
World Wide Web: Internet and Web Information Systems, 7, 315–336, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Optimal Content Location in Multicast Based
Overlay Networks with Content Updates ∗

OREN UNGER oren.unger@zoran.com
Department of Electrical Engineering, Technion and Zoran Microelectronics, Israel

ISRAEL CIDON cidon@ee.technion.ac.il
Department of Electrical Engineering, Technion – Israel Institute of Technology, Israel

Abstract

The architecture of overlay networks should support high-performance and high-scalability at low costs. This
becomes more crucial when communication, storage costs as well as service latencies grow with the exploding
amounts of data exchanged and with the size and span of the overlay network. For that end, multicast methodolo-
gies can be used to deliver content from regional servers to end users, as well as for the timely and economical
synchronization of content among the distributed servers. Another important architectural problem is the effi-
cient allocation of objects to servers to minimize storage, delivery and update costs. In this work, we suggest a
multicast based architecture and address the optimal allocation and replication of dynamic objects that are both
consumed and updated. Our model network includes consumers which are served using multicast or unicast
transmissions and media sources (that may be also consumers) which update the objects using multicast commu-
nication. General costs are associated with distribution (download) and update traffic as well as the storage of
objects in the servers. Optimal object allocation algorithms for tree networks are presented with complexities of
O(N) and O(N2) in case of multicast and unicast distribution respectively. To our knowledge, the model of mul-
ticast distribution combined with multicast updates has not been analytically dealt before, despite its popularity
in the industry.

Keywords: content distribution, multicast, overlay networks, tree networks

1. Introduction

Recent years have witnessed tremendous activity and development in the area of content
and services distribution. Geographically dispersed consumers and organizations demand
higher throughput and lower response time for accessing distributed content, outsourced
applications and managed services. In order to enable high quality and reliable end-user
services despite unpredictable Internet and Intranet conditions, organization and applica-
tions service providers (ASPs) employ content delivery networks (CDN) and overlay net-
works. These networks bring content and applications closer to their consumers, overcom-
ing slow backbone paths, network congestions and physical latencies. Multiple vendors
such as Cisco [4], Akamai [1] and Digital Fountain [5] offer CDN services and overlay
technologies. Recently, more collaborative models such as distributed storage and peer-to-

∗ Publisher’s note: A partial preliminary version of this work can be found in the Proceedings of ICDCS 2003
Workshop.

316 UNGER AND CIDON

peer computational models require both consumption and modification of the content by
multiple, geographically distributed users [15,17].

An overlay network is a set of network edges that are connected through the general
Internet Infrastructure. Naturally, organizations and ASPs try to optimize the overall cost
of the overlay network mainly in terms of storage and communication costs. Efficient al-
location of information objects to the overlay network servers reduces the operational cost
and improves the overall performance. This becomes more crucial as the scale of services
extend to a large number of users over international operation where communication and
storage costs as well as network latencies are high. The optimization problem becomes
more difficult as the service becomes dynamic and needs to be changed, updated and syn-
chronized frequently.

The popularity of multicast for distribution of the content is increasing with the intro-
duction of real-time and multimedia applications that consume high bandwidth and are
delivered to a large group of consumers. Although multicast is efficient for large groups,
unicast can still be more effective for small groups, especially for a sparse distribution of
consumers.

Our initial model is a tree graph that has a server located at each of its vertices. The
vertices also include optional entries to local consumers and media sources. Each server is
assigned with a storage cost and each edge is assigned with distribution and update com-
munication costs. The distribution demand of the consumers and the update requirements
of the media sources are given. The consumers are served from servers using multicast
or unicast communication. The media sources update and modify the objects within the
servers. The update traffic between a media source and the relevant servers is most ef-
ficiently conducted using multicast communication, since it can reduce significantly the
overall update transport and the update latency.

Our goal is to find an optimal allocation, e.g., the set of servers which store an object,
with the minimum overall (communication and storage) cost. The consumers are assigned
to the servers in a way that each consumer is served by exactly one server for an object.
It is clear that by changing the number of copies, we introduce a tradeoff between the
storage/update costs that increase with the number of copies and the distribution cost that
decreases with this number.

We present two optimal allocation algorithms for the tree network that have a computa-
tional complexity of O(N) for the multicast distribution case and O(N2) for the unicast
distribution case.

2. Related work

Application level multicast and overlay multicast protocols have been studied in recent
years. Most of the works focus at the structure of the overlay topology (i.e., the way the
multicast tree is constructed) for a single tree [7,16]. Our work assumes the overlay net-
work topology is a tree, but instead of focusing on its construction, we focus on the way it
should be partitioned to multiple regional multicast trees while optimizing the communi-
cation and storage cost.

OPTIMAL CONTENT LOCATION IN MULTICAST BASED OVERLAY NETWORKS 317

The object allocation problem, also referred as the file allocation problem [6] has been
studied extensively in the literature. While the multicast distribution model was never con-
sidered before, the combination of multicast update (write) and unicast distribution (read)
without storage costs was considered in [18]. Kalpakis et al. [9] and Krick et al. [12]
present a model of a network with unicast reads, multicast writes and storage costs. Arti-
cle [9] presents a problem with additional constrains for a tree network and the algorithm
they present for the similar case is less efficient than ours. [12] deals with general networks
and suggests an optimal algorithm for tree networks which is also less efficient than our al-
gorithm. These works do not solve the multicast reads multicast write problem. Moreover,
the multicast update model presented in [9,12] is based on a single minimum spanning
tree of the servers which store a copy (i.e., multicast is used only between the servers),
while our model suggests an independent multicast tree from each media source to all the
servers. The computational complexity for the similar (but not identical) object allocation
problem in a tree network is O(N5) in [9] and O(Ndiam(T) log(deg(T))) in [12] (worst
case is O(N2 log(N))).

Without the update process in the unicast distribution model, we end up with the classi-
cal “uncapacited plant location problem” [13] model with facilities replacing servers and
roads replacing communication lines. The problem has been proved to be NP-complete for
general graphs [13]. It was solved for trees in polynomial time [2,11]. The “uncapacited
plant location problem” was mapped to content delivery networks [3]. Additional works
that address the read only model address the server location problem given a fixed number
of servers [8,14] and objects [10].

