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Abstract. Reinforcement learning, and Q-learning in particular, encounter two major problems when dealing
with large state spaces. First, learning the Q-function in tabular form may be infeasible because of the excessive
amount of memory needed to store the table, and because the Q-function only converges after each state has
been visited multiple times. Second, rewards in the state space may be so sparse that with random exploration
they will only be discovered extremely slowly. The first problem is often solved by learning a generalization of
the encountered examples (e.g., using a neural net or decision tree). Relational reinforcement learning (RRL) is
such an approach; it makes Q-learning feasible in structural domains by incorporating a relational learner into
Q-learning. The problem of sparse rewards has not been addressed for RRL. This paper presents a solution based
on the use of “reasonable policies” to provide guidance. Different types of policies and different strategies to
supply guidance through these policies are discussed and evaluated experimentally in several relational domains
to show the merits of the approach.
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1. Introduction

In reinforcement learning (for an excellent introduction see the book by Sutton and Barto,
1998), an agent tries to learn a policy, i.e., how to select an action in a given state of the
environment, so that it maximizes the total amount of reward it receives when interacting
with the environment.

Q-learning (Watkins, 1989) is a form of reinforcement learning where the optimal policy
is learned implicitly in the form of a Q-function, which takes a state-action pair as input
and outputs the quality of the action in that state. The optimal action in a given state is then
the action with the largest Q-value.

One of the main limitations of standard Q-learning is related to the number of different
state-action pairs that may exist. The Q-function can in principle be represented as a table
with one entry for each state-action pair. When states and actions are characterized by
parameters, the number of such pairs grows combinatorially in the number of parameters
and thus can easily become very large, making it infeasible to represent the Q-function in
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tabular form, let alone learn it accurately (convergence of the Q-function only happens after
each state-action pair has been visited many times). This problem is typically solved by
integrating into the Q-learning algorithm an inductive learner, which learns a function that
generalizes over given state-action pairs. Thus reasonable estimates of the Q-value of a state-
action pair can be made without ever having visited it. Examples include neural networks
(Rumelhart and McClelland, 1986), nearest neighbor methods (Smart and Kaelbling, 2000)
and regression trees (Chapman and Kaelbling, 1991).

A relational learner is employed by DzZeroski, De Raedt, and Blockeel (1998), hence the
name ‘“relational reinforcement learning” or RRL. This relational learner uses first order
representations for states and actions, and uses a first order regression algorithm that maps
these structural descriptions onto real numbers. The use of first order representations gives
RRL a broader application domain than classical Q-learning approaches. Examples of such
relatively complex applications that will be described in more detail further in this paper,
include learning to solve simple planning tasks in a blocks world, or learning to play certain
computer games (Tetris, Digger).

In structural domains, the state space is typically very large, and although a relational
learner can provide the right level of abstraction to learn in such a domain, the prob-
lem remains that rewards may be distributed very sparsely in this state space. Using ran-
dom exploration through the search space, rewards may simply never be encountered. In
some of the application domains mentioned above this prohibits RRL from finding a good
solution.

While plenty of exploration strategies exist (Wiering, 1999), few deal with the prob-
lems of exploration at the start of the learning process. It is exactly this problem that
we are faced with in our RRL setting. There is, however, an approach which has been
followed with success, and which consists of guiding the Q-learner with examples of
“reasonable” strategies, provided by a teacher (Smart and Kaelbling, 2000). Thus a mix
between the classical unsupervised Q-learning and (supervised) behavioral cloning is ob-
tained. It is the suitability of this approach in the context of RRL that we explore in this

paper.

2. Reinforcement learning and relational learning
2.1. Reinforcement learning

This section gives an overview of reinforcement learning ideas relevant to relational rein-
forcement learning. For an extensive treatise on reinforcement learning, we refer the reader
to Sutton and Barto (1998). We first state the task of reinforcement learning, then briefly
describe the Q-learning approach to reinforcement learning. In its basic variant, Q-learning
is tabular: this is unsuitable for problems with large state spaces, where generalization over
states and actions is needed.

2.1.1. Task definition. The typical reinforcement learning task using discounted rewards
can be formulated as follows:
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Given

— aset of possible states S.

a set of possible actions A.

an unknown transition function §: § x A — S.

an unknown real-valued reward functionr : § x A — R.

Find a policy 7* : § — A that maximizes
0 .
Vis) =Y ¥'r
i=0

for all s; where 0 < y < 1.

At each point in time, the reinforcement learning agent can be in one of the states s, of
S and selects an action a; = 7 (s;) € A to execute according to its policy w. Executing
an action a, in a state s, will put the agent in a new state s, = 8(s;, a,). The agent also
receives a reward r, = r(s;, a;). The function V7 (s) denotes the value (expected return;
discounted cumulative reward) of state s under policy 7. The factor y, the discount factor,
specifies the relative importance of future rewards compared to immediate rewards.

The agent does not necessarily know what effect its actions will have, i.e., what state it
will end up in after executing an action. This means that the function § is unknown to the
agent. In fact, it may even be stochastic: executing the same action in the same state on
different occasions may yield different successor states. We also assume that the agent does
not know the reward function . The task of learning is then to find an optimal policy, i.e.,
a policy that will maximize the discounted sum of the rewards. We will assume episodic
learning, where a sequence of actions ends in a terminal state.

2.1.2. Tabular Q-learning. Here we summarize Q-learning, one of the most common
approaches to reinforcement learning, which assigns values to state-action pairs and thus
implicitly represents policies. The optimal policy 7* will always select the action that
maximizes the sum of the immediate reward and the value of the immediate successor state,
ie.,

7*(s) = argmax(r(s, a) + y V™ (8(s, a)))

The Q-function for policy 7 is defined as follows:
Q"(s,a) =r(s,a) +yV7™(5(s,a))

Knowing Q*, the Q-function for the optimal policy, allows us to rewrite the definition of
* as follows

*(s) = argmax Q*(s, a)
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An approximation to the Q*-function, Q, in the form of a look-up table, is learned by
Algorithm 1.

Algorithm 1 The Q-learning algorithm.

foreachs € S,ac A
initialize table entry Q(s, a)
end for
repeat {for each episode}
generate a starting state s
i <0
repeat {for each step i of episode}
select an action ag; using the policy derived from Q
take action a;, observe r; and §;41
O(si, ai) <= ri +y maxgea O(siy1, a)
i<—i+1
until s; is terminal
until no more episodes

The agent learns through continuous interaction with the environment, during which it
exploits what it has learned so far, but it also explores. In practice, this means that the
current approximation Q is used to select an action most of the time. However, in a small
fraction of cases an action is selected randomly from the available choices, so that unseen
(state, action) pairs can be explored.

For smoother learning and to be able to deal with stochastic environments, an update of
the form

O(s1. ) Qs @) +a[ry +y max Q(sis1.0) = Qs )

would be used, where ¢ = 1/numberOfVisits(s, a) causes the Q-values to gradually shift
to their expected values. This is a special case of temporal-difference learning, to which
algorithms such as SARSA (Sutton, 1996) also belong. Instead of considering all possible
actions a in state s;1; and taking the maximum Q(s;+1, @), SARSA only considers the
action a4 actually chosen in state s’ during the current episode. The update rule is thus
Ot ar) < O, ar) + alry + y O(si41, ary1) — QC(sy, a;)] where m(s;41) = a;41. For
Algorithm 1, the learned action-value function Q directly approximates Q*, regardless of
the policy being followed.

2.2. Relational learning

Relational learning is concerned with learning from examples and background knowledge
represented in a relational formalism, such as relational or first-order logic (or subsets
thereof, such as in logic programming). Needless to say, all inductive hypotheses generated



GUIDANCE AND RELATIONAL REINFORCEMENT LEARNING 275

are also represented in a relational formalism. Examples are typically specific facts or sets
thereof, whereas background knowledge consists of specific facts or general rules defining
concepts relevant to the examples.

