAA= severe aplastic anemia; VSAA= very severe aplastic anemia.
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Table 2. Data of immune reconstitution

30 days 60 days 90 days 180 days 365 days 730 days

Cell (×106/L)
ALC 390 (50–3080, 41) 1295 (150–3610, 34) 1480 (160–6640, 31) 1860 (360–4220, 30) 2390 (1100–5210, 27) 3440 (2270–3640, 3)

CD3+ 15.41
(0.26–674.622, 39)

66.192
(1.1492–887.285, 33)

462.981
(8.736–4406.968, 31)

593.75
(64.98–1874.102, 30)

956.8
(179.5–3057.228, 27)

974.896
(955.897–1445.444, 3)

CD4+ 4.588
(0.02–129.636, 39)

47.31
(1.326–218.12, 33)

61.88
(0.96–1124.152, 31)

114.018
(1.08–594.664, 30)

249.487
(44.11–804.375, 27)

384.02
(305.769–452.704, 3)

CD19+ 0.9
(0.025-9.32, 39)

3.78
(0.442–19.494, 33)

9.52
(0–97.614, 31)

32.979
(0.576–355.68, 30)

110.88
(3.85–498.96, 27)

187.136
(21.112–198.398, 3)

Humoral (g/L)
IgA 0.4

(0.1–0.95, 33)
0.23

(0.0647–0.52, 27)
0.26

(0.0067–1.58, 28)
0.523

(0.0796–1.21, 29)
0.78

(0.29–2.34, 25)
1.265

(1.16–1.37, 2)

IgG 9.4 (3.5–41.3, 33) 8.4 (1–19.7, 27) 7 (2.1–15.1, 28) 8.1 (1.9–20.3, 29) 10.1 (2.82–19.5, 25) 14.15 (10.6–17.7, 2)

IgM 0.327
(0.096–1.19, 33)

0.24
(0.057–0.976, 27)

0.284
(0.075–1.28, 28)

0.504
(0.104–2.4, 29)

0.743
(0.275–2.04, 25)

1.149
(0.998–1.3, 2)

Abbreviation: ALC= absolute lymphocyte count.
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Figure 1. Kaplan–Meier estimates of (a) overall survival and
(b) failure-free survival in children with SAA/VSAA after haplo-HSCT.
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Figure 2. Kaplan–Meier estimates of (a) overall survival and
(b) failure-free survival after haplo-HSCT according to ECOG in
pediatric SAA/VSAA patients.
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disease status at transplantation, disease duration and ECOG).
No significant differences in clinical outcomes between the two
groups were observed: myeloid engraftment time (P= 0.175),
aGVHD grade II–IV (P= 0.699), cGVHD (P= 0.916), OS (P= 0.698)
and FFS (P= 0.899) (Figures 3a and b).

DISCUSSION
A new technique for HLA-mismatched allogeneic HSCT using
G-CSF-primed bone marrow with G-CSF-mobilized PBSCs without
in vitro T-cell depletion known as the GIAC protocol has been
explored at the Institute of Hematology, Peking University
People’s Hospital.21–24 Nineteen SAA patients treated with the
GIAC protocol experienced positive treatment outcomes, suggest-
ing that haplo-HSCT might be feasible for SAA patients without
MSD.10

When MSD HSCT was administered in 65 pediatric SAA patients,
the FFS was 87.7, 36.9% patients experienced aGVHD grade II–IV,
20% experienced aGVHD grade III–IV and extensive cGVHD
occurred in 7.7% of patients.25 The FFS of our upfront therapy
group using the GIAC protocol was similar at 82.6 ± 7.9%.
Although the CI of cGVHD was higher, only one extensive cGVHD
occurred and all cGVHD cases were well controlled.
For SAA children without matched siblings or unrelated donors,

IST should be administered rather than haplo-HSCT according to
current guidelines.1,2 In a recent European study, 167 SAA patients
aged 0–12 who received IST as frontline therapy experienced OS
at 87%, but FFS was only 33%.26 Another study included 63
pediatric SAA patients without MSD who were treated with rabbit
ATG and CsA as firstline IST.27 Thirty-four of these patients (64.9%)
went into remission, but only 24 (38.0%) went into CR. The 10-year
OS and FFS were 67 and 57%. Another study from Japan found
that the FFS for SAA patients younger than 17 years who were
treated with firstline IST was only 56%.28 These global studies have
shown that clinical outcomes of IST, including ATG, were
unsatisfactory because of clonal evolution and high relapse rates.
A recent finding suggests that the OS of haplo-HSCT in pediatric
SAA is comparable to IST.29 Long-term FFS of the upfront therapy
group in our trial was much better than that of IST
mentioned above.
IST is sometimes preferred over HSCT for patients without

matched donors because of the high risk of TRM in haplo-HSCT.
However, the 1-year TRM in our study was acceptable at only

Table 3. Effects of different factors on OS and FFS of pediatric
SAA/VSAA patients

Factors N OS (%) P-value FFS (%) P-value

Patients age at
transplantation
(year)

0.409 0.645

⩾ 9 27 88.9± 6.0 85.2± 6.8
o9 25 80.0± 8.0 80.0± 8.0

Patient gender 0.526 0.309
Female 25 88.0± 6.5 88.0± 6.5
Male 27 81.3± 7.5 77.8± 8.0

Donor gender 0.440 0.658
Female 14 78.6± 11.0 78.6± 11.0
Male 38 86.7± 5.6 84.2± 5.9