3. The model

Objects

For each object o of the objects set O , we determine the set of servers which store copies
the object. The algorithm handles each object separately, so the various costs described in
figure 1 may differ for each object.

The tree network

Let T = (V ,E) be a tree graph that represents a communication network, where V =
{1, . . . , N} is the set of vertices and E is the set of edges. The tree is rooted at any arbitrary
vertex r (r = 1). Each vertex in the tree represents a network switch and a potential
storage place for object copies. It is also an entry point of consumers and/or media sources
to the network. Distribution demands of consumers connected to vertex i are satisfied by
the network from the server at the closest vertex (or the closest multicast tree rooted at)
j which stores an object copy. An update to an object may be generated by any media
source and is sent to all the vertices that store the object using multicast.

Denote the subtree of T rooted at vertex i as Ti ; the parent vertex of vertex i in T (i �= r)
as Pi ; the edge that connects vertex i to its parent in T , (i, Pi) as ei (er = ∅); the set of

318 UNGER AND CIDON

Figure 1. An example of a tree network. Edges are associated with unit distribution and update costs. Ver-
tices may have servers with storage costs, media sources with update demands and consumers with distribution
demands.

edges in Ti ∪ei (including edge ei) as Ei (Er ≡ E); the set of vertices in Ti as Vi (Vr ≡ V);
the set of children vertices of vertex i in T as Chi (for a leaf i, Chi = ∅).

Figure 1 demonstrates a tree network and its related costs.

Storage cost

Let the storage cost of the object at vertex i to be Sci . Sci represents the resources needed
from the server for storing the object, like disk space, computational power and relative
maintenance cost.

Denote � is the set of vertices that store the object. The total storage cost of the object
in the network is

∑
i∈� Sci .

Distribution traffic cost

Denote the cost per distribution traffic unit at edge ei as Ucdi (Ucdi > 0). Since er = ∅,
Ucdr ≡ 0. Ucdi represents the residual cost of traffic in a physical line or the relative cost
of the connection to a public network.

Multicast distribution traffic cost. The multicast distribution traffic provided to vertex i,
Tdmi , is Td.1 Td may be the bandwidth requirement, or other QoS related parameters.

Denote Dmti the set of edges in the distribution multicast tree rooted at vertex i. If
vertex i does not store an object then Dmti = ∅. The total multicast distribution traffic cost
in the network is

∑
i∈� Td

∑
e∈Dmti Ucde.

OPTIMAL CONTENT LOCATION IN MULTICAST BASED OVERLAY NETWORKS 319

Unicast distribution traffic cost. The cost per distribution traffic unit along a path between
vertices i and j is Ddi,j = ∑

e∈Pi,j
Ucde, where Pi,j is the set of edges that connect vertex i

to vertex j . We define Pi,i ≡ ∅ and Ddi,i ≡ 0. Since the tree is undirected, Pi,j = Pj,i .
The total distribution traffic demand (requirements) produced by all the consumers con-

nected to vertex i is Tdui (Tdui � 0).
The total unicast distribution traffic cost in the network is

∑
i∈V Tdui minj∈� Ddi,j . (In

case there exist j, k ∈ � such that Ddi,j = Ddi,k and j < k then we will select j , the
smallest index.)

Multicast update traffic cost

Denote the cost per update traffic unit at edge ei as Ucui (Ucui > 0). Since er = ∅,
Ucur ≡ 0.

The total multicast update traffic generated by all the media sources connected to ver-
tex i is Tui (Tui � 0). This traffic is delivered through Umti,�, the set of edges of the
multicast update tree from vertex i to �. The total update traffic cost in the network is∑

i∈V Tui

∑
e∈Umti,� Ucue.

4. Properties of the optimal solution on trees

Before we describe the common characteristics of the algorithms, we first emphasize some
properties of the optimal solution. These properties are the foundations of our technique
and are also required to explain its correctness.

4.1. Per edge update traffic

As described in Section 3, a vertex i which is a root of a multicast update tree generates Tui

update traffic which is delivered through each edge e ∈ Umti,�. The update traffic of such
a tree is directed from i to �. Since the location of the media sources is known a-priory,
when we look at a single edge, we can determine the update traffic that will pass through
it in each direction, in case there are copies stored in the subtrees connected to it (in both
ends of the edge).

For each edge ei we define Tuout
i and Tuin

i . Tuout
i is the total update traffic that is outgoing

via vertex i and edge ei out of Ti , in case there is at least one copy stored outside Ti . Tuin
i is

the total update traffic that is incoming via vertex i and edge ei into Ti , in case there is at
least one copy stored in Ti .

Tuout
i ←

∑
j∈Vi

Tuj = Tui +
∑

c∈Chi

Tuout
c ,

Tuin
i ←

∑
j /∈Vi

Tuj = Tuout
r − Tuout

i .

320 UNGER AND CIDON

4.2. Distribution traffic properties

Lemma 1. In the optimal allocation, in case of unicast distribution, if vertex i is served
from vertex j , which satisfies minj∈� Ddi,j , and i is served through vertex k (i.e., Pi,j =
Pi,k ∪ Pk,j), then k must also be served from j .

Proof: Since Pi,j = Pi,k ∪ Pk,j then Ddi,j = Ddi,k + Ddk,j . Suppose vertex k is not
served from j , but from a different vertex l. Since the solution is optimal there must exist
Ddk,l < Ddk,j . In that case we get Ddi,l = Ddi,k + Ddk,l < Ddi,k + Ddk,j , which is a
contradiction. �

Lemma 2. In the optimal allocation, in case of multicast distribution, each vertex i can
only belong to at most one multicast distribution tree.

Proof: Suppose a vertex i belongs to more than one multicast distribution tree, then
by disconnecting it from the other trees and keeping it connected to only one multicast
distribution tree we reduce the distribution traffic in contradiction to the optimality of the
cost. �

Lemma 3. In the optimal allocation, if vertex i is served through its neighbor k in T (either
parent or child), then i and k are served from the same server.