Many techniques for relational learning come from the field of inductive logic pro-
gramming (Muggleton and De Raedt, 1994; Lavra¢ and DZeroski, 1994). Situated at the
intersection of machine learning and logic programming, ILP has been concerned with
finding patterns expressed as logic programs. Initially, ILP focussed on automated program
synthesis from examples, formulated as a binary classification task. In recent years, how-
ever, the scope of ILP has broadened to cover the whole spectrum of machine learning tasks,
ranging from classification and regression, to clustering and reinforcement learning.

Many common approaches and algorithms in machine learning have now been adapted
to work in relational settings. We thus have algorithms for first order logical decision tree
induction (Blockeel and De Raedt, 1998), relational distance-based clustering and prediction
(Kirsten, Wrobel, and Horvath, 2001), and relational reinforcement learning (DZeroski,
De Raedt, and Blockeel, 1998; DZeroski, De Raedt, and Driessens, 2001), to name a few.
There is even a generic recipe for upgrading propositional learning approaches to relational
settings (Van Laer and De Raedt, 2001), which involves upgrading the key notions of the
propositional learner. For example, to obtain a relational distance-based approach, we need
to upgrade a propositional distance measure to a relational one.

2.2.1. Examples and background knowledge. Examples in relational learning most com-
monly consist of specific (or ground) facts in the setting of learning from entailment;
De Raedt (1997) or sets of facts or interpretations in the setting of learning from interpre-
tations (De Raedt and DZeroski, 1994). For example, in the blocks world domain, which is
often used in planning, states that satisfy a certain property (e.g., have all blocks stacked in
one stack) may be positive examples, and the classification task would be to recognize states
where this property holds. States in the blocks world are naturally represented relationally,
with the relation on(A, B) specifying that block A is on block B. An example state with
three blocks stacked on each other is represented by the set of facts {clear(a), on(a, b),
on(b, c¢), on(c, floor)}.

In the blocks world the learning system can take actions of the type move(A, B), moving
block A onto B, which can be another block or the floor. Examples might also be sets of
facts comprising a state description and an action taken in that state, and the learning task
might be to predict the number of steps remaining to reach the state where all blocks are on
the floor. If one is to use relational learning for generalization in Q-learning, the regression
task would be to predict the Q-value of such state/action examples.

The use of background knowledge is a typical feature for relational learning. Background
knowledge consists of specific facts or general rules defining concepts relevant to the exam-
ples. For the blocks world, the predicate above(A, B) defines when block A is above block
B in terms of the predicate on(A, B). This knowledge holds over all states in the blocks
world. Similarly, the predicate numberOfBlocksOn(A, N) specifies that there are exactly N
blocks above block A. Predicates in the background knowledge can be used in the learned
models for predicting the target property (be it continuous or discrete).
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on(A,B) ?
+--yes : on(B,C) 7
+--yes : stacked
+--no : unstacked
+--no : unstacked

Figure 1. Alogical classification tree in the blocks world.

2.2.2. Logical decision trees. Much like ordinary decision trees, logical decision trees
consist of internal nodes and leaves. The leaves contain predictions for the target property,
either discrete values in the case of classification or real numbers (in the case of regression).
The difference is in the internal nodes, where tests in the propositional case are of the form
Attribute = value and in the relational case conjunctions of literals (predicates). Example
tests that we might find in a logical tree in the blocks world include on(A, B); on(A, floor);
and numberofblockson(A, N), N > 3.

An example decision tree, predicting whether the blocks in a 3-blocks world are in one
stack is given in figure 1. Note that variables may be shared between internal nodes, i.e.,
variables introduced in one test can be referred to in another. Variables can only be referred
to in the ‘yes’ branch of the internal node that introduced them.

A crucial difference with propositional decision trees is that the tests considered in each
node can be quite different. They depend on which variables have been introduced in nodes
along the path from the root to the current node. The possible tests are obtained by applying
predicates from the background knowledge to the ‘referrable’ variables, taking into account
declarative bias information (e.g. argument types and input/output modes).

Several learning systems exist now for building relational decision trees (sometimes
called structural, sometimes logical). State-of the art representatives are S-CART (Kramer,
1996) and TILDE (Blockeel and De Raedt, 1998). S-CART upgrades the CART (Breiman
et al., 1984) approach to constructing classification and regression trees, while TILDE
upgrades C4.5 (Quinlan, 1993).

2.2.3. Relational instance-based learning. Instance-based prediction methods, such as
the nearest neighbor method or instance-based learning (Aha, Kibler, and Albert, 1991),
are popular because of their simplicity, good performance and robustness. They are also
very modular as far as the representation of the examples is concerned. One doesn’t really
need to change the nearest neighbor algorithm to be able to deal with relational examples:
all one needs is a distance on relational examples. Once we have the distance, we can use the
nearest neighbor approach essentially unchanged, as well as many distance-based clustering
approaches.

Designing a distance on relational examples, however, is a nontrivial matter. Most
such distances are closely related to distances on structured objects and sets. Proposals
for relational distances include those by Emde and Wettschereck (1996) and Ramon and
Bruynooghe (2001).
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The RIBL distance measure (Emde and Wettschereck, 1996) calculates the distance
between objects by first calculating distances along their elementary properties, then finding
related objects and taking into account distances between them (a depth bound prevents
infinite recursion). Elementary properties include discrete and real-valued arguments, as
well as list and term valued ones. The two objects can each have many related objects
of different types: the related object are grouped per type, then distances between the
corresponding pairs of groups (sets) are calculated.

3. Relational reinforcement learning

Relational reinforcement learning or RRL (DZeroski, De Raedt, and Blockeel, 1998) is a
learning technique that combines Q-learning with relational representations for the encoun-
tered states, actions and the resulting Q-function.

Algorithm 2 The Relational Reinforcement Learning Algorithm

initialize the Q-function hypothesis Q
e <0
repeat {for each episode e}
Examples < ()
generate a starting state s
i <0
repeat {for each step i of episode e}
choose a; for s; using a policy derived from the current
hypothesis O,
take action a;, observe r; and s,
i<—i+1
until s; is terminal
for j=i—1to0do
generate example x = (s;, a;, g;) where
§; < rj+ymaxeea Qc(sj41, a)
Examples <— Examples U {x}
end for
Update Q, using Examples and an incremental relational
regression algorithm to produce Q.
e<—e+1
until no more episodes

The RRL-system learns through exploration of the state-space in a way that is similar
to normal Q-learning algorithms. It starts with running a normal episode but uses the
encountered states, chosen actions and the received awards to generate a set of examples that
can then be used to build a Q-function generalization. RRL differs from other generalizing
Q-learning techniques because it uses a relational representation for the encountered states
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on(BlockA,BlockB)
yes no
clear(BlockA) Qvalue =0.1
yes, no
Qvalue = 0.4 on(BlockB,floor)
yes no
Qvalue=0.9 Qvalue=0.3

Figure 2. A first-order regression tree predicting Q-values.

and the chosen actions. See figure 3 in Section 4.1 for an example of this notation in the
blocks world.

To build the generalized Q-function, RRL applies an incremental first-order logic re-
gression algorithm to the constructed example set. The resulting Q-function is then used
to generate the policy for the next episodes and updated by the new experiences that result
from these episodes. A more detailed description of the approach is given in Algorithm 2.
Currently, two regression-algorithms for RRL have been developed.

3.1. The RRL-TG-algorithm

The TG-algorithm (Driessens, Ramon, and Blockeel, 2001) is an incremental first-order
regression tree building algorithm that is based on the G-tree algorithm of Chapman and
Kaelbling (Chapman and Kaelbling, 1991).

Figure 2 gives an example of a first-order regression tree. The test in an internal node
should be read as the existentially quantified conjunction of all literals in the nodes in the
path from the root of the tree to that node.

On a high level (see Algorithm 3), the TG-algorithm (as well as the original G-tree
algorithm) stores the current regression tree, and for each leaf node statistics for all tests
that could be used to split that leaf further. Each time an example is inserted, it is sorted down
the decision tree according to the tests in the internal nodes, and in the leaf the statistics of
the tests are updated.

