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1. Introduction

This paper brings together two strands of machine learning of increasing importance: kernel
methods and highly structured data. To start with the latter, most real-world data has no
natural representation as a single table. In order to apply traditional data mining methods to
structured data, extensive pre-processing has to be performed. Research in inductive logic
programming (ILP) and multi-relational data mining (DZeroski and Lavra¢, 2001) aims
to reduce these pre-processing efforts by considering learning from multi-relational data
representations directly.

Support vector machines (Boser, Guyon, and Vapnik, 1992; Vapnik, 1995) are a popular
recent development within the machine learning and data mining communities. Along with
some other learning algorithms like Gaussian processes and kernel principal component
analysis, they form the class of kernel methods (Miiller et al., 2001; Scholkopf and Smola,
2002). The computational attractiveness of kernel methods comes from the fact that they can
be applied in high-dimensional feature spaces without suffering the high cost of explicitly
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computing the mapped data. The kernel trick is to define a positive definite kernel on the
instance space. For such functions it is known that there exists an embedding of the instance
space in a linear space such that the kernel on pairs of instances corresponds to the inner
product in this space.

Representation is a key issue in bringing together kernel methods and learning from
structured data. While the inductive logic programming community has traditionally used
logic programs to represent structured data, the scope has gradually been extended and now
includes other knowledge representation languages. If we want to devise a kernel function
for structured data that generalises those kernel functions that have successfully been applied
to attribute-value problems, it is useful to have a representation for structured data that is
close to the attribute-value representation. We thus represent individuals as (closed) terms in
a typed higher-order logic (Lloyd, 2003). The typed syntax is important for pruning search
spaces and for modelling as closely as possible the semantics of the data in a human- and
machine-readable form. The individuals-as-terms representation is a natural generalisation
of the attribute-value representation and collects all information about an individual in a
single term.

The outline of the paper is as follows. Section 2 introduces kernel methods and defines
what is meant by ‘valid’ kernels. Section 3 gives an account of our knowledge representation
formalism, which is a typed higher-order logic. Section 4 defines a kernel on the terms of
this logic, investigates some theoretical properties, and describes how these kernels can
be adapted to particular domains. Section 5 reviews how this kernel can be used to define
a distance function on basic terms that satisfies the metric conditions. Section 6 provides
a variety of experimental evaluations of this kernel and distance. Section 7 concludes the

paper.

2. Kernel methods

In this section we give a brief overview of kernel methods, and review recent work on
kernels for data structures such as strings and trees.

Two components of kernel methods have to be distinguished: the kernel machine and
the kernel function. Different kernel machines tackle different learning tasks, e.g., support
vector machines for supervised learning, support vector clustering (Ben-Hur et al., 2001)
for unsupervised learning, and kernel principal component analysis (Scholkopf, Smola,
and Miiller, 1999; Scholkopf and Smola, 2002) for feature extraction. While the kernel
machine encapsulates the learning task and the way in which a solution is sought, the kernel
function encapsulates the hypothesis language, i.e., how the set of possible solutions is
made up. Different kernel functions implement different hypothesis spaces or even different
knowledge representations.

In this section we use the notation f(-) to refer to a function and the notation f(x) to refer
to the value of the function f(-) at x. Similarly, k(-, -) is a function with two arguments,
while k(x, -) is a function with one (free) argument, and k(x, x’) is the value of the function
k(-,-) at (x, x').
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2.1. Valid kernels

Usually, learning algorithms can be applied in a high-dimensional feature space by trans-
forming the data with a map ¢. The computational attractiveness of kernel methods comes
from the fact that they do not rely on the explicit construction of the images of instances
under the feature map but only on the computation of inner products of pairs of instances
in the feature space. Often a closed form of the inner product of the mapped data ex-
ists, and instead of performing the expensive transformation step ¢ explicitly, a kernel
k(x, x") = (¢(x), p(x)) calculating the inner product directly can be used.

Whether, for a given function k : X x X — R, a feature transformation ¢ : X — H
into the Hilbert space H exists, such that k(x, x") = (¢(x), ¢(x')) for all x,x" € X,
can be checked by verifying that k is positive definite (Aronszajn, 1950). This means
that any set, whether a linear space or not, that admits a positive definite kernel can be
embedded into a linear space. Thus, throughout the paper, we take ‘valid’ to mean ‘positive
definite’. Here then is the definition of a positive definite kernel. (Z™ is the set of positive
integers.)