Proof: The proof is a direct result of Lemmas 1 and 2. �

Corollary 1. The above properties lead us to the conclusion that the optimal allocation is
composed of a subgraph of T which is a forest of unicast or multicast distribution subtrees.
Each subtree is rooted at a vertex where a copy is located and its leaves are vertices were
no copy is stored and there is distribution demand. Each edge and vertex in T can be part
of at most one unicast or at most one multicast distribution subtree.

5. Common algorithms properties

The main idea behind the algorithms is the observation that in tree graphs, since there
is only one edge from each vertex i to its parent, and due to Lemma 3, if we consider
the influence of the optimal allocation outside Ti on the optimal allocation within Ti , it is
narrowed to a very small number of possibilities. We just have to consider the following:
are copies located outside Ti (and if i is served from an external copy, where is it located),
are there no copies located within Ti (only when i �= r) and is there multicast distribution
demand outside Ti . We define scenarios that are possible for each vertex pair i, j in unicast
distribution and for vertex i in multicast distribution, which cover all these possible external
influences on the optimal allocation within Ti . In addition, due to the same Lemma 3, it is
fairly easy and straight forward to calculate the optimal allocation for vertex i and Ti based
on the optimal allocation calculated for each c and Tc, where c ∈ Chi .

OPTIMAL CONTENT LOCATION IN MULTICAST BASED OVERLAY NETWORKS 321

As a result, our algorithms for tree graphs are recursive algorithms that find the op-
timal allocation for a new problem which is a subset of the original problem for vertex i

and Ti , based on the optimal allocation computed by its children Chi for their subsets of the
original problem. (There are different new problems for the multicast/unicast distribution
cases.)

The algorithms are performed in two phases. The first phase is the cost calculation phase
which starts at the leaves and ends at the root, while calculating the optimal allocation
and its alternate cost for each vertex pair i, j in unicast distribution and each vertex i in
multicast distribution and for each scenario, based on the optimal allocations calculated by
the children of vertex i for all their possible scenarios. The second phase is a backtrack
phase which starts at the root and ends at the leaves where the algorithm selects the scenario
which is active in the optimal allocation (in the optimal solution there can be only one
actual scenario possible for each vertex) and allocates the copies in the relevant servers.
The second phase is needed since only in the root it is possible to find the optimal allocation
of the entire tree, and since the algorithm works in a recursive way, the root does not know
the entire optimal allocation, but only the actual scenarios of itself and its children as well
as the cost of the optimal allocation.

The algorithms calculate the optimal object allocation cost as well as the set of servers
that will store the object.

6. MDT – the optimal algorithm for multicast distribution

The goal is to minimize the total cost (storage and traffic):

∑
i∈�

Sci +
∑
i∈V

Tui

∑
e∈Umti,�

Ucue +
∑
i∈�

Td
∑

e∈Dmti

Ucde (1)

(Storage cost + Total multicast update cost + Total multicast distribution cost).

For the new problem we define a new tree, which is a subtree of T constructed of Ti

edge ei .
The new optimization problem is defined as follows. Find the optimal allocation and its

alternate cost in Ti , given the following assumptions:

1. There are copies or there is no copy located inside Ti .
2. There are copies or there is no copy located outside Ti .
3. When there are copies outside Ti , is there a need for incoming multicast distribution.

I.e., are there consumers inside Ti that are connected to a multicast distribution tree
through edge ei .

4. When there are copies inside Ti , is there a need for outgoing multicast distribution.
I.e., are there consumers outside Ti that are connected to a multicast distribution tree
through edge ei .

322 UNGER AND CIDON

Table 1. The possible scenarios of the optimal allocation for a subtree.

Abbr. Scenario

xii eXternal only object allocation and Incoming multicast distribution
ioi Internal only object allocation and optional Outgoing multicast distribution
bii Both sides object allocation and Incoming multicast distribution
boi Both sides object allocation and optional Outgoing multicast distribution

Figure 2. The possible scenarios of the optimal allocation for a subtree.

Based on the above assumptions we define the scenarios that are possible for each ver-
tex i. Table 1 and figure 2 describe the possible scenarios.

6.1. The cost calculation phase

For each vertex i the algorithm calculates for Ti four alternate costs, for the scenarios in
Table 1:

Cxii There is no copy located inside Ti (i �= r). Edge ei will carry incoming distribution
and outgoing update traffic.

Cbii Copies are located both inside and outside Ti but not all the internal consumers
demand is supplied from copies in Ti . Edge ei will carry incoming distribution
and both incoming and outgoing update traffic.

Cboi Copies are located both inside and outside Ti and all the internal consumers de-
mand is supplied from copies in Ti . Edge ei will carry both incoming and outgoing
update (and maybe outgoing distribution) traffic.

Cioi All the copies of the object are located only inside Ti . Edge ei will carry incoming
update (and maybe outgoing distribution) traffic.

OPTIMAL CONTENT LOCATION IN MULTICAST BASED OVERLAY NETWORKS 323

The algorithm calculates the alternate costs as follows:

Cxii ←
{

Td · Ucdi + Tuout
i · Ucui + sum4, if i �= r ,

∞, if i = r,

Cbii ←
{

Td · Ucdi + (
Tuin

i + Tuout
i

)
Ucui + sum1, if i �= r and Chi �= ∅,

∞, if i = r and Chi = ∅,

Cboi ←
{ (

Tuin
i + Tuout

i

)
Ucui + min{min1, min2}, if i �= r,

∞, if i = r,

Cioi ←
{

Tuin
i · Ucui + min{min1, min2, min3}, if i �= r,

min{min1, min2, min3}, if i = r,

where (various combinations of children scenarios):

min1 = Sci + sum1,

sum1 =
∑

c∈Chi

min{Cxic, Cboc, Cbic},

min2 = min
c∈Chi

{Td · Ucdc + Cboc + sum2},

sum2 =
∑

k∈Chi ,k �=c

min{Cxik, Cbok, Cbik},

min3 = min
c∈Chi

{Td · Ucdc + Cioc + sum3},

sum3 =
∑

k∈Chi ,k �=c

Cxik,

sum4 =
∑

c∈Chi

Cxic.