Algorithm 3 The TG-algorithm

create a leaf with empty statistics
for each data point that becomes available do
classify data point down to a leaf
update statistics in this leaf and discard data point
if split needed in updated leaf then
use best test to construct node
grow two new leafs with empty statistics
end if
end for
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In contrast to the G-tree algorithm, TG uses a relational representation language for
describing the examples (i.e., the (state, action) pairs) and the tests that can be used in the
regression tree.

While this use of relational representations has the advantage that the regression tree
can use objects, the properties of objects and the relation between them when describing
the Q-function, it complicates the tree building itself. For example, keeping track of the
candidate-tests (the refinements of a query) is a non-trivial task. In the propositional case the
set of candidate queries consists of the set of all features minus the features that are already
tested higher in the tree. In the first-order case, the set of candidate queries consists of all
possible ways to extend a query. The longer a query is and the more variables it contains,
the larger is the number of possible ways to bind the variables and the larger is the set of
candidate tests. One consequence is that it is not feasible to store all the statistics necessary
for tree restructuring as done by Utgoff, Berkman, and Clouse (1997). This means that
choices made by TG in the beginning of learning can not be unmade when they turn out to
be wrong.

3.2.  The RRL-R1B-algorithm

RRL-RIB (Driessens and Ramon, 2003) uses a relational instance-based regression algo-
rithm. It uses c-nearest-neighbor prediction as a regression technique, i.e. the predicted
Q-value g; is calculated as follows:

4q
2
1

2@

q; = (D

with d;; the distance between example i and example j. To prevent division by 0, a small
amount § can be added to this distance.

To deal with the relational setting, RRL-RIB must be supplied with a relational distance
defined on the chosen representation of (state, action) pairs. We refer to the work of Ramon
(2002) and Ramon and Bruynooghe (2001) for more information on first-order distances.

The relational setting we work in imposes some constraints on the available instance
based techniques. First of all, the time needed for the calculation of a true first-order distance
between examples is not neglectable. This, together with the larger memory requirements
of data-log, which is used to represent stored examples, compared to less expressive data
formats, force RRL-RIB to limit the number of examples that are stored in memory.

Therefor, RRL-RIB uses several techniques to limit the number of examples stored in
memory. It limits the inflow of new examples by only storing examples which introduce
new knowledge in the database. These are examples that are predicted with a too large error
or reside in an area of the state-action space of which we have few other examples.

When these inflow-filters are not sufficient RRL-RIB needs to decide which examples to
throw out of the data-base. Therefor it can compute a score for each stored example that
indicates the usefulness of that example. Two scoring methods are implemented in RRL-
RIB. The “error-contribution”-score calculates the total prediction error with and without the
example to be scored. The example who’s removal causes the least total error is removed.
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The “error-proximity”-score is based on the assumption that examples which are close to
prediction errors are also causing this error. When using this score to select examples, the
example closest to large prediction errors is removed.

Algorithm 4 The RIB data selection algorithm

for each data point that becomes available do
try to predict the Q-value of the new data point
if prediction error too large then
store the new example in the data base
remove the stored examples i for which there exists
an example j in the data base such that:
qi <q; —M -dj
end if
end for

Another method of keeping the number of stored examples low is based on the “maximum
deviation per distance unit” of the Q-function. If the user of the RRL-system can specify a
maximum value M, such that:

lgi — g M @)
di j

for all examples i and j, then this value can be used to eliminate examples from the
database. A more detailed description of how and when this technique can be used is found
in Driessens and Ramon (2003). It is this elimination technique that is used in the RRL-R1B
experiments in this paper. When a new data point is presented to the RIB regression engine,
it is treated according to Algorithm 4. In the experiments, the value of M is set to 0.1, the
largest difference between to distinct Q-values.

4. Some relational worlds

In this section, we introduce three domains where using a relational representation of states
is natural. Each of the domains involves objects and relations between them. The number of
possible states in all three domains is very large. The three domains are: the blocks world,
the Digger computer game, and the Tetris computer game.

4.1. The blocks world

In the blocks world, blocks can be on the floor or can be stacked on each other. Each
state can be described by a set (list) of facts, e.g., s = {clear(c), clear(d), on(d, a),
on(a, b), on(b, floor), on(c, floor)} represents the state in figure 3. The available actions
are then move(X, Y) where X # Y, X is ablock and Y is a block or the floor. The number
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clear(d).

d clear(c).
on(d,a).

a \ on(a,b).
on(b,floor).

b c on(c,floor).
move(d,c).

Figure 3. Example state and action in the blocks-world.

of states in the blocks world grows rapidly with the number of blocks. With 10 blocks, there
are close to 59 million possible states.

We study three different goals in the blocks world: stacking all blocks, unstacking all
blocks (i.e., putting all blocks on the floor) and putting a specific block on top of another
specific block. In a blocks world with 10 blocks, there are 3.5 million states which satisfy
the stacking goal, 1.5 million states that satisfy a specific on(A, B) goal (where A and B
are bound to specific blocks) and one state only that satisfies the unstacking goal. A reward
of 1 is given in case a goal state is reached in the minimal number of steps; the episode ends
with a reward of 0 if it is not.

In addition to the state and action information, the RRL-TG algorithm was supplied
with the number of blocks, the number of stacks and the following background predi-
cates: equal/2, above/2, height/2 and difference/3 (an ordinary subtraction of two numerical
values).

For the instance-based RRL-RIB we used the following distance definition for two
(state, action) pairs in the blocks world:

1. Try to rename the blocks so that block-names that appear in the action (and possibly
in the goal) match between the two (state—action) pairs. If this is not possible, add a
penalty to your distance for each mismatch. Rename each block that does not appear in
the goal or the action to the same name.

2. To calculate the distance between the two states, regard each state (with renamed blocks)
as a set of stacks and calculate the distance between these two sets using the matching-
distance between sets (Ramon and Bruynooghe, 2001) based on the distance between
the stacks of blocks.

3. To compute the distance between two stacks of blocks, transform each stack into a string
by reading the names of the blocks from the top of the stack to the bottom, and compute
the edit distance (Wagner and Fischer, 1974) between the resulting strings.

For the M-value of Eq. (2), we choose the maximum difference between two different
Q-values in this setting, i.e. 0.9.

4.2.  The Tetris game

Tetris' is a widespread puzzle-video game played on a two-dimensional grid (see figure 4).
Differently shaped blocks fall from the top of the game field and fill up the grid. The object
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Figure 4. A snapshot of the TETRIS game.

of the game is to score points while keeping the blocks from piling up to the top of the
game field. To do this, one can move the dropping blocks right and left or rotate them as
they fall. When one horizontal row is completely filled, that line disappears and the player
scores points. When the blocks pile up to the top of the game field, the game ends.

In the tests presented, we only looked at the strategic part of the game, i.e., given the
shape of the dropping and the next block, find the optimal orientation and location of
the dropping block in the game-field. (Using low level actions—turn, move left or move
right—to reach such a subgoal is rather trivial and can easily be learned by (relational)
reinforcement learning.) We represent the full state of the Tetris Game, the type of the next
dropping block included in a term with 3 arguments:

1. Information about the game field ordered by column;
2. Information about the shape, orientation, row- and column-position of the falling block;
3. Information about the shape of the next block

This state representation was not presented to RRL-TG directly. Instead, RRL-TG was
allowed to use the following predicates:

— blockwidth/2, blockheight/2: which specify the width and height of the falling block

respectively

topBlock/2: which returns the height of the wall at a given column

— holeCovered/I: whether there is a hole in the wall at a given column

holeDepth/2: which returns the depth of the topmost hole in the wall at a given column

— fits/2: whether the falling block fits at a given location with a given orientation

increasesHeight/2: whether dropping the falling block at a given location with a given

orientation increases the overall height of the wall

— fillsRow/2 and fillsDouble/2: whether the falling block completes a line (or two lines) at
a given location with a given orientation.
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Figure 5. A snapshot of the DIGGER game.

On top of these, RRL was given a number of selectors to select individual rows, columns
and different blockshapes.

4.3. The Digger game

Digger? is a computer game created in 1983, by Windmill Software. It is one of the few
old computer games which still hold a fair amount of popularity. In this game, the player
controls a digging machine or “Digger” in an environment that contains emeralds, bags of
gold, two kinds of monsters (nobbins and hobbins) and tunnels (see figure 5). The object
of the game is to collect as many emeralds and as much gold as possible while avoiding or
shooting monsters.

