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Background: Luminal A breast cancer defined as hormone receptor positive and human epidermal growth factor receptor
2 (HER2) negative is known to be heterogeneous. Previous study showed that luminal A tumours with the expression of basal
markers ((cytokeratin (CK) 5 or CK5/6) or epidermal growth factor receptor (EGFR)) were associated with poorer prognosis
compared with those that stained negative for basal markers. Prompted by this study, we assessed whether tumour characteristics
and risk factors differed by basal marker status within luminal A tumours.

Methods: We pooled 5040 luminal A cases defined by immunohistochemistry (4490 basal-negative ((CK5 (or CK5/6))� and
EGFR� ) and 550 basal-positive ((CK5 (or CK5/6þ )) or EGFRþ )) from eight studies participating in the Breast Cancer Association
Consortium. Case–case comparison was performed using unconditional logistic regression.

Results: Tumour characteristics and risk factors did not vary significantly by the expression of basal markers, although results
suggested that basal-positive luminal tumours tended to be smaller and node negative, and were more common in women with a
positive family history and lower body mass index.

Conclusions: Most established breast cancer risk factors were similar in basal-positive and basal-negative luminal A tumours. The
non-significant but suggestive differences in tumour features and family history warrant further investigations.

Breast cancer can be classified into several molecular subtypes
based on gene expression profiling analyses (Perou et al, 2000;
Sorlie et al, 2001), which can be approximated with the use of key
immunohistochemical (IHC) markers, including estrogen receptor
(ER), progesterone receptor (PR), human epidermal growth factor
2 (HER2), and basal markers such as epidermal growth factor
receptor (EGFR), cytokeratin 5 (CK5) or cytokeratin 5/6 (CK5/6).
In general, well-known breast cancer hormonal and lifestyle risk
factors, such as early age at menarche, late age at first birth,
nulliparity, prolonged interval between menarche and age at first
birth, and postmenopausal obesity showed stronger associations
with ER-positive (luminal) subtypes (Yang et al, 2011; Anderson
et al, 2014). In contrast, these factors showed either a lack
of association or associations in the opposite direction for
ER-negative (non-luminal) tumours. For example, parity and
premenopausal obesity were protective for luminal cancers but
associated with increased risk for non-luminal tumours, particu-
larly triple-negative breast cancer (TNBC: ER� /PR� /HER2� ;
Millikan et al, 2008; Phipps et al, 2011). We have previously shown
that risk factor associations differed most strikingly between
luminal A (ERþ or PRþ /HER2� ) and core-basal phenotype
(CBP: TNBC expressing (CK5 or CK5/6) or EGFR), suggesting that
these two subtypes may develop from etiologically different
pathways (Yang et al, 2011).

Experimental and clinical studies suggest more complex layers of
heterogeneity within major breast cancer subtypes (Perou et al, 2000;
Sotiriou et al, 2003; Colleoni et al, 2012; Ali et al, 2014). In particular,
luminal cancers demonstrated substantial variability in molecular
characteristics (Cancer Genome Atlas Network, 2012) and clinical
behaviour, including responsiveness to endocrine treatment (Ciriello
et al, 2013; Howell, 2013; Ignatiadis and Sotiriou, 2013). In line
with this, in a recent large pooled analysis including 410 000
invasive breast cancer cases, Blows et al, 2010 showed that luminal A
tumours expressing basal markers ((CK5 or CK5/6) or EGFR,
luminal A basal-positive) had worse prognosis than luminal A
tumours that were negative for basal markers (luminal
A basal-negative). However, to our knowledge, there have
been no reports on etiological heterogeneity within luminal A
tumours so far.

To assess whether luminal A basal-positive tumours (ERþ or
PRþ /HER2� /basal markersþ ) represent a distinct disease entity
from an etiologic perspective, we pooled individual data for
5040 luminal A breast cancer cases contributed by eight studies
participating in the Breast Cancer Association Consortium
(BCAC), with risk factor information and expression status for
ER, PR, HER2, and basal markers. The goal of this study was to
examine whether tumour characteristics and risk factors of luminal

A basal-positive tumours are different from those of luminal A
basal-negative tumours (ERþ or PRþ /HER2� /basal
markers� ).