Note. sum1, sum2, sum3, sum4 equal 0 and min2, min3 equal ∞ if vertex i is a leaf
(Chi = ∅).

Figure 3 illustrates the combinations of children scenarios (and costs) that are used in
the optimal cost calculation.

The cost of the optimal allocation in T is Cior .

6.2. Backtracking for content allocation

While calculating the alternate costs for each vertex i, the algorithm remembers for each
alternate cost (scenario) if a copy needs to be stored at i and the relevant scenario of each
child c which was used in the calculation (except for xic, since no copy is stored in its
subtree).

The backtrack phase is recursive, starts at the root and ends at the leaves of T (can stop
earlier if no child c has a copy in Vc). Based on the saved backtrack data, for each vertex i,
the algorithm determines the actual scenario in the optimal allocation, if a copy should be

324 UNGER AND CIDON

Figure 3. An illustration of the combinations of children scenarios used for cost calculation.

Figure 4. An optimal allocation example, the actual scenarios and the distribution forest.

stored at i (will happen if min1 was used in the actual scenario) and if it is necessary to
keep advancing towards the leaves of T .

Figure 4 demonstrates an optimal allocation, the various actual scenarios selected during
the backtrack phase, and the multicast distribution forest for that allocation.

Section 9.1 presents the pseudo-code of the algorithm. Backtrack details are also shown
there.

6.3. MDT computational complexity

In the cost calculation phase, for each vertex in the tree i ∈ V the algorithm calculates
up to 4 alternate costs. Each cost calculation requires O(|Chi | + 1). Therefore the total
complexity of cost calculation for vertex i is 4O(|Chi | + 1).

OPTIMAL CONTENT LOCATION IN MULTICAST BASED OVERLAY NETWORKS 325

The total complexity of the cost calculation phase for the entire tree is
∑

i∈V 4O(|Chi |
+ 1).

The complexity of the backtrack phase for vertex i is O(|Chi | + 1). |V | = N and the
total number of children in the tree is N − 1 (only the root r is not a child).

Therefore:

OMDT =
∑
i∈V

(4 + 1)O
(|Chi | + 1

) = O

(
5

∑
i∈V

(|Chi | + 1
))

= O
(
5(2N − 1)

) = O(N).

The computational complexity of MDT is O(N).

6.4. Proof of optimality

The proof is based on induction. Lemma 4 is the induction base.

Lemma 4. For all the scenarios, the algorithm optimally allocates the object in Ti ,
when i is a leaf of T .

Proof: According to the definition of the new optimization problem, either one of the
following possible scenarios holds.

1. Vertex i is served from a copy outside Ti (through edge ei), and no copy is stored in Ti .
The optimal cost is outgoing update and incoming distribution traffic through edge ei .
(Cxii)

2. Vertex i is served from a copy outside Ti (through edge ei), while a copy is stored in Ti .
Impossible for a leaf, since leaf i must store a copy and it will be served from the local
copy. (Cbii = ∞)

3. Vertex i is served from within Ti and copies are allocated both inside and outside
Ti . As a leaf, vertex i must store a copy. Since copies are allocated both in-
side and outside Ti , edge ei will carry both incoming and outgoing update traffic.
The optimal cost is the storage cost at vertex i and update traffic through edge ei .
(Cboi)

4. All the copies are allocated inside Ti . As a leaf, vertex i must store a copy. Edge
ei will not carry outgoing update traffic, since there are no copies outside Ti . The
optimal cost is the storage cost at vertex i and incoming update traffic through edge ei .
(Cioi)

�

Lemma 5 constructs the induction step for the recursive proof of optimality.

Lemma 5. Assume that the algorithm optimally allocates copies in every subtree rooted
at vertex c which is a child of i (Tc, c ∈ Chi) for all the scenarios, then the algorithm
optimally allocates the object in Ti for all the scenarios.

326 UNGER AND CIDON

Proof: According to the definition of the new optimization problem, either one of the
following possible scenarios holds.

1. Vertex i is served from a vertex outside Ti (through edge ei), and no copy is stored
in Ti . No copy can be allocated in Tc, c ∈ Chi . Based on the induction, the problem
was solved for Tc, c ∈ Chi , and the additional cost in i is the incoming distribution and
outgoing update traffic through edge ei . (Cxii)

2. Vertex i is served from a copy outside Ti (through edge ei), and copies are located both
inside and outside Ti . At least one copy must be allocated in one or more subtrees Tc,
c∈Chi . Vertex i cannot store a copy, and edge ei will carry incoming distribution traffic,
since it’s served from outside Ti . If there are vertices c ∈ Chi which are served through
edge ec, then according to Lemma 2 they must be served through edge ei . Since copies
are stored inside and outside Ti , edge ei carries both incoming and outgoing update
traffic. The optimal cost is the additional traffic through edge ei , and the sum of optimal
costs calculated for each Tc (the minimum of the following legal scenarios for each
c ∈ Chi : Cxic, Cbic or Cboc). (Cbii)

3. Vertex i is served from within Ti and copies are allocated both inside and outside Ti .
Since copies are allocated both inside and outside Ti , edge ei will carry both incoming
and outgoing update traffic. There are two possibilities for object allocation in this
scenario:

(a) Vertex i stores a copy of the object (and served from that copy). The vertices in the
subtrees Tc, c∈Chi , may be served either from vertex i or from internal copies (the
minimum of the following legal scenarios for each c ∈ Chi : Cxic, Cbic or Cboc).
(min1)

(b) Vertex i is served from Tc, c∈Chi , which stores a copy of the object (through ec).
The other vertices in the subtrees Tk , k ∈ Chi , k �= c, may be served either through
vertex i or from internal copies (the minimum of the following legal scenarios for
each k ∈ Chi : Cxik, Cbik or Cbok). (min2)

The optimal cost is the additional incoming and outgoing update traffic through edge ei

and the minimum between min1, min2. (Cboi)
4. All the copies are allocated inside Ti . Edge ei will only carry incoming update traf-

fic (for the internal copies). There are three possibilities for object allocation in this
scenario:

(a) Vertex i stores a copy of the object (and served from that copy). The vertices in the
subtrees Tc, c ∈ Chi , may be served either from vertex i or from internal copies (the
minimum of the following legal scenarios for each c ∈ Chi : Cxic, Cbic or Cboc).
(min1)

(b) Vertex i is served from Tc, c ∈ Chi which stores a copy of the object (through ec).
The other vertices in the subtrees Tk , k ∈ Chi , k �= c, may be served either through
vertex i or from internal copies (the minimum of the following legal scenarios for
each k ∈ Chi : Cxik, Cbik or Cbok). (min2)

(c) Vertex i is served from Tc, c ∈ Chi , which stores a copy (outgoing distribution
traffic on edge ec), and no other vertices in the subtrees Tk , k ∈ Chi , k �= c, store a
copy of the object. All these subtrees must be served through vertex i. (min3)

OPTIMAL CONTENT LOCATION IN MULTICAST BASED OVERLAY NETWORKS 327

The optimal cost is the additional incoming update traffic through edge ei and the min-
imum between min1, min2, min3 (Cioi).

�

Theorem 1. When the algorithm ends, Cior holds the optimal allocation cost and the
allocation of copies is optimal.

Proof: The proof is conducted by the induction where Lemma 4 is the base and Lemma 5
is the step. In addition, the costs Cxir , Cbir and Cbor are illegal since there cannot be
copies allocated outside Tr ≡ T . �

7. UDT – the optimal algorithm for unicast distribution

The goal is to minimize the total cost (storage and traffic):

∑
i∈�

Sci +
∑
i∈V

Tui

∑
j∈Umti,�

Ucuj +
∑
i∈V

Tdui · min
j∈�

Ddi,j (2)

(Storage cost + Total multicast update cost + Total unicast distribution cost).

For the new problem we define a new tree, Ti,j , which is a subtree of T constructed of
Ti (the subtree of T rooted at i), and the additional set of edges ei (connects vertex i to its
parent) and Pi,j (the string that connects vertex i to j), in case j /∈ Ti .

The new optimization problem is defined as follows. Find the optimal allocation and its
alternate cost in Ti,j , given the following assumptions:

1. A copy is located at vertex j , j ∈ V . If j ∈ Vi vertex i is served by unicast distribution
from j . If j /∈ Vi and vertex i is served by unicast distribution from outside Ti it is
served from j . When j /∈ Vi , since vertex j is not part of Ti,j (just the path to it), its
storage cost is ignored. Note: the difference between the case of j ∈ Vi and j /∈ Vi , is
that i has the entire data (including storage cost) regarding copies allocation inside Ti ,
but only the unicast distribution cost from copies located outside Ti . For j /∈ Vi , i may
decide that it is less expensive to be served from a stored copy in an internal vertex l

than to be served from j .
2. There are copies or there is no copy located inside Ti . Relevant for update multicast

traffic.
3. There are copies or there is no copy located outside Ti . Relevant for update multicast

traffic.

Based on the above assumptions we define scenarios that are possible for each vertex
pair i, j . Table 2 lists the different scenarios for each vertex pair i, j .

328 UNGER AND CIDON

Table 2. The possible scenarios of the optimal allocation for
a subtree.

Abbreviation Scenario

xni,j (j /∈Vi) eXternal only object allocation
ini,j (j ∈ Vi) Internal only object allocation
bni,j Both sides object allocation

For each vertex pair i, j the algorithm calculates for Ti,j three alternate costs:

Cxni,j There is no copy located in Ti (i �= r) and the alternate cost is of distribution
traffic only. Edge ei will carry outgoing update traffic.

Cini,j At least one copy is located inside and no copies are located outside Ti . Edge ei

will carry incoming update traffic.
Cbni,j Copies are located both inside and outside Ti . Edge ei will carry both incoming

and outgoing update traffic.

The algorithm calculates the alternate costs as follows:

Cxni,j ←
{∞, if j ∈ Vi,

Tdui · Ddi,j + Tuout
i · Ucui + sum1, if j /∈ Vi ,

Cini,j ←



Tdui · Ddi,j + Tuin
i · Ucui + min{sum2, sum3}, if j ∈ Vk, k ∈ Chi ,

Tuin
i · Ucui + Sci + sum4, if j = i,

∞, if j /∈ Vi,

Cbni,j ←




Tdui · Ddi,j + Tuin
i · Ucui + Tuout

i · Ucui + sum3, if j ∈ Vk, k ∈ Chi ,

Tuin
i · Ucui + Tuout

i · Ucui + Sci + sum4, if j = i,

min
{

min
l∈Vi

Cbni,l ,
2 TduiDdi,j + sum4

+(
Tuin

i + Tuout
i

)
Ucui

}
, if j /∈ Vi,

where

sum1 =
∑

k∈Chi

Cxnk,j ,

sum2 = Cink,j +
∑

l∈Chi ,l �=k

Cxnl,j ,

sum3 = Cbnk,j +
∑

l∈Chi ,l �=k

min{Cxnl,j , Cbnl,j },

sum4 =
∑

k∈Chi

min{Cxnk,j , Cbnk,j }.

Note. sum1, sum2, sum3 and sum4 equal 0 if vertex i is a leaf (Chi = ∅).

The optimal total cost is minj∈V Cinr,j .

OPTIMAL CONTENT LOCATION IN MULTICAST BASED OVERLAY NETWORKS 329

7.1. Backtracking for content allocation

While calculating the alternate costs for each vertex pair i, j , the algorithm remembers
for each alternate cost (scenario), if a copy needs to be stored at vertex i and the relevant
scenario of each child k that was used in the calculation (unless the scenario is xnk,j , since
it has no copy stored in its subtree). This is important for the backtracking phase, and
allows accurate placement of the copies while backtracking.