Donor–recipient
relationship

0.490 0.720

Mother–child 14 78.6± 11.0 78.6± 11.0
Father–child 36 85.9± 5.8 83.3± 6.2

Donor–recipient sex
match

0.337 0.210

Female–female/
male–male

31 80.5± 7.1 77.4± 7.5

Female-male/
male–female

21 90.5± 6.4 90.5± 6.4

ATG before
transplantation

0.825 0.656

Yes 15 86.7± 8.8 86.7± 8.8
No 37 83.6± 6.1 81.1± 6.4

Disease status at
transplantation

0.937 0.754

SAA 32 84.1± 6.5 81.3± 6.9
VSAA 20 85.0± 8.0 85.0± 8.0

ECOG 0.004 0.014
0–1 31 96.8± 3.2 93.5± 4.4
2–3 21 66.7± 10.3 66.7± 10.3

Diagnosis-to-
transplantation
interval (month)

0.460 0.802

⩾ 7.5 26 80.6± 7.8 80.8± 7.7
o7.5 26 88.5± 6.3 84.6± 7.1

Diagnosis-to-
transplantation
interval (month)

0.152 0.304

⩾ 24 15 72.7± 11.7 73.3± 11.4
o24 37 89.2± 5.1 86.5± 5.6

Haplo-HSCT status 0.698 0.899
Upfront therapy 23 87.0± 7.0 82.6± 7.9
Non-upfront
therapy

29 82.6± 7.1 82.8± 7.0

HLA-mismatched loci 0.233 0.347
0–2 16 75.0± 10.8 75.0± 10.8
3 36 88.9± 5.2 86.1± 5.8

Serum ferritin (ng/mL) 0.258 0.167
⩾ 1738 14 92.9± 6.9 92.9± 6.9
o1738 14 78.6± 11.0 71.4± 12.1

Regimen-related
toxicity

0.854 0.679

0 31 83.7± 6.7 80.6± 7.1
1–4 21 85.7± 7.6 85.7± 7.6

MNC (×108/kg)
infused

0.964 0.634

⩾ 8.975 26 84.6± 7.1 80.8± 7.7
o8.975 26 84.4± 7.2 84.6± 7.1

CD3+ T-cell counts
(×108/kg) infused

0.907 0.655

⩾ 2.1809 27 85.2± 6.8 85.2± 6.8
o2.1809 25 83.8± 7.4 80.0± 8.0

CD4+ T-cell counts
(×108/kg) infused

1.000 0.666

⩾ 1.1784 26 84.6± 7.1 80.8± 7.7
o1.1784 26 84.4± 7.2 84.6± 7.1

Table 3. (Continued )

Factors N OS (%) P-value FFS (%) P-value

CD8+ T-cell counts
(×108/kg) infused

0.962 0.737

⩾ 0.7542 26 84.6± 7.1 84.6± 7.1
o0.7542 26 84.6± 7.1 80.8± 7.7

CD34+ T-cell counts
(×108/kg) infused

0.986 0.747

⩾ 3.285 27 85.2± 6.8 81.5± 7.5
o3.285 25 84.0± 7.3 84.0± 7.3

Red cells transfusion
(U) pre-HSCT

0.655 0.623

⩾ 19 21 90.5± 6.4 90.5± 6.4
o19 21 85.7± 7.6 85.7± 7.6

Platelets transfusion
(U) pre-HSCT

0.202 0.457

⩾ 15 22 81.8± 8.2 81.8± 8.2
o15 20 95.0± 4.9 90.0± 6.7

Abbreviations: ECOG= Eastern Cooperative Oncology Group Performance
Status; MNC, mononuclear cell; SAA= severe aplastic anemia; VSAA= very
severe aplastic anemia. Significant P-values are in bold type.
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15.5 ± 5.0%. Furthermore, many problems may occur when
delaying HSCT. For example, hemorrhage may occur because of
low platelet counts, low WBC increases the risk of refractory
infections and iron overload may be caused by extensive
transfusions. Events such as these may influence the patient’s
general condition and decrease the ECOG score before HSCT.
A reliable ECOG score is important, as it was the only predictor of
OS/FFS in our study. More tragically, some patients may miss their
opportunity for HSCT or die while waiting for the treatment.
In previous studies of haplo-HSCT for hematological

malignancies,30 father donors were associated with better
outcomes than mothers. We found no significant difference in
clinical outcome between father and mother donors in these SAA
pediatric patients. Larger SAA trials are needed to further
investigate this result.
Studies of acute leukemia show that the CI of aGVHD and

cGVHD was not associated with the extent of HLA disparity.14 We
also found no difference in clinical outcomes (engraftment,
aGVHD, cGVHD, OS and FFS) not only between patients in the
0–2 loci mismatched group and in the three loci mismatched
group but also between 1–3 loci mismatched group and 4 loci
mismatched group (for 26 patients who received HLA-C detected).
OS for patients who waited ⩾ 2 years after diagnosis to receive

haplo-HSCT was similar to OS for patients who received the
treatment more quickly after diagnosis. This finding suggests that
SAA patients can still benefit from haplo-HSCT years after

diagnosis and thus should be considered for treatment as soon
as possible if they have no haplo-HSCT contraindications.
There were also several limitations in this study. This was a

single center study. The data of serum ferritin and transfusions
were not complete, especially only 28 ferritin values before HSCT
were available. And this study did not include any patients with
poor general condition who were excluded from haplo-HSCT
previously.
Nevertheless, both the upfront therapy group and the salvage

therapy group experienced excellent clinical outcomes (OS, FFS
and GVHD), showing that both haplo-HSCT strategies are
beneficial. Our findings suggest that haplo-HSCT can be con-
sidered as an alternative therapy for newly diagnosed and
refractory pediatric SAA patients if MSD is not available. Further
studies with larger sample sizes are required to validate these
findings and secure mechanistic insight into factors influencing
clinical outcomes after haplo-HSCT.
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