MATERIALS AND METHODS

Study participants. Among studies participating in the BCAC
(Yang et al, 2011), eight studies that had IHC data on ER (and/or
PR), HER2, and basal markers (CK5 (or CK5/6) and/or EGFR) as
well as breast cancer risk factor information were eligible for
inclusion. Study details are summarised in Supplementary Table 1.
These include four population-based studies (Kuopio Breast
Cancer Project (KBCP), Melbourne Collaborative Cohort Study
(MCCS), Nurses’ Health Study (NHS), and NCI’s Polish Breast
Cancer Study (PBCS)) and four hospital-based case-control studies
or studies of mixed design (Helsinki Breast Cancer Study (HEBCS),
Mayo Clinic Breast Cancer Study (MCBCS), Sheffield Breast
Cancer Study (SBCS), and Study of Epidemiology and Risk factors
in Cancer Heredity (SEARCH)). As the goal of our analysis was to
determine whether tumour characteristics and risk factors differed
by basal marker status within luminal tumours, we restricted the
analysis to 5040 luminal A cases (ERþ or PRþ /HER2� ) that
were known to express or not to express basal markers (CK5 (or
CK5/6) or EGFR) (Table 1). Study participants were recruited
under protocols approved by the institutional review board at each
institution and all subjects provided written informed consent.

Tumour marker assessment and subtype classification. ER, PR,
and HER2 status were primarily extracted from medical records.
Accordingly, the source of tumour marker data and definition of
positivity for each marker varied across studies (Supplementary
Table 2). Among 5040 luminal A cases defined based on medical
records for ER and PR, centralised quantitative scores for ER or PR
status obtained through automated imaging analysis of tissue
microarrays were available for 3702 participants (Supplementary
Table 3). More than 99% of luminal A cases (n¼ 3670/3072) had
tumours with X1% cells and 97% (n¼ 3592/3072) with X10%
tumour cells stained positive for either ER or PR, respectively.
Given the high concordance of clinical data and centralised
measurements for ER and PR, we used clinical data for these
markers in the main analyses because they were available for more
cases. Data for CK5 (or CK5/6) and EGFR status were obtained
from centralised visual scoring of tissue microarray slides by
pathologists. Expression was determined to be positive if 410%
tumour cells were stained. When the proportion of positive cells
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was missing, positivity was defined based on the intensity score
(X2 as positive).

The number of cases in each study by marker status is presented
in Supplementary Table 4. In the current study, we focused on
two subtypes within luminal A tumours: basal-negative (ERþ or
PRþ /HER2� /(CK5 (or CK5/6))� /EGFR� ) and basal-positive
(ERþ or PRþ /HER2� /(CK5 (or CK5/6))þ or EGFRþ ).

Breast cancer risk factors. The collection of information on
tumour characteristics and risk factors for BCAC studies has been
previously described (Yang et al, 2011). Briefly, each study
collected information on one or more of the following factors:
family history of breast cancer in first-degree relatives, age at
menarche, age at menopause, age at first full-term pregnancy,
parity (never/ever), number of children, breast feeding (never/
ever), and body mass index (BMI) at baseline (MCCS and KBCP)
or at the time of diagnosis (all others). NHS was not included in
risk factor analysis owing to the lack of data.

Statistical analyses. We compared the distribution of tumour
characteristics and risk factors between luminal A basal-negative
and basal-positive subtypes using unconditional logistic regression
with luminal A basal-negative subtype as the reference group.
Tumour characteristics included histology (ductal, lobular, other),
grade (well, moderately, poorly differentiated), size (p2 cm,
42 cm), and axillary node status (negative, positive). Breast cancer
risk factors included family history of breast cancer among first-
degree relatives (present, absent), age at menarche (p12, 13–14,
414 years), parity (parous, nulliparous), and BMI (o25, 25–30,
X30 kgm� 2 or per 5 unit of increase); and in analyses restricted to
parous women included age at first full-term birth (o20, 20–24,
25–29, X30 years), number of full-term pregnancies (1, 2, X3),
and breast feeding (ever, never). Multivariable models were used in
all analyses to control for age (10-year frequency), study, other
tumour characteristics and risk factors. Given that risk associated
with BMI is known to vary by menopausal status, we stratified the
BMI analysis by menopausal status. We used age groups (o50 and
X50 years) as a surrogate for menopausal status to maximise
power. A sensitivity analysis using known menopausal status

yielded similar results. Between-study heterogeneity was assessed
with I2 statistics using study-specific odds ratio (ORs) and 95%
confidence intervals (CIs). Analyses were conducted using SAS
(version 9.3; SAS Institute, Cary, NC, USA) or Stata/SE (version
11.2; StataCorp LP, College Station, TX, USA).