The backtrack phase is recursive, starts at the root and ends at the leaves of T (can stop
earlier if no child has a copy in Vk). For each vertex i, the algorithm determines the actual
scenario in the optimal allocation, if a copy should be stored at i (will happen if (i, i) pair
was selected for an actual scenario) and if it is necessary to keep advancing towards the
leaves of T . The algorithm uses the backtrack information that was saved earlier.

Section 9.2 presents the pseudo-code of the algorithm. Backtrack details are also shown
there.

7.2. Complexity

In the cost calculation phase, for each vertex in the tree i ∈ V the algorithm calculates up
to 3N alternate costs. Each cost calculation requires O(|Chi | + 1). Therefore the total
complexity of cost calculation for vertex i is 3N · O(|Chi | + 1).

The total complexity of the cost calculation phase for the entire tree is
∑

i∈V 3N ·
O(|Chi | + 1).

The complexity of the backtrack phase for vertex i is O(|Chi | + 1).
|V | = N and the total number of children in the tree is N − 1 (only the root r is not a

child).
Therefore:

OUDT =
∑
i∈V

(3N + 1)O
(|Chi | + 1

)

= O
(
(3N + 1)

∑
i∈V

(|Chi | + 1
))

= O
(
(3N + 1)(2N − 1)

) = O
(
N2).

The computational complexity of UDT is O(N2).

7.3. Proof of optimality

The proof is based on induction. Lemma 6 is the induction base.

Lemma 6. For all scenarios, and for all vertices j∈V the algorithm optimally allocates
the object in Ti,j , when i is a leaf of T .

330 UNGER AND CIDON

Proof: According to the definition of the new optimization problem, either one of the
following possible scenarios holds.

1. j = i (no string is connected), the algorithm allocates the object at vertex i. This is
the only possibility, which is optimal (Cxni,i cannot exist, set to ∞). The optimal cost
is constructed from the storage cost and the cost of update traffic (incoming only for
Cini,i , both incoming and outgoing for Cbni,i).

2. j �= i (j /∈ Vi). A string Pj,i is connected to Ti . According to the definition of the
problem, there’s a copy of the object located at vertex j – therefore Cini,j is illegal (set
to ∞) and there must be outgoing update traffic through edge i. If the distribution cost
from j to i is less than the storage cost + incoming update cost, the optimal decision is
to be served from j (represented by Cxni,j ; in this case the algorithm also sets Cbni,j

to Cxni,j + the incoming update cost, which insures that if a copy of the object is
not stored at Ti , Cxni,j�Cbni,j), otherwise the decision is to store a copy at vertex i

(represented by Cbni,j which is set to Cbni,i , in this case Cbni,j�Cxni,j).
�

Lemma 7 constructs the induction step for the recursive proof of optimality.

Lemma 7. Assume that the algorithm optimally allocates the object to servers in every
subtree rooted at vertex c which is a child of i (Tc, c ∈ Chi) for all scenarios and for all
vertices j ∈ V , then the algorithm optimally allocates the object in Ti for all the scenarios
and for all vertices j ∈ V .

Proof: According to the definition of the new optimization problem, either one of the
following possible scenarios holds.

1. j = i (no string is connected), the algorithm allocates the object at vertex i. There is a
copy located at Ti therefore Cxni,i cannot exist (set to ∞), and there must be incoming
update traffic through edge i. The vertices in each subtree Tk, k ∈ Chi may be served
either from vertex i or from copies located internally in the subtree. (The minimum of
the following legal scenarios for each k ∈ Chi : Cxnk,i , Cbnk,i ⇒ sum4.) The optimal
cost is constructed from the storage cost at i, the optimal costs calculated in the chil-
dren (sum4) and the cost of update traffic (incoming only for Cini,i both incoming and
outgoing for Cbni,i).

2. j ∈ Vk , k ∈ Chi (no string is connected), the algorithm allocates the object at vertex j .
There is a copy located at Ti therefore Cxni,j cannot exist (set to ∞), and there must be
incoming update traffic through edge i.
For the scenario where no copy of the object is allocated outside Ti (Cini,j), two possi-
bilities hold:

(a) There are copies allocated only within Tk (at least at vertex j). In this case there
are no copies allocated in Tl , l ∈ Chi , l �= k. (sum2)

(b) There are copies allocated within Tk (at least at vertex j) and also within at least
another Tl , l ∈ Chi , l �= k. (sum3)

OPTIMAL CONTENT LOCATION IN MULTICAST BASED OVERLAY NETWORKS 331

For the scenario where at least one copy of the object is allocated outside Ti (Cbni,j),
only one possibility holds: there are copies allocated within Tk (at least at vertex j) and
maybe within at least another Tl , l ∈ Chi , l �= k (sum3). The optimal cost is constructed
from the distribution cost from j to i, the optimal costs calculated in the children (sum2
or sum3) and the cost of update traffic (incoming only for Cini,j , both incoming and
outgoing for Cbni,j).

3. j /∈ Vi . A string Pj,i is connected to Ti . According to the definition of the problem,
there’s a copy located at vertex j – therefore Cini,j is illegal (set to ∞) and there must be
outgoing update traffic through edge i. There are three possibilities for object allocation
in this scenario:

(a) Vertex i is served from j , and no copy of the object is located within Ti . According
to Lemma 1 all vertices in Ti are served from j . The optimal cost is the distribution
cost from j to i plus the optimal Cxni,j costs calculated for the children of i (sum1)
plus the outgoing update traffic. (Represented by Cxni,j .)

(b) Vertex i (and according to Lemma 1 all vertices in Ti) is served from within Ti . In
this case the optimal allocation is represented by the minimal cost minl∈Vi Cbni,l

(Cbni,j since there is a copy located outside Ti). (One possibility for Cbni,j .)
(c) Vertex i is served from vertex j , and at least one copy of the object is located within

Ti . The vertices in each subtree Tk, k ∈ Chi may be served either from vertex j

or from copies located internally in the subtree. (The minimum of the following
legal scenarios for each k ∈ Chi : Cxnk,j , Cbnk,j ⇒ sum4.) The optimal cost is
constructed from the distribution cost from i to j , the optimal costs calculated in
the children (sum4) and the cost of outgoing update traffic. (Other possibility for
Cbni,j .)