In our tests we removed the hobbins and the bags of gold from the game. Hobbins are
more dangerous than nobbins for human players, because they can dig their own tunnels
and reach Digger faster, as well as increase the mobility of the nobbins. However, they are
less interesting for learning purposes, because they reduce the implicit penalty for digging
new tunnels (and thereby increasing the mobility of the monsters) when trying to reach
certain rewards. We removed the bags of gold from the game to reduce the complexity.

A state representation consists of the following components:

— the coordinates of digger, e.g., digPos(6,9)

— information on digger itself, supplied in the format:
digInf (digger_dead,time_to_reload,level_done, pts_scored,steps_taken),
e.g., diginf{false, 63, false, 0, 17),

— information on tunnels as seen by digger (range of view in each direction, e.g., tun-
nel(4,0,2,0); information on the tunnel is relative to the digger; there is only one digger,
so there is no need for a digger index argument)

— list of emeralds (e.g., [em(14,9), em(14,8), em(14,5), ...]),

— list of monsters (e.g., [mon(10,1,down), mon(10,9,down) ...]), and

— information on the fireball fired by digger (x-coordinate, y-coordinate, travelling direc-
tion, e.g., fb(7,9,right)).
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The actions are of the form moveOne(X) and shoot(Y), where X and Y are in ‘up,down,
left,right’.

In addition to the state and action representation described above, predicates such as
emerald/2, nearestEmerald/2, monster/2, visibleMonster/2, distanceTo/2, getDirection/2,
lineOfFire/l, etc., were provided as background knowledge.

5. Adding guidance to reinforcement learning
5.1. The need for guidance

In the early stages of learning, the exploration strategy used in Q-learning is pretty much
random and causes the learning system to perform poorly. Only when enough information
about the environment is discovered, i.e. when sufficient knowledge about the reward func-
tion is gathered, can better exploration strategies be used. Gathering knowledge about the
reward function can be hard when rewards are sparse and especially if these rewards are
hard to reach using a random strategy. A lot of time is usually spent exploring regions of the
state-action space without learning anything because no rewards (or only similar rewards)
are encountered.

Relational applications suffer from this problem often because they deal with very large
state-spaces when compared to attribute-value problems. First, the size of the state-space
grows exponentially with regard to the number of objects in the world, the number of
properties of each object and the number of possible relations between objects. Second,
when actions are related to objects—such as moving one object to another—the number of
actions grows equally fast.

The three domains mentioned in the previous section all have large state-spaces and are
hard to solve with ordinary Q-learning. To illustrate this, figure 6 shows the success-rate
of random policies in the blocks world. The agent with the random policy is started form
a randomly generated state (which is not a goal state) and is allowed to take at most 10
actions. For each of the three goals (i.e. stacking, unstacking and on(A, B)) the left graph
shows the percentage of trials that end in a goal state and therefore with a reward, with

Random Exploration Success Rate Informative Examples using Random Exploration
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‘on(A,B)’ ¥ | ‘on(A,B) ¥ |

80 | 80K
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Percentage of Informative Examples

Number of Blocks Number of Blocks

Figure 6. Success rate and information percentage in blocks world with random policy.
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respect to the number of blocks in the world. As shown in the graph, the unstacking goal
in the blocks world with 10 blocks would almost never be reached by random exploration.
Not only is there a single goal state out of 59 million states, but the number of possible
actions increases as we get closer to the goal state: in a state from which a single action
leads to the goal state, there are 73 actions possible. The graph in the right of figure 6
shows the percentage of learning examples with a non zero Q-value that is presented to the
regression algorithm. Since all examples with a zero Q-value can be regarded as noise for
the regression algorithm, it is clear that learning the correct Q-function from these examples
is very hard.

In Tetris, a good policy can supply a reward every 4 or 5 steps, which is quite frequent.
However, a single bad action can have long lasting effects, thereby hiding obvious rewards
from the learning algorithm. This, together with the fact that Tetris is a stochastic game (the
shapes of the blocks following the next one are unknown) makes it a very hard application
for Q-learning.

In the Digger Game, some rewards are easily reached. Often the playing field is filled with
emeralds, so it is easy for the agent to locate the rewards these emeralds supply. However,
discovering the reward for eating 8 emeralds in a row, or given the limitations on the rate
of fire of Digger, discovering the reward for shooting a monster is a lot harder with random
exploration.

5.2.  Using “reasonable” policies for guidance

Although random policies can have a hard time reaching sparsely spread rewards in a large
world, it is often relatively easy to reach these rewards by using “reasonable” policies.
While optimal policies are certainly “reasonable”, non-optimal policies are often easy (or
easier) to implement or generate than optimal ones. One obvious candidate for an often
non-optimal, but reasonable, controller would be a human expert.

To integrate the guidance that these reasonable policies can supply with our relational
reinforcement learning system, we use the given policy to choose the actions instead of a
policy derived from the current Q-function hypothesis (which will not be informative in
the early stages of learning). The episodes created in this way can be used in exactly the
same way as normal episodes in the RRL-algorithm to create a set of examples which is
presented to the relational regression algorithm. In case of a human controller, one could
log the normal operation of a system together with the corresponding rewards and generate
the learning examples from this log.

Since tabled Q-learning is exploration insensitive—i.e., the Q-values will converge to
the optimal values, independent of the exploration strategy used (Kaelbling, Littman, and
Moore, 1996)—the non-optimality of the used policy will have no negative effect on the
convergence of the Q-table. While Q-learning with generalization is not exploration insensi-
tive, we hope (and will demonstrate) that the “guiding policy” will help the learning system
to reach non-obvious rewards and that this results in a two-fold improvement in learning
performance. In terms of learning speed, we expect the guidance to help the Q-learner to
discover higher yielding policies earlier in the learning experiment. Through the early dis-
covery of important states and actions and the early availability of these state-action pairs
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to the generalization engine, we also expect that it is possible for the Q-learner to reach a
higher level of performance—i.e., a higher average reward—in the available time.

While the idea of supplying guidance or another initialization procedure to increase the
performance of a tabula rasa algorithm such as reinforcement learning is not new (see the
discussion of related work in Section 8), it is underutilized. With the emergence of new
reinforcement learning approaches, such as RRL, that are able to tackle larger problems,
this idea is gaining importance and could provide the leverage necessary to solve really
hard problems.

5.3. Different strategies for supplying guidance

When we supply guidance by creating episodes and presenting the resulting learning exam-
ples to the used regression engine, we can use different strategies to decide when to supply
this guidance.

One option that we will investigate is supplying the guidance at the beginning of learning,
when the reinforcement learning agent is forced to use a random policy to explore the state-
space. This strategy also makes sense when using guidance from a human expert. After
logging the normal operations of a human controlling the system, one can translate these logs
into a set of learning examples and present this set to the regression algorithm. This will allow
the regression engine to build a partial Q-function which can later be used to guide the further
exploration of the state-space. This Q-function approximation will not represent the correct
Q-function, nor will it cover the entire state-action space, but it might be correct enough
to guide RRL towards more rewards with the use of Q-function based exploration. The
RRL algorithm explores the state space using Boltzmann exploration (Kaelbling, Littman,
and Moore, 1996) based on the values predicted by the partial Q-function. This makes a
compromise between exploration and exploitation of the partial Q-function.

Another strategy is to supply the guidance interleaved with normal exploration episodes.
In analogy with human learning, this mixture of perfect and more or less random examples
can make it easier for the regression engine to distinguish beneficial actions from bad ones.
We will compare the influence of guidance when it is supplied with different frequencies.

One benefit of interleaving guided traces with exploration episodes is that the reinforce-
ment learning system can remember the episodes or starting states for that it failed to reach
a reward. It can then ask for guidance starting from the states in which it failed. This will
allow the guidance to zoom in on areas of the state-space which are not yet covered correctly
by the regression algorithm.