RESULTS

Among all 7857 invasive breast cancer cases in the 8 studies, 63.3%
(n¼ 4490) and 7.8% (n¼ 550) were classified as luminal A basal-
negative and luminal A basal-positive subtype, respectively
(Table 1). Mean age at diagnosis was not significantly different
between the two subtypes, although women with luminal A
basal-positive tumours were diagnosed less frequently after
60 years compared with the women with luminal A basal-negative
tumours (Table 2). Compared with the luminal A basal-negative
tumours, basal-positive tumours were more likely to be smaller
(OR42 cm vs p2 cm¼ 0.83; 95% CI¼ 0.67–1.03; P¼ 0.09; I2¼ 0%)
and negative for axillary nodes (OR¼ 0.83; 95% CI¼ 0.67–1.02;
P¼ 0.08; I2¼ 0%), however, the differences were not statistically
significant. The association with tumour grade did not follow a
logical trend, with luminal A basal-positive tumours showing a
lower frequency of moderately differentiated tumours (OR¼ 0.75;
95% CI¼ 0.60–0.94; P¼ 0.01), but a higher frequency of poorly
differentiated tumours (OR¼ 1.13; 95% CI¼ 0.85–1.50; P¼ 0.42)
compared with luminal A basal-negative tumours (Table 2). Study
heterogeneity was not significant in the former (I2¼ 10.2%;
P¼ 0.35) but was significant in the latter association (I2¼ 63.2%;
P¼ 0.01).

Compared with basal-negative cases, cases with luminal A basal-
positive tumours were more likely to have a positive family history
(OR¼ 1.27; 95% CI¼ 0.99–1.63; P¼ 0.06; I2¼ 1.1%; Table 3)
particularly among younger (o50 years) women (OR¼ 1.81; 95%
CI¼ 1.16–2.82; P¼ 0.009). In addition, basal-positive cases tended
to have lower BMI (ORper 5 unit¼ 0.90; 95% CI¼ 0.81–1.01,
P¼ 0.07; I2¼ 0.0%) especially among older (X50 years) women

Table 1. Description of participating studies and distribution of tumour subtypes by study

Study (abbreviation) Study design Total
Luminal A

basal-negative
Luminal A

basal-positive HRþ /HER2þ HR� /HER2þ CBP 5-NP Missing
Study of Epidemiology and
Risk factors in Cancer
Heredity (SEARCH)

Case-control study 3096 1791 (67.7) 196 (7.4) 198 (7.5) 111 (4.2) 176 (6.7) 173 (6.5) 451

NCI Polish Breast Cancer
Study (PBCS)

Case-control study 1342 768 (58.9) 57 (4.4) 115 (8.8) 119 (9.1) 116 (8.9) 128 (9.8) 39

Helsinki Breast Cancer Study
(HEBCS)

Hospital-based
case-control study
& additional
familial cases

1067 625 (63.2) 87 (8.8) 95 (9.6) 53 (5.4) 77 (7.8) 52 (5.3) 78

Melbourne Collaborative
Cohort Study (MCCS)

Prospective cohort
study

796 539 (67.8) 23 (2.9) 86 (10.8) 40 (5.0) 75 (9.4) 32 (4.0) 1

Kuopio Breast Cancer
Project (KBCP)

Prospective clinical
cohort

427 232 (62.7) 42 (11.4) 21 (5.7) 26 (7.0) 19 (5.1) 30 (8.1) 57

Mayo Clinic Breast Cancer
Study (MCBCS)

Hospital-based
case-control study

422 189 (58.0) 53 (16.3) 27 (8.3) 10 (3.1) 42 (12.9) 5 (1.5) 96

Sheffield Breast Cancer
Study (SBCS)