�

Theorem 2. When the algorithm ends, minj∈V Cinr,j holds the optimal allocation cost
and the allocation of copies is optimal.

Proof: The proof is conducted by the induction where Lemma 6 is the base and Lemma 7
is the step. For each j ∈ V , Cinr,j represents an optimal allocation of the objects where
r is served from j . The minimal Cinr,j is the optimal cost of the original optimization
problem. In addition, the costs Cbnr,j , Cxnr,j are illegal since there cannot be copies
allocated outside Tr ≡ T . �

8. Conclusion and future work

In this work, we addressed overlay networks with update from multiple media sources
and content distribution to users that employ native multicast based update for unicast or
multicast content distribution.

We developed optimal content allocation algorithms for tree networks with computa-
tional complexity of O(N) and O(N2) for multicast and unicast distribution, respectively.
We showed that adding update traffic to the original unicast distribution problem requires

332 UNGER AND CIDON

new algorithmic observations and techniques but has a minor effect on the computational
complexity.

The presented algorithms can easily be transformed into distributed algorithms. The
transformation is out of the scope of this paper but one can think of the way to turn the cost
calculations described in Section 9 into calculations performed in each node, and the data
produced by the calculations as the data that has to be passed from children to their parents
and vice versa.

Our current work focus on the generalization of the problem to general graphs. Most of
the related problems in general graphs are NP-hard.

An additional work may be in the direction of adjusting the above static algorithms
into a dynamic environment where the demands and various costs may change over time.
Since the algorithms are most efficient, an easy adjustment may be to calculate the costs
periodically and run the algorithm from scratch. Please note that an incremental change in
the costs may not incur an incremental change in the result of the algorithm, there may be
a need to restart all the calculations due to one cost change.

9. Pseudo-code of the algorithms

We assume that the vertices are ordered by breadth first ordering. Vertex 1 is the root and n

must be a leaf. We also assume the ∞ is the maximal number that exists in the computer.
Variables starting with BT are used for the backtrack process, and store a vertex number

or the cost/vertex data.

9.1. Pseudo-code of MDT

The algorithm is performed in two phases. The first one is for calculating the optimal cost
and the backtrack info for later.

Cost calculation phase

for i = n, n − 1, n − 2, . . . , 2, 1 do
if Chi = ∅ then /* a leaf */

Cxii ← Td · Ucdi + Tuout
i · Ucui ; Cbii ← ∞; BT-Cbii ← ∅

Cboi ← (Tuin
i + Tuout

i) · Ucui + Sci ; BT-Cboi ← (i, “local”)
Cioi ← Tuin

i · Ucui + Sci ; BT-Cioi ← (i, “local”)
else /* Not a leaf */

/* calculate sum1, sum4 (sum1 derives sum2, sum4 derives sum3!) */
sum1 ← 0; BT-sum1 ← ∅; sum4 ← 0
foreach c ∈ Chi do

sum4 ← sum4 + Cxic; Cminc ← Cxic; Cminc,type ← “none”
if (Cboc < Cminc) then Cminc ← Cboc; Cminc,type ← “bo” end if
if (Cbic < Cminc) then Cminc ← Cbic; Cminc,type ← “bi” end if
sum1 ← sum1 + Cminc; BT-sum1 ← BT -sum1 ∪ (c, Cminc,type)

OPTIMAL CONTENT LOCATION IN MULTICAST BASED OVERLAY NETWORKS 333

end do
/* calculate min1, min2, min3 */
min1 ← Sci + sum1; BT-min1 ← BT -sum1 ∪ (i, “local”)
min2 ← ∞; BT-min2 ← ∅; min3 ← ∞; BT-min3 ← ∅
foreach c ∈ Chi do

sum2 ← sum1 − Cminc; tmp ← Td · Ucdc + Cboc + sum2
if (tmp < min2) then

min2 ← tmp; BT-min2 ← (c, “bo”)∪ (BT-sum1 \ (c, Cminc,type))

end if
sum3 ← sum4 − Cxic; tmp ← Td · Ucdc + Cioc + sum3
if (tmp < min3) then min3 ← tmp; BT-min3 ← (c, “io”) end if

end do
if i �= 1 then /* not root */

Cxii ← Td · Ucdi + Tuout
i · Ucui + sum4

Cbii ← Td · Ucdi + (Tuin
i + Tuout

i) · Ucui + sum1; BT-Cbii ← BT -sum1
if min1 � min2 then

Cboi ← (Tuin
i + Tuout

i) · Ucui + min1; BT-Cboi ← BT -min1
else

Cboi ← (Tuin
i + Tuout

i) · Ucui + min2; BT-Cboi ← BT -min2
end if

end if
/* calculate optimal Cioi cost and BT data */
if min1 � min2 & min1 � min3 then

Cioi ← Tuin
i · Ucui + min1; BT-Cioi ← BT-min1

else if min2 � min3 then
Cioi ← Tuin

i · Ucui + min2; BT-Cioi ← BT-min2
else

Cioi ← Tuin
i · Ucui + min3; BT-Cioi ← BT-min3

end if
end if

end do

The optimal cost is Cio1.

Backtrack phase The backtrack phase for allocation of copies is recursive and can easily
be described using a recursive function. The recursion starts by calling allocate(1, “io”).

proc allocate (i, type) {
if type = “io” then

foreach (c, ctype) ∈ BT-Cioi do call allocate(c, ctype) end do
else if type = “bo” then

foreach (c, ctype) ∈ BT-Cboi do call allocate(c, ctype) end do
else if type = “bi” then

foreach (c, ctype) ∈ BT-Cbii do call allocate(c, ctype) end do
else if type = “local” then

334 UNGER AND CIDON

allocate a copy at i

end if
}

9.2. Pseudo-code of UDT

The algorithm is performed in two phases. The first one is for calculating the optimal cost
and the backtrack info for later.