6. Experiments
6.1. Experimental setup

Our experiments are aimed at evaluating the influence of guidance on the performance of
relational reinforcement learning. The guidance added to exploration should have a two-
fold effect on learning performance. In terms of learning speed, we expect the guidance to
help the Q-learner to discover higher yielding policies earlier in the learning experiment.
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Through the early discovery of important states and actions and the early availability of
these state-action pairs to the generalization engine, we also expect that it is possible for
the Q-learner to reach a higher level of performance—i.e., a higher average reward—for a
given amount of learning experience.

To test these effects, we compare RRL (without guidance) with G-RRL (with guidance)
in the following setup: first we run RRL in it’s natural form, giving it the possibility to train
for a certain number of episodes; at regular time intervals we extract the learned policy from
RRL and test it on a number of randomly generated test problems. To compare with G-
RRL, we substitute some of the exploration with guided traces. These traces are generated
by either a hand-coded policy, a previously learned policy or a human controller. In between
these traces, G-RRL is allowed to explore the state-space further on its own. Note that in
the performance graphs, the traces presented to G-RRL will count as episodes.

We conduct experiments in the three domains described in Section 4: the blocks world
and two computer games (Tetris and Digger). Each of these three application domains
is characterized by a huge state space and hard to reach rewards. In these domains, we
investigate the effects of using guidance in a number of settings, characterized along several
dimensions. The dimensions include the strategy/mode of providing guidance (as described
in Section 5.3) and the generalization engine used within relational reinforcement learning
(as described in Section 3).

We use several types of policies for guidance. In the blocks world, we use optimal (hand-
coded) policies and policies where optimal actions are interleaved with random actions (we
call the latter “half-optimal”). In the Tetris game, we use performance traces from a human
player, as well as hand-coded inoptimal policies. Finally, in the Digger policies, we use
a policy learned by relational reinforcement learning to provide traces for guidance, thus
bootstrapping the RRL process.

6.2. The blocks world

For the blocks world it is easy to write optimal policies for the three goals we look at. Thus
it is easy to supply RRL with a large amount of optimal example traces.

We will test the influence of guided traces on the two different regression algorithms
discussed in Section 3. Both have different strategies for dealing with incoming learning
examples and as such will react differently to the presented guidance.

The TG-algorithm needs a higher number of learning examples when compared to RIB. On
the other hand, the TG-implementation is a lot more efficient than the RiB-implementation,
so TG is able to handle more training episodes for a given amount of computation time.
Since we are trying to investigate the influence of guidance for the two systems and not
trying to compare their performance, we supply the TG-algorithm with a lot of training
episodes (as it has little difficulty handling them) and the RIB algorithm with less training
episodes (given the fact that it usually doesn’t need them).

6.2.1. Guidance at the start of learning. Reaching a state that satisfies the Stacking goal is
not really all that hard, even with 10 blocks and random exploration: approximately one of
every 17 states is a goal state. Even so, some improvement can be obtained by using a small
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Figure 7. Guidance at start for the Stacking goal in the blocks world.

amount of guidance as shown in figure 7. The TG based algorithm is quite good at learning a
close to optimal policy by itself. However, the added help from the guided traces helps it to
decrease of the number of episodes needed to obtain a certain performance level. RRL-RIB
has a harder time with this goal. It doesn’t come close to reaching the optimal policy, but the
help it receives from the guided traces do allow it to both reach better performance earlier
in the learning episode as well as reach a higher level of performance overall. The graphs
shows the average performance of RRL over 10 testruns.

As already stated, in a world with 10 blocks, it is almost impossible to reach a state
satisfying the Unstacking-goal at random. This is illustrated by the graph in figure 8. It also
shows the average performance over 10 testruns. RRL never learns anything useful on its
own, because it never reaches a single reward. Even if we supply RRL-TG with 100 optimal
traces, nothing useful is learned. When we supply RRL-TG with 500 optimal traces, it has
collected enough examples to learn something useful, but the difficulties with exploring
such a huge state-space with so little reward still shows in the fact that RRL-TG is able to do
very little extra with this information. This is caused by the fact that RRL-TG throws out the
statistics it collected when it chooses a suitable splitting criterion and generates two new and
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Figure 8. Guidance at start for the Unstacking goal in the blocks world.
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Figure 9. Guidance at start for the On(A,B) goal in the blocks world.

empty leaves. The RIB algorithm is very good at remembering high scoring (state, action)
pairs. Once an optimal Q-value is encountered, it will never be forgotten. This makes RRL-
RIB perform very well on the Unstacking-goal, reaching a close to optimal strategy with
little guidance. Figure 8 does show that even 5 guided traces can be sufficient, although a
little extra guidance helps to reach high performance sooner.

The on(A,B) goal has always been a hard problem for RRL (DZeroski, De Raedt, and
Driessens, 2001; Driessens, Ramon, and Blockeel, 2001). Figure 9 shows the learning curves
for both RRL-TG and RRL-RIB when we supply them with 0, 5, 20 and 100 optimal traces.
Every data point is the average reward over 10000 randomly generated test cases in the
case of RRL-TG, 1000 in the case of RRL-RIB both collected over 10 separate test runs.
Although the optimal policy is never reached, the graph clearly shows the improvement that
is generated by supplying RRL with varying amounts of guidance.

6.2.2. A learning delay. An interesting feature of the performance graphs of RRL-TG is
the performance of the experiment with the stacking goal where we supplied it with 100
(or more) optimal traces in the beginning of the learning experiment. Not only does this
experiment take longer to converge to a high performance policy, but during the first 100
episodes, there is no improvement at all. RRL-RIB does not seem to suffer from this at all.

This behavior becomes worse when we supply G-RRL with even more optimal traces. In
figure 10, we show the learning curves when we supply G-RRL with 500 optimal traces. The
reason for RRL-TG’s failing to learn anything during the first part of the experiment (i.e.,
when being supplied with optimal traces) can be found in the generalization engine. Trying
to connect the correct Q-values with the corresponding state-action pairs, the generalization
engine tries to discover significant differences between state-action pairs with differing Q-
values. In the ideal case, the TG-engine is able to distinguish between states that are at
different distances from a reward producing state, and between optimal and non-optimal
actions in these states.

However, when we supply RRL-TG with only optimal traces, overgeneralization occurs.
The generalization engine never encounters a non-optimal action and therefore, never learns
to distinguish optimal from non-optimal actions. It will create a Q-tree that separates states
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Figure 10. Half optimal guidance in blocks world for TG.

which are at different distances from the goal-state. Later, during exploration, it will expand
this tree to account for optimal and non-optimal actions in these states. These trees are
usually larger than they should be, because RRL is often able to generalize in one leaf of
its tree over both non-optimal actions in states that are close to the goal and optimal actions
in states that are a little further from the goal.

To illustrate this behavior, we supplied RRL-TG with 500 half-optimal guidance traces
in which the used policy alternates between a random and an optimal action. Figure 10
shows that, in this case, G-RRL does learn during the guided traces. Most noticeable is the
behavior of RRL-TG with half optimal guidance when it has to deal with the unstacking
goal. Even though it is not trivial to reach the goal state when using a half optimal policy, it
is reached often enough for G-RRL to learn a correct policy. Figure 10 shows that G-RRL is
able to learn quite a lot during the 500 supplied traces and then is able to reach the optimal
policy after some extra exploration.

This experiment (although artificial) shows that G-RRL can be useful even in domains
where it is easy to hand-code a reasonable policy. G-RRL will use the experience created
by that policy to construct a better (possibly optimal) one. The sudden leaps in performance
are characteristic for RRL-TG: whenever a new (well chosen) test is added to the Q-tree,
the performance jumps to a higher level.

RRL-RIB does not suffer from this overgeneralization. Since the Q-value estimation is
the result of a weighted average of neighboring examples, the RIB algorithm is able to
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make more subtle differences between (state, action) pairs. Since the used weights in the
average calculation are based on the distance between two (state, action) pairs, and since
this distance has to include information about the resemblance of the two actions, there is
almost no chance of overgeneralization of the Q-values over different actions in the same
state.