Definition 2.1 (Positive definite kernel functions). Let X be a set. A symmetric function
k: X x X — Ris a positive definite kernel on X if, for alln € Z*, x, ... ,x, € X, and
ci,...,c, €R, it follows that

Z cicjk(xi,xj) >0

ijell,... .n}

Note that, for a positive definite kernel, the left-hand side of this inequality corresponds to the
squared length of a linear combination of vectors in feature space, i.e., _; ; cic;k(x;, x;) =
I3 el

While it is not always easy to prove positive definiteness for a given kernel, positive def-
inite kernels do have some nice closure properties. In particular, they are closed under sum,
direct sum, multiplication by a scalar, product, tensor product, zero extension, pointwise
limits, and exponentiation (Cristianini and Shawe-Taylor, 2000; Haussler, 1999).

It should be noted that, for a kernel method to perform well on a domain, positive
definiteness of the kernel is not the only issue. While there is always a valid kernel that
performs poorly (e.g., ko(x, x) = 0), there is also always a valid kernel that performs
ideally (k.(x, x") = c(x)c(x"), where c(z) is +1 if z is is a member of the concept and —1
otherwise). The suitability of a kernel must ultimately be verified by experiments.

2.2.  Kernel machines
The usual supervised learning model (Vapnik, 1995) considers a set X’ of individuals and a

set )Y of labels, such that the relation between individuals and labels is a probability measure
on the set X x ). A basic and well-known approach to supervised learning is to use for
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prediction the hypothesis function that minimises the empirical risk (training error)

1 n
min — > V(y;, f(x)

FOF n =

where F is a set of functions, the hypothesis space, and V : J x J — R is a function that
takes on small values whenever f(x) is a good guess for y and large values whenever it is
a bad guess, the loss function.

In practice, it may not be sufficient to minimise the empirical error. It is often necessary
to make sure that the functions considered as solutions are stable with respect to small
perturbations of the training data. One approach to this problem is known as Tikhonov
regularisation (Tikhonov and Arsenin, 1977), which means that we add a regularisation
term to the empirical risk. In kernel methods it is common to assume that the hypothesis
space forms a Hilbert space and to use the norm of f(-) in the corresponding Hilbert space
[I £ ()l% as the regularisation term. This gives rise to the corresponding optimisation problem

C n
min =" V(y;, f() + IFOF
1

FOH n 4=

Different kernel methods arise from using different loss functions, see also Evgeniou, Pontil,
and Poggio (2000). Support vector machines, for example, arise from using the so-called
hinge loss V(y, f(x)) = max{0, 1 — yf(x)}.

The Representer Theorem (Wahba, 1990; Scholkopf, Herbrich, and Smola, 2001) shows
that, under quite general conditions, the solution found by minimising the regularised risk
has the form

=) cikxi, )
i=1

where k(-, -) is the kernel corresponding to the inner product in H, the so-called ‘reproducing
kernel’ of the Hilbert space H.

Using hinge loss and making use of our knowledge about the form of the solution, the
problem of minimising the regularised risk can be transformed into the so-called ‘primal’
optimisation problem of soft-margin support vector machines:

C & T
in — - K
min 2 f ek
subjectto: y;K;c>1—§ i=1,...n

& >0 i=1,...n

where K;; = k(x;, x;). This optimisation problem is convex as the kernel function k(-, -),
and thus also the Hessian matrix of the objective function Rgyny[-] of the above optimisation
problem, is positive definite. Therefore any solution to j—cRsvm[c] = (0,0,...0)T is a
globally optimal solution.
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2.3. Kernels on vectors

Before investigating kernels for structured data in detail, the traditionally used kernels (on
vector spaces) are briefly reviewed in this section. Let x, x" € R” and let (-, -) denote the
scalar product in R". Apart from the linear kernel

k(x,x) = (x,x)

and the normalised linear kernel

(x', x')
VAR EY
the two most frequently used kernels on vector spaces are the polynomial kernel and the

Gaussian RBF kernel. Given two parameters [ € R, p € N* the polynomial kernel is
defined as:

k(x,x') =

k(x,x) = ({x,x") +D?

The intuition behind this kernel definition is that it is often useful to construct new features
as products of original features. This way, for example, the XOR problem can be turned into
a linearly separable problem. The parameter p is the maximal order of monomials making
up the new feature space, while / can be used as a bias towards lower-order monomials—for
instance, if [ = 0 the feature space consists only of monomials of order p of the original
features.