Hospital-based
case-control study

358 176 (53.8) 61 (18.7) 18 (5.5) 11 (3.4) 41 (12.5) 20 (6.1) 31

Nurses’ Health Study (NHS) Prospective cohort
study: nested
case-control study

349 170 (50.0) 31 (9.1) 72 (21.2) 14 (4.1) 32 (9.4) 21 (6.2) 9

Total — 7857 4490 (63.3) 550 (7.8) 632 (8.9) 384 (5.4) 578 (8.2) 461 (6.5) 762

Luminal A basal-negative¼ERþ or PRþ /HER2� /(CK5 or CK5/6)� /EGFR� ; luminal A basal-positive¼ERþ or PRþ /HER2� /(CK5 or CK5/6)þ or EGFRþ ; HRþ /HER2þ ¼ERþ or
PRþ /HER2þ ; HR� /HER2þ ¼ER� /PR� /HER2þ ; Core-basal phenotype (CBP)¼ER� /PR� /HER2� /(CK5 or CK5/6)þ or EGFRþ ; 5-NP(negative phenotype)¼ER� /PR� /HER2� /(CK5
or CK5/6)� /EGFR� .
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(ORper 5 unit¼ 0.89; 95% CI¼ 0.79–1.01, P¼ 0.07; I2¼ 15.5%)
compared with basal-negative cases, but the differences were weak
and the test of interaction by age group did not reach nominal
significance (Po0.05). Other risk factors did not differ signifi-
cantly between the two subtypes.

To reduce the impact of potential subtype misclassification, we
conducted a sensitivity analysis by restricting our analyses to cases
showing ER expression in X10% and PR expression in X20%
tumour cells. Among 3015 basal-negative and 366 basal-positive
cases with ER and PR percentage data available, 2372 (79%) basal-
negative and 299 (82%) basal-positive cases were included in the
sensitivity analysis. The only difference we observed was that
luminal A basal-positive tumours now had a similar, rather than a
higher, proportion of poorly differentiated tumours to luminal A
basal-negative tumours. ORs for other tumour characteristics and
risk factors did not change substantially (Supplementary Table 5).

DISCUSSION

In a previous BCAC analysis (Blows et al, 2010), we showed that
all-cause mortality among cases with luminal A basal-positive
tumours was slightly but significantly higher than that of cases
with luminal A basal-negative tumours, and the difference
was persistent up to 15 years after diagnosis. Similar but
non-significant difference in survival by basal marker expres-
sion (adjusted hazard ratio¼ 1.20basal-positive vs basal-negative; 95%
CI¼ 0.69–2.08, P¼ 0.51) was observed in our study when we
analysed a subset of cases (1245 luminal A cases; 1124 basal-
negative cases, and 121 basal-positive cases) with the follow-up
data available. Interestingly, luminal A basal-positive tumours were
not associated with more aggressive features, rather, they tended to
be less aggressive (smaller, lower grade, and node negative)
compared with basal-negative tumours.

The apparent discrepancy between less aggressive tumour
features and poorer prognosis in basal-positive cases might be
explained by different responses to endocrine therapy among cases
with luminal tumours. Previous studies using luminal tumour
xenografts identified a subpopulation of ER-PR-CK5þ cells that
were resistant to endocrine therapies (Horwitz et al, 2008); when
ERþ tumours with ER-PR-CK5þ cells were treated with 17b-
estradiol plus anti-estrogens tamoxifen or fulvestrant, the number
of CK5þ cells in post compared with pre-treatment tumours
coupled with decreased expression of ER and increased expression
of CK5 (Kabos et al, 2011). Studies with detailed pathology data
incorporating cellular subpopulation, as well as treatment regimens
with long-term follow-up are needed to definitively address this
question.

Known breast cancer risk factors did not appear to vary
significantly by basal marker expression within luminal A tumours,
although we observed weak associations between basal-positive
tumours and higher frequency of positive family history especially
among younger women and lower prevalence of obesity. The
higher frequency of slim women with luminal A basal-positive
tumours might be also related to smaller tumour size of luminal A
basal-positive tumours as we observed a significant correlation
between tumour size and BMI among our study subjects. Indeed,
when we adjusted for BMI, the association between luminal A
basal-positive subtype and smaller tumour size was attenuated
(OR¼ 0.87; 95% CI¼ 0.69–1.09; P¼ 0.22). This finding is
consistent with previous reports that obese breast cancer patients
had larger tumours and higher rates of lymph node metastases
(Ewertz et al, 2011; Haakinson et al, 2012).