6.2.3. Spreading the guidance. Spreading the guidance through the entire learning exper-
iment instead of presenting an equal amount of guidance all in the beginning of learning
avoids the overgeneralization problem that occurred when using TG. The left side of figure 11
clearly shows that RRL-TG does not suffer the same learning delay.

RRL-RIB did not suffer from overgeneralization and as a consequence, there is little
difference between the obtained results with initial and spread guidance. RIB is designed to
select and store examples with high Q-values. It does not matter when during the learning
experiment these examples are encountered.

Figure 12 shows the influence of spreading the guidance for the unstacking goal. Again,
there is little influence on the performance of RRL-RIB, except for the fact that the per-
formance progression becomes somewhat slower but smoother. For RRL-TG, there is a
large difference. With initial (and optimal) guidance, TG was not able to learn any useful
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Figure 13. Guidance at start and spread for the On(A,B) goal in the blocks world.

strategy. In this case however, the mix of guided traces and explorative traces allows TG to
build a well performing Q-tree. It still is less likely to find the optimal policy then with the
(artificial) half-optimal guidance but performs reasonably well.

For the On(A,B) goal, the influence of the spread guidance on the performance of RRL-
TG is large, both in terms of learning speed as the overall level of performance reached as
shown in figure 13. Again, for RRL-RIB, there is little difference.

All graphs, but especially the left side of figure 13 show the influence of different fre-
quencies used to provide guidance. Note that in all cases, an equal amount of guidance was
used. Although the results show little difference, there is a small advantage for thinly spread
guidance. Intuitively, it seems best to spread the available guidance as thin as possible and
the performed experiments do not show any negative results of doing so. However, spread-
ing out the guidance when there is only a small amount available (e.g. 1 guided trace every
10000 episodes) might prevent the guidance from having any effect.

Another possibility for dealing with scarce guidance is to provide all the guidance after
RRL has had some time to explore the environment. Although figure 13 shows inferior
results for this approach when compared to the spread out guidance, this is probably due
to the large size of the presented batch. Note also that learning here takes place faster than
when all guidance is provided at the beginning of the learning experiment.

6.2.4. Active guidance. As stated at the end of Section 2, in the Blocks World where each
episode is started from a randomly generated starting position, we can let RRL know in
which cases it failed to reach the goal state. In a planning problem like the ones of the
blocks world, this comes down to the fact whether RRL received a reward of 1 or not. We
can give RRL the opportunity to ask for guided traces starting from some of these starting
states were it failed. This will allow RRL to explore parts of the state space where it does
not yet have enough knowledge and to supply the generalization algorithm with examples
which are not yet correctly predicted.

Figure 14 shows the results of this active guidance. Two kinds of behavior can be distin-
guished. In the first, G-RRL succeeds in finding an almost optimal strategy, and the active
guidance succeeds in pushing G-RRL to even better performance at the end of the learning
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Figure 14. Active guidance in blocks world.

experiment. This is the case for all goals with RRL-TG and for the Unstacking goal with
RRL-RIB. For example, the percentage of cases where RRL-TG does not reach the goal state
in the On(A,B) experiment is reduced from 11% to 3.9%. For Stacking and Unstacking,
active guidance helps RRL-TG to find an optimal policy: in these cases regular guidance
improves performance but is not sufficient to find an optimal policy.

The above behavior is completely consistent with our expectations. In the beginning, both
modes of guidance provide enough new examples to increase the accuracy of the learned
Q-functions. However, when a large part of the state-space is already covered by the Q-
functions, the specific examples provided by active guidance allow for the Q-function to be
extended to improve its coverage of the outer reaches of the state-space.
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In the second kind of behavior, G-RRL does not succeed in reaching a sufficiently high
level of performance. This happens for RRL-RIB on the tasks of Stacking and On(A,B):
there is little difference here between the help provided by normal and active guidance.
Active guidance is not able to focus onto critical regions of the state-space and improve
upon the examples provided by regular guidance.

6.2.5. Comparing the generalization engines. Our experiments in the blocks world were
not designed specifically to compare the relative performance of the two generalization
engines within RRL (RRL-TG and RRL-RIB). Still, several observations and comparisons
can be made. Some of the differences in performance arise from the general characteristics
of the learning algorithm families (decision trees and instance-based), while others stem
from the interaction of the specific learning algorithms and the use of guidance as well as
the mode the guidance is provided in.

In general, decision trees can process large amounts of data, i.e., numbers of examples,
fast. They thrive on large numbers of examples and generalize well when examples abound.
However, when a small number of examples is given, as well as in other cases where cautious
generalization is needed (e.g., when the distribution of examples is highly skewed), decision
trees can perform poorly. Instance-based methods, on the other hand, are very well suited
for cautious generalization and perform well even when a small number of examples is
provided. However, processing large numbers of examples becomes a problem and can
drastically increase the time complexity of learning and especially of prediction.

Overall, given a large number of episodes, RRL-TG achieves higher performance than
RRL-RIB. This is true regardless of whether guidance is provided or not. The only case
where the performance of RRL-TG stays well under that of RRL-RIB is in the Unstacking
problem where all guidance is provided at the start: given the extreme sparseness of rewards
(and skewedness of the distribution of examples) for Unstacking, cautious generalization
is really needed. In addition, the combination of the RRL-TG algorithm and providing
guidance at the start is inappropriate (as discussed below).

For a small number of episodes, RRL-RIB typically achieves higher performance than
RRL-TG. This is due to the fact that cautious generalization is needed when a small number
of examples is given. Similar relative performance (for a small number of episodes) is
observed by Driessens and Ramon (2003) in a slightly different experimental setting for
the blocks world, where RRL explores worlds with 3, 4, and 5 blocks and is given guided
traces in a world with 10 blocks.

The performance of G-RRL is clearly affected by the interaction between the general-
ization engine used and the mode the guidance is provided in. RRL-RIB performs better
when all guidance is provided at the start: its ability to generalize cautiously is crucial in
this respect. The more guidance is provided at the start, the better.

For RRL-TG, providing all guidance at the start causes problems for two reasons. The
first has to do with decision trees and their proneness to overgeneralization, as discussed
above: from optimal traces only, one cannot distinguish between optimal and suboptimal
actions. The second reason is specifically related to the TG algorithm: TG essentially forgets
the statistics collected from the data after a split in the decision tree is made. In the extreme
case, this means that all guidance traces are lost after the first split in the decision tree is
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made (this is exactly what happens in the case of providing all guided traces for Unstacking
at the beginning).

6.3. The Tetris game

It is quite hard (if not impossible) to generate an optimal or even “human level” strategy for
the Tetris game. So at first, we opted to supply G-RRL with traces of non-optimal playing
behavior from a human player.

The overall results for learning Tetris with RRL and G-RRL are below our expectations.
However, the added guidance in the beginning of the learning experiment still has its effects
on the overall performance. Figure 15 shows the learning curves for RRL and G-RRL
supplied with 5 or 20 manually generated traces. The data points are the average number
of deleted lines per game, calculated over 500 played test games.

For the experiments with the spread guidance where we needed more guided traces, we
opted for a simple hand coded strategy consisting of the following rules:

1. Take an action that creates no new holes and does not increase the current height of the
wall in the playing field.

2. If no action of type 1 can be found, take an action that does not increase the current

height of the wall in the playing field.

If no action of type 1 or 2 can be taken, take an action that does not create a new hole.

4. If no action of type 1, 2 or 3 exists, take a random action.

hed

This strategy scores an average of 6.3 lines per game.

Figure 16 shows the improvement of RRL with spread guidance. Since the problem of
overgeneralization is more apparent in the Tetris experiments—the experiment with 1000
starting traces (an equal amount of guidance as in the spread case) does not perform better
than the original RRL—we included an experiment where we gave RRL only 20 guided
traces at the start of the experiment. However, the improvement received from spreading the
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Figure 15. Guidance at start in Tetris.
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Figure 16. Spread guidance in Tetris.

guidance is even more apparent than in the Blocks World. Also note that the average number
of lines deleted by RRL rises above 12 per game while the strategy used for guidance only
reaches 6.3 lines per game.