Cost calculation phase

for i = n, n − 1, n − 2, . . . , 2, 1 do
/* calculate costs for i, i */
sum4 ← 0; BT-sum4 ← ∅
foreach k ∈ Chi do

if Cxnk,i � Cbnk,i then
sum4 ← sum4 + Cxnk,i

else
sum4 ← sum4 + Cbnk,i ; BT-sum4 ← BT-sum4 ∪ (k, i, “bn”)

end if
end do
Cini,i ← Tuin

i · Ucui + Sci + sum4; BT-Cini,i ← BT-sum4 ∪ (i, i, “local”)
Cbni,i ← Cini,i + Tuout

i · Ucui ; BT-Cbni,i ← BT-sum4 ∪ (i, i, “local”)
Cxni,i ← ∞; jmin ← i

/* calculate costs for i, j where j ∈ Vi */
foreach k ∈ Chi do

foreach j ∈ Vk do
sum2 ← Cink,j ; BT-sum2 ← (k, j, “in”)
sum3 ← Cbnk,j ; BT-sum3 ← (k, j, “bn”)
foreach l ∈ Chi \ k do

sum2 ← sum2 + Cxnl,j

if Cxnl,j � Cbnl,j then
sum3 ← Cxnl,j

else
sum3 ← Cbnl,j ; BT-sum3 ← BT-sum2 ∪ (l, j, “bn”)

end if
end do
Cbni,j ← Cini,j + Tuout

i · Ucui + sum3; BT-Cbni,j ← BT-sum3
Cxni,j ← ∞; Cini,j ← Tdui · Ddi,j + Tuin

i · Ucui

if sum2 � sum3 then
Cini,j ← Cini,j + sum2; BT-Cini,j ← BT-sum2

else
Cini,j ← Cini,j + sum3; BT-Cini,j ← BT-sum3

end if

OPTIMAL CONTENT LOCATION IN MULTICAST BASED OVERLAY NETWORKS 335

/* update minl∈Vi Cbni,l */
if Cbni,j < Cbni,jmin then jmin ← j end if

end do
end do
/* calculate costs for i, j where j /∈ Vi */
foreach j ∈ V \ Vi do

sum1 ← 0; sum4 ← 0; BT-sum4 ← ∅
foreach k ∈ Chi do

sum1 ← sum1 + Cxnk,j

if Cxnk,j � Cbnk,j then
sum4 ← sum4 + Cxnk,j

else
sum4 ← sum4 + Cbnk,j ; BT-sum4 ← BT-sum4 ∪ (k, j, “bn”)

end if
end do
Cini,j ← ∞; Cxni,j ← Tdui · Ddi,j + Tuout

i · Ucui + sum1
Cbni,j ← Tdui · Ddi,j + Tuin

i · Ucui + Tuout
i · Ucui + sum4

BT-Cbni,j ← BT-sum4
if Cbni,jmin < Cbni,j then Cbni,j ← Cbni,jmin ; BT-Cbni,j ← BT-Cbni,jmin ; end if

end do
end do
/* find the optimal cost */
jmin ← 1
for j = n, n − 1, n − 2, . . . , 2 do

if Cin1,j < Cin1,jmin then jmin ← j end if
end do

The optimal cost is Cin1,jmin .

Backtrack phase The backtrack copies allocation phase is recursive and can easily be
described using a recursive function. The recursion starts by calling allocate(1, jmin, “in”).

proc allocate (i, j, type) {

if type = “in” then
foreach (k, l, ntype) ∈ BT-Cini,j do call allocate(k, l, ntype) end do

else if type = “bn” then
foreach (k, l, ntype) ∈ BT-Cbni,j do call allocate(k, l, ntype) end do

else if type = “local” then
allocate a copy at i

end if
}

336 UNGER AND CIDON

Notes

1. The reason for using the same traffic rate for all vertices is the fact that the server determines the transmission
rate, not each customer as in the unicast case.

2. The minimum value can be calculated once during the calculation of each Cbni,j , j ∈ Vi , given that these
values are calculated prior to calculating any Cbni,j , j /∈ Vi .

References

[1] Akamai, http://www.akamai.com/
[2] A. Billionnet and M.-C. Costa, “Solving the uncapacited plant location problem on trees,” Discrete Applied

Mathematics 49(1–3), 1994, 51–59.
[3] I. Cidon, S. Kutten, and R. Sofer, “Optimal allocation of electronic content,” in Proceedings of IEEE Info-

com, Anchorage, AK, April 22–26, 2001.
[4] Cisco, http://www.cisco.com/
[5] Digital Fountain, http://www.digitalfountain.com/
[6] L. W. Dowdy and D. V. Foster, “Comparative models of the file assignment problem,” ACM Computing

Surveys 14(2), 1982, 287–313.
[7] P. Francis, “Yoid: Extending the Internet multicast architecture,” April 2000.
[8] S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror placement on the Internet,” in

Proc. of IEEE INFOCOM, 2001.
[9] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal placement of replicas in trees with read, write, and

storage costs,” IEEE Transactions on Parallel and Distributed Systems 12(6), 2001, 628–637.
[10] J. Kangasharju, J. Roberts, and K. Ross, “Object replication strategies in content distribution networks,” in

Proceedings of WCW’01: Web Caching and Content Distribution Workshop, Boston, MA, June 2001.
[11] A. Kolen, “Solving covering problems and the uncapacited plant location problem on trees,” European

Journal of Operational Research 12, 1983, 266–278.
[12] C. Krick, H. Räcke, and M. Westermann, “Approximation algorithms for data management in networks,” in

Proc. of the Symposium on Parallel Algorithms and Architecture, July 2001, pp. 237–246.
[13] P. B. Mirchandani and R. L. Francis, Discrete Location Theory, Wiley, 1990.
[14] L. Qiu, V. N. Padmanabham, and G. M. Voelker, “On the placement of web server replicas,” in Proc. 20th

IEEE INFOCOM, 2001.
[15] Scale8, http://www.scale8.com/
[16] S. Shi and J. Turner, Routing in overlay multicast networks, in Proc. of IEEE INFOCOM, June 2002.
[17] WebDAV, http://www.webdav.org/
[18] O. Wolfson and A. Milo, “The multicast policy and its relationship of replicated data placement,” ACM

Transactions on Database Systems 16(1), 1991, 181–205.