Our study has limitations. Although it is one of the largest
consortium studies with breast tumour subtype information and
risk factor data collected, statistical power was limited to assess risk
factors in uncommon subtypes especially when controlling for
potential confounding factors such as breastfeeding, menopausal

Table 2. Comparison of tumour characteristics between luminal A basal-negative and basal-positive subtypes

Basal-negative (n¼4490) Basal-positive (n¼550)

n % n % OR (95% CI)a P-value
Age, years (mean, s.d.) 56.6 (10.8) 56.3 (11.4) 0.66b

o40 207 4.6 31 5.6 1 (reference)
40–49 1024 22.8 127 23.1 0.90 (0.59–1.38) 0.63
50–59 1504 33.5 187 34.0 0.91 (0.60–1.38) 0.65
X60 1755 39.1 205 37.3 0.79 (0.52–1.21) 0.28
Ptrend — — — — 0.91 (0.82–1.02) 0.10

Tumour histology
Ductal 2994 72.6 376 74.6 1 (reference) —
Lobular 807 19.6 94 18.7 1.08 (0.84–1.39) 0.54
Other 323 7.8 34 6.8 0.89 (0.61–1.30) 0.55
Missing 366 — 46 — —

Tumour grade
Well differentiated 1113 27.1 160 32.0 1 (reference) —
Moderately differentiated 2318 56.4 240 48.0 0.75 (0.60–0.94) 0.01
Poorly differentiated 676 16.5 100 20.0 1.13 (0.85–1.50) 0.42
Missing 383 — 50 — — —
Ptrend — — — — 1.04 (0.90–1.22) 0.57

Tumour size
p2 cm 2798 65.3 362 69.8 1 (reference) —
42 cm 1488 34.7 157 30.3 0.83 (0.67–1.03) 0.09
Missing 204 — 31 — — —

Axillary node status
Negative 2523 61.7 332 66.5 1 (reference) —
Positive 1565 38.3 167 33.5 0.83 (0.67–1.02) 0.08
Missing 402 — 51 — — —

Abbreviations: CI¼ confidence interval; OR¼odds ratio.
aOdds ratios (95% CI) for being basal-positive cases were estimated with adjustment for age (10-year category), tumour grade, histology, tumour size, axillary node status and study.
bStudent’s t-test was used to compare the distribution of continuous variable.
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hormone therapy usage, and tumour size. As expected for any
analysis pooling data from multiple studies, there were variations
in study populations, study designs, data collection methods, and
marker measurement, which may cause study heterogeneity and
subtype misclassification. However, we found no significant

heterogeneity across studies at least for the associations in risk
factors we analysed. In addition, the proportions of CBP (8.5%)
and 5-NP (6.3%) subtypes were also comparable to those reported
previously (Cheang et al, 2008; Blows et al, 2010; Yang et al,
2011; Liu et al, 2012). Of note, although we used centralised

Table 3. Comparison of risk factors between luminal A basal-negative and basal-positive subtypes

Basal-negative (n¼4490) Basal-positive (n¼550)

n % n % OR (95% CI)a P-value
Age, years (mean, s.d.) 56.6 (10.8) 56.3 (11.4) — 0.66b

Family history of breast cancer
Absent 2859 78.7 345 73.4 1 (reference) —
Present 776 21.4 125 26.6 1.27 (0.99–1.63) 0.06
Missing 855 — 80 — — —

Age at menarche
p12 1421 36.6 168 36.7 1 (reference) —
13–14 1751 45.1 200 43.7 0.97 (0.78–1.22) 0.82
414 711 18.3 90 19.7 1.05 (0.79–1.39) 0.75
Missing 607 — 92 — — —
Ptrend — — — — 1.02 (0.88–1.17) 0.82

Parity
Nulliparous 659 15.9 69 13.9 1 (reference) —
Parous 3490 84.1 429 86.1 1.17 (0.89–1.54) 0.25
Missing 341 — 52 — — —