The right side of figure 16 shows the comparison of guidance frequencies. As we already
noticed in the blocks-world experiments, although providing a lot of guided traces in the
beginning of the experiment will slow down the progress made by the RRL-system during
the initial stages of the experiment, there is little or no difference between the performances
later on in the experiment. This behavior can be observed again in the Tetris case were there
is a short slow down at the start of the learning curve for 100 guided traces every 1000
learning episodes.

To test the influence of the performance of the policy used for guidance, we designed
another (simple) strategy for Tetris. With the addition of a few more rules that tested the
number of deleted lines a block would cause, we got the performance of the guidance strategy
up to 16.7 lines per game on average. The results of using the two different strategies are
shown in figure 17. The graph shows that there is a significant increase in performance for
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Figure 17. Different guidance-policies in Tetris.
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using the better policy to guide RRL. This also illustrates that the exploration insensitivity
of table-based Q-learning (Kaelbling, Littman, and Moore, 1996) does not carry over to
Q-learning with generalization. However, one should notice that although the “guidance
strategy” improved by approximately 10 lines per game, the improvement of the resulting
strategy learned by RRL is smaller.

On this problem, RRL performs a magnitude worse when compared to the results re-
ported in Bertsekas and Tsitsiklis (1996) and Lagoudakis, Parr, and Littman (2002); both
approaches use approximate policy iteration on the Tetris application. We believe that the
bad performance of RRL-TG is due to the fact that Q-learning is unsuitable for the Tetris
domain. Given the stochastic nature of the game, the future reward in Tetris is very hard to
predict, especially by a regression technique that needs to discretize these rewards (like the
TG-algorithm). Thus, although Tetris is a relational domain, we believe that RRL-TG is not
suitable to tackle the problem. We suspect that the better performance of the approaches
considerd in Bertsekas and Tsitsiklis (1996) and Lagoudakis, Parr, and Littman (2002) is
derived from the learning paradigm (approximate policy iteration), which apparently is
of much higher importance than the representation. To test this hypothesis, one should
investigate the use of an approximate policy iteration approach in a relational setting.

6.4. The Digger game

Because itis hard to write a policy for the Digger Game, we used a policy generated in earlier
work (Driessens and Blockeel, 2001) by RRL. This strategy could be used in a more general
case when RRL becomes stuck at a certain level of performance. The learning experiment
could then be restarted using the previously generated policy as a starting point, giving the
generalization algorithm the opportunity to construct a possibly smaller and more accurate
Q-function approximation. Again, only tests using RRL-TG were done.

Figure 18 shows the average reward obtained by the learned strategies over 640 Digger
test-games divided over the 8 different Digger levels. It shows that G-RRL is indeed able to
improve on the policy learned by RRL. Although the speed of convergence isn’t improved,
G-RRL reaches a significantly higher level of overall performance. The graph also shows
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that more examples traces result in a higher performance. This is probably due to the fact
that the policy used to generate these traces is non-optimal.

7. Discussion

In this section, we summarize the experimental results from the previous sections and draw
some general conclusions. This takes the form of several questions that were addressed by
the experiments and the answers obtained from the experimental results.

— Does guidance improve the performance of RRL for problems with large state spaces
and sparse rewards? The answer to this question is an equivocal yes. Guidance always
improved the performance of RRL, in terms of the level of performance achieved, the
speed of convergence, or both. This proved true across a range of experimental setups,
where the problem addressed was varied, as well as the guidance policies, the mode of
providing guidance and the generalization engine used within RRL. The only exception
is that RRL-TG may converge more slowly towards the optimal policy or even achieve a
lower performance level if all guidance is supplied at the start.

— Does more guidance mean better results? Providing more guided traces can improve
the performance of RRL, in particular when they are provided to RRL-RIB or we are
talking about a relatively small number of guided traces, which are provided at the start.
Providing RRL-TG with a large number of guided traces at the start can even reduce
performance due to overgeneralization problems.

— What mode of providing guidance works best? This depends on the generalization engine
used. For RRL-TG, guidance should be spread, i.e., guided traces should be interleaved
with exploration traces. For RRL-RIB, providing all the guidance at the start works best.
If a relatively high level of performance is achieved, it can be further improved by using
active guidance.

— Which generalization engine works better within RRL? RRL-TG is more efficient and
achieves higher levels of performance, provided a large number of episodes are available
and guidance is spread. RRL-RIB converges faster and achieves better performance levels
when a smaller number of episodes is available and all evidence is given at the start.

— How do the different guidance policies affect the performance of G-RRL? When the
guidance policy yields high rewards or is even optimal, G-RRL often, but not always,
approaches the performance of the guidance policies. When the guidance policy is clearly
not optimal, G-RRL may perform much better than the guidance policy. In such cases,
improving the guidance policy is likely to result in improved performance in G-RRL.
However, it is crucial not to provide too much good guidance to RRL-TG at the start, due
to overgeneralization problems. In such cases, guidance from suboptimal policies may
avoid overgeneralization and result in better performance.

8. Related work

The idea of incorporating guidance in automated learning of control is not new. In Chambers
and Michie (1969) three kinds of cooperative learning are discussed. In the first, the learning
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system just accepts the offered advice. In the second, the expert has the option of not offering
any advice. In the third, some criterion decides whether the learner has enough experience to
override the human decision. Roughly speaking, the first corresponds to behavioral cloning,
the second to reinforcement learning and the third to guided reinforcement learning.

The link between this work and behavioral cloning (Bain and Sammut, 1995; Urbancic,
Bratko, and Sammut, 1996) is not very hard to make. If we would supply the TG gener-
alization algorithm with low Q-values for unseen state-action pairs, RRL would learn to
imitate the behavior of the supplied traces. Because of this similarity of the techniques, it
is not surprising that we run into similar problems as one encounters in behavioral cloning.

Scheffer, Greiner, and Darken (1997) discusses some of these problems. The differences
between learning by experimentation and learning with “perfect guidance” (behavioral
cloning) and the problems and benefits of both approaches are highlighted. Behavioral
cloning seems to have the advantage, as it sees precisely the optimal actions to take. However,
this is all that it is given. Learning by experimentation, on the other hand, receives imperfect
information about a wide range of state-action pairs. While some of the problems Scheffer
mentions are solved by the combination of the two approaches as we suggest in this paper,
other problems resurface in our experiments. Scheffer states that learning from guidance
will experience difficulties when confronted with memory constraints so that it can not
simply memorize the ideal sequence of actions but has to store associations instead. This is
very closely related to the problems our generalization engine has when it is supplied with
only perfect state-action pairs.

Wang combines observation and practice in the OBSERVER learning system in Wang
(1995) which learns STRIPS-like planning operators (Fikes and Nilsson, 1971). The system
starts with learning from “perfect guidance” and improves on the planning operators (pre-
and postconditions) through practice. There is no reinforcement learning involved.

Lin’s work on reinforcement learning, planning and teaching (Lin, 1992) and the
work of Smart and Kaelbling on reinforcement learning in continuous state-spaces
(Smart and Kaelbling, 2000) is closely related to ours in terms of combining guidance
and experimentation. Lin uses a neural network approach for generalization and uses a hu-
man strategy to teach the agent. The reinforcement learning agent is then allowed to replay
each teaching episode to increase the amount of information gained from a single lesson.
However, the number of times that one lesson can be replayed has to be restricted to prevent
over-learning. This behavior is strongly related to the over-generalization behavior of TG
when only perfect guidance is presented.

Smart’s work deals with continuous state-spaces uses a nearest neighbor approach for
generalization and use example training runs to bootstrap the Q-function approximation.
The use of nearest neighbor and convex hulls successfully prevents overgeneralization. It
is not clear how to translate the convex hull approach to the relational setting.

Another technique that is based on the same principles as our approach is used by
Dixon, Malak, and Khosla (2000). They incorporate prior knowledge into the reinforcement
learning agent by building an off-policy exploration module in which they include the prior
knowledge. They use artificial neural networks as a generalization engine.

Other approaches to speed up reinforcement learning by supplying it with non-optimal
strategies include the work of Shapiro, Langley, and Shachter (2001). There the authors
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embed hierarchical reinforcement learning within an agent architecture. The agent is sup-
plied with a “reasonable policy” and learns the best options for this policy through experi-
ence. This approach is complementary to and can be combined with our work on G-RRL.

Recently, there has been a large increase in the work on policy generation for relational
domains. Most closely related to the approach used in the RRL system is the work on
relational Markov decision processes. Kersting and De Raedt (2003) introduce Logical
Markov Decision Processes as a compact representation of relational MDPs. By the use
of abstract states (i.e. a conjunction of first order literals) and abstract actions that are
defined in a STRIPS-like manner (Fikes and Nilsson, 1971) they greatly reduce the number
of possible (state, action) pairs and thus the number of Q-values that need to be learned.
Independent of this, Morales (2003) introduced rQ-learning, i.e. Q-learning in R-Space.
R-Space consists of 7-states and r-actions which are very comparable to the abstract states
and abstract actions in the work of Kersting and De Raedt. The rQ-learning algorithms
tries to calculate the Q-values of the (r-state, r-action) pairs. Van Otterlo (2004) defines
the CARCASS representation that consists of pairs of abstract states and the set of abstract
actions that can be performed in the given abstract state. While this is again comparable to the
two previously discussed approaches, van Otterlo not only defines a Q-learning algorithm
for his representation but also suggests learning a model of the relational MDP defined by
the CARCASS to allow prioritized sweeping to be used as a solution method.

Fern, Yoon, and Givan (2003) use an approximate variant of policy iteration to handle
large state spaces (Fern, Yoon, and Givan, 2003). A policy language bias is used to enable
the learning system to build a policy from a sampled set of Q-values. Just like in standard
policy iteration (Sutton and Barto, 1998), approximate policy iteration interleaves policy
evaluation and policy improvement steps. Yoon, Fern, and Givan (2002) present an approach
for translating abstract policies from small relational MDPs to larger problems.

9. Conclusions

In this paper, we address the problem of integrating guidance and experimentation in re-
inforcement learning, and in particular relational reinforcement learning (RRL). The use
of a more expressive representation in RRL allows for larger and more complex learning
tasks to be addressed, where the problem of finding rewards that are sparsely distributed
is more severe. We show that providing guidance to the reinforcement learning agent does
help improve performance in such cases. Guidance in our case takes the form of traces of
execution of a “reasonable policy” that provides sufficiently dense rewards.

We demonstrate the utility of guidance through experiments in three domains: the blocks
world and two computer games (Tetris and Digger). Each of these three application domains
is characterized by a huge state space and hard to reach rewards. We investigate the effect
of using guidance in a number of settings, characterized along several dimensions. The
dimensions include the mode of providing guidance, the form of the guidance policy used,
and the generalization engine used within relational reinforcement learning.

We investigate two modes of using guidance: providing all guidance at the start and
spreading guidance, i.e., providing some guided episodes followed by several exploration
episodes, and repeating this. A variation on the latter mode is active learning, where the agent
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asks for guided traces starting from initial states that it selects itself rather than receiving
guided traces from randomly chosen initial states. Three different forms of guidance policies
are considered: hand-coded—possibly optimal—policies, policies already learned by RRL
in a previous experiment and the policy of a human performing the task at hand. We use
two different generalization engines within RRL, induction of relational regression trees
(TG) and relational instance-based regression (RIB).

Overall, the use of guidance in addition to experimentation improves performance over
using experimentation only, for all considered combinations of the dimensions mentioned
above. We observed improvements in terms of the overall performance level achieved, the
convergence speed, or both. The improvements result from using the best of both worlds:
guidance provides perfect or reasonably good information about the optimal action to take
in a narrow range of situations, while experimentation can obtain imperfect information
about the optimal action to take in a wide range of situations. The actual magnitudes of
performance improvement does depend on the considered combination of the mode of
providing guidance and generalization engine.

While both guidance at the start and spread guidance improve the performance of RRL,
spread guidance often yields higher, but more importantly never lower performance. This
is especially the case if regression engine is vulnerable to over-generalization such as the
relational regression trees (TG-trees). Providing all the guidance up front doesn’t quite work
well in this case for several reasons. Namely, making a split on “perfect” guidance generated
examples only distinguishes between the regions of equal state-values, but not the actions
that move you between them. This can be corrected by splits further down the tree, but this
requires lots of extra examples, and therefore more learning episodes. This problem is aggra-
vated by the fact that after making a split, the guidance received so far is lost. These problems
do not appear when instance-based regression (RIB) is used as a generalization engine as
the RiB-algorithm is designed to remember high yielding examples and the bias towards
action difference of the used distance prevents the over-generalization that occurs with TG.

Active learning with spread guidance helps improve performance in the later stages of
learning, by enabling fine tuning of the learned Q-function by focusing on problematic re-
gions of the state space. This often results in a significant reduction of the cases where RRL
exhibits non-optimal behavior. Experiments show that a sufficiently high level of perfor-
mance has to be reached by G-RRL for the active guidance to have any effect. If performance
is too low to allow fine-tuning, active guidance does not improve on normal guidance.

Guidance from different sources can be successfully used within the proposed approach.
Whether we used traces generated by hand-programmed policies, policies learned by RRL or
a human performing the task at hand, we always obtained higher performance as compared
to using no guidance. The quality of the policy used to generate guidance does matter, as
illustrated by the experiment on the Tetris domain, where using a better policy to provide
guidance yielded significantly better performance.

10. Further work

One possible direction for further work is the tighter integration of the use of guidance and
the generalization engine used. For example, when dealing with a model building regression
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algorithm like TG, one could supply more and possibly specific guidance when the algorithm
is bound to make an important decision. In the case of TG, this would be when TG is ready
to choose a new test to split a leaf. Even when this guidance is not case specific, it could
be used to check whether a reasonable policy contradicts the proposed split. Alternatively,
one might decide to store (some of) the guided traces and re-use them: at present, all traces
are forgotten once a split of the TG-tree has been made.

When looking for a more general solution, one could try to provide a larger batch of
guidance after RRL has had some time to try and explore the state-space on its own. This is
related to a human teaching strategy, where providing the student with the perfect strategy
at the start of learning is less effective than providing the student with that strategy after he
or she has had some time to explore the systems behavior.

Another route of investigation that could yield interesting results would be to have a
closer look at the relations of our approach to the human learning process. In analogy to
human learner—teacher interaction, one could have a teacher look at the behavior of RRL
or—given the declarative nature of the policies and Q-functions that are generated by RRL-
TG—at the policy that RRL has constructed itself and adjust the advice it wants to give. In
the long run, because RRL uses an inductive logic programming approach to generalize its
Q-function and policies, this advice doesn’t have to be limited to traces, but could include
feedback on which part of the constructed Q-function is useless and has to be rebuilt, or
even constraints that the learned policy has to satisfy.

Although the idea of active guidance seems very attractive both intuitively and in practice,
itis not easy to extend this approach to applications with stochastic actions or a fixed starting
state such as the Tetris game where the next block to be dropped is chosen randomly and the
starting state is always an empty playing field. For stochastic applications one could try to
remember all the stochastic elements and try to recreate the episode. For the Tetris game this
would include the entire sequence of blocks and asking the guidance strategy for a game with
the given sequence. However, given the large difference in the Tetris state as a consequence
of only a few different actions, we anticipate the effect of this approach to be small.

Another step towards active guidance in stochastic environments would be to keep track
of actions (and states) with a large negative effect. For example in the Tetris game we could
notice a large increase of the height of the wall of the playing field. We could then use these
remembered states to ask for guidance. However, this approach requires not only a large
amount of administration inside the learning system but also needs some a priori indication
of bad and good results of actions.

One direction of future work that will surely be investigated is the application of other first
order regression algorithms as Q-function approximations and the interaction of these gener-
alization algorithms with different types and modes of guidance. In addition, reinforcement
learing approaches other than Q-learning (such as direct policy search and approximate
policy iteration) in a relational setting should be investigated in more detail.

Notes

1. Tetris was invented by Alexey Pazhitnov and is owned by The Tetris Company and Blue Planet Software.
2. http://www.digger.org.
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