Age at first full-term pregnancyc

o20 362 11.2 47 12.2 1 (reference) —
20–24 1403 43.2 159 41.4 0.82 (0.57–1.17) 0.27
25–29 969 29.9 115 30.0 0.85 (0.59–1.24) 0.41
X30 512 15.8 63 16.4 0.90 (0.59–1.38) 0.63
Missing 244 — 45 — — —
Ptrend — — — — 0.99 (0.87–1.12) 0.85

Number of live birthsc

1 727 20.8 76 17.7 1 (reference) —
2 1583 45.4 209 48.7 1.28 (0.96–1.72) 0.09
X3 1180 33.8 144 33.6 1.09 (0.79–1.52) 0.59
Ptrend — — — — 1.00 (0.84–1.18) 0.97

Breast feedingc

Never 475 17.9 53 17.6 1 (reference) —
Ever 2181 82.1 248 82.4 1.11 (0.79–1.55) 0.54
Ptrend 834 — 128 — — —

Body mass index (cmm�2)
Overall
Mean, s.d. 26.6 (5.1) — 26.0 (4.9) — 0.02b —
o25 1701 43.6 215 47.4 1 (reference) —
25–30 1355 34.7 157 34.6 0.92 (0.74–1.16) 0.50
X30 847 21.7 82 18.1 0.78 (0.59–1.03) 0.08
Missing 587 — 96 — — —
Per 5 unit — — — — 0.90 (0.81–1.01) 0.07

Premenopausal (age o50)
Mean, s.d. 25.1 (4.80) — 24.9 (4.66) — 0.63b —
o25 631 57.7 79 57.3 1 (reference) —
25–30 323 29.6 44 31.9 1.12 (0.75–1.69) 0.57
X30 139 12.7 15 10.9 0.78 (0.42–1.44) 0.43
Missing 138 — 20 — — —
Per 5 unit — — — — 0.94 (0.77–1.15) 0.56

Postmenopausal (age X50)
Mean, s.d. 27.2 (5.10) — 26.5 (4.89) — 0.03b —
o25 1070 38.1 136 43.0 1 (reference) —
25–30 1032 36.7 113 35.8 0.89 (0.67–1.18) 0.41
X30 708 25.2 67 21.2 0.81 (0.58–1.12) 0.20
Missing 449 — 76 — — —
Per 5 unit — — — — 0.89 (0.79–1.01) 0.07

Abbreviations: CI¼ confidence interval; OR¼odds ratio.
aOdds ratios (95% CI) for being basal-positive cases were estimated with adjustment for age (10-year categories), family history of breast cancer, age at menarche, parity, and BMI.
bStudent’s t-test was used to compare the distribution of continuous variables.
cParous women only; adjusted for age (10-year categories), family history of breast cancer, age at menarche, parity, age at first full-term pregnancy, number of live births, breastfeeding, BMI,
and study.
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measurement for CK5/6 and EGFR expression, we used ER, PR,
and HER2 status retrieved from clinical records in each study
instead of centralised data to maximise the power of our study.
Accordingly, IHC methods and cut-point for positivity varied
substantially among studies. However, we observed high con-
cordance for ER and PR status between clinical records and
centralised quantitative measurements among a subset of study
subjects with both data available. Further, the overall proportions
of positivity for these five markers (ER, 78.0%; PR, 64.2%; HER2,
14.5%; CK5/6, 13.5%; EGFR, 12.8%) were generally consistent with
what was reported in previous studies (El-Rehim et al, 2004; Carey
et al, 2006; Rakha et al, 2006; Cheang et al, 2008; Liu et al, 2012).
Finally, information on proliferation marker (such as Ki-67) was
not available for most studies, which made the accurate
classification of real luminal A tumours a challenge. However,
results from the sensitivity analysis restricting to cases with high
ER and PR expression levels using centralised data did not
change results significantly, suggesting that the potential
subtype misclassification caused by study heterogeneity or marker
measurement and scoring did not significantly influence our
conclusion.

In conclusion, we found that tumour characteristics and known
risk factors were generally similar in basal-positive and basal-negative
luminal A tumours. The small differences in tumour features and
family history between the two luminal A subtypes warrant further
investigations in future studies with larger number of subjects and
detailed annotation of subtype and risk factor information.
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