Given the parameter y, the Gaussian RBF kernel is defined as:

_ _ 2
k(x,x)=e 7 llx—x'll

Using this kernel function in a support vector machine can be seen as using a radial basis
function network with Gaussian kernels centred at the support vectors. The images of the
points from the vector space R” under the map ¢ : R" — H with k(x, x") = (¢(x), p(x"))
lie all on the surface of a hyperball in the Hilbert space . No two images are orthogonal
and any set of images is linearly independent.

The kernels on vectors described above can be found in similar form in Section 4.3 where
we discuss the kernel modifiers used to adapt the default kernel for basic terms to actual
problem domains. The following kernel can be used with discrete data. The matching kernel
ks : X x X — R is defined as

, 1 ifx=x'
ks(x, x) =

0 otherwise

The image of any element of X’ under the map ¢ : X — H with ks(x, x') = (p(x), p(x"))
is a vector orthogonal to all other images of elements of A’ under ¢.
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2.4. Kernels for structured data

The best-known kernel for representation spaces that are not mere attribute-value tuples is
the convolution kernel proposed by Haussler (1999). The basic idea of convolution kernels
is that the semantics of composite objects can often be captured by a relation R between the
object and its parts. The kernel on the object is composed of kernels defined on different
parts. Let x, x’ € X be the objects and X, X’ € X; x --- x Xp be tuples of parts of these
objects. Given the relation R : (X} x - - - x Xp) x X we can define the decomposition R~ as
R7'(x) = {X : R(X, x)}. With positive definite kernels k; : X; x X; — R the convolution
kernel is defined as

D
kCOHV(-xa )C/) = Z 1_[ kd(xda x;’)

FeR-(x),¥eR"(x') d=1

The term ‘convolution kernel’ refers to a class of kernels that can be formulated in the above
way. The advantage of convolution kernels is that they are very general and can be applied
in many different situations. However, because of that generality, they require a significant
amount of work to adapt them to a specific problem, which makes choosing R in real-world
applications a non-trivial task.

There are other kernel definitions for structured data in the literature; however, these
usually focus on a very restricted syntax and are fairly domain-specific. Examples are
string and tree kernels. Traditionally, string kernels (Lodhi et al., 2002) have focused on
applications in text mining and measure similarity of two strings by the number of common
(not necessarily contiguous) substrings. However, other string kernels have been defined
for different domains, e.g., recognition of translation initiation sites in DNA and mRNA
sequences (Zien et al., 2000). Tree kernels (Collins and Duffy, 2002) can be applied to
ordered trees where the number of children of a node is determined by the label of the node.
They compute the similarity of trees based on their common subtrees. Tree kernels have
been applied in natural language processing tasks. Kernels that can be applied to graphs
have recently been introduced in Gértner (2002), Kashima and Inokuchi (2002) and Girtner,
Flach, and Wrobel (2003).

For an extensive overview of these and other kernels on structured data, the reader is
referred to Girtner (2003).

3. Knowledge representation

For a syntax-driven kernel definition, one needs a knowledge representation formalism
that is able to accurately and naturally model the underlying semantics of the data. The
knowledge representation formalism we use is based on the principles of using a typed
syntax and representing individuals as (closed) terms. The theory behind this knowledge
representation formalism can be found in Lloyd (2003) and a brief outline is given in
this section. The typed syntax is important for pruning search spaces and for modelling
the semantics of the data as closely as possible in a human- and machine-readable form.
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The individuals-as-terms representation is a natural generalisation of the attribute-value
representation as it collects all information about an individual in a single term.

The setting is a typed, higher-order logic that provides a variety of important data types,
including sets, multisets, and graphs for representing individuals. The logic is based on
Church’s simple theory of types (Church, 1940) with several extensions. First, we assume
there is given a set of type constructors ¥ of various arities. Included in ¥ is the constructor
Q of arity 0. The domain corresponding to 2 is the set containing just True and False,
that is, the boolean values. The types of the logic are expressions built up from the set of
type constructors and a set of parameters (that is, type variables), using the symbol — (for
function types) and x (for product types). For example, there is a type constructor List used
to provide the list types. Thus, if « is a type, then List « is the type of lists whose elements
have type «. A closed type is a type not containing any parameters, the set of all closed
types is denoted by &€. Standard types include Nat (the type of natural numbers).

There is also a set € of constants of various types. Included in € are T (true) and L (false).
Two different kinds of constants, data constructors and functions, are distinguished. In a
knowledge representation context, data constructors are used to represent individuals. In a
programming language context, data constructors are used to construct data values. (Data
constructors are called functors in Prolog.) In contrast, functions are used to compute on data
values; functions have definitions while data constructors do not. In the semantics for the
logic, the data constructors are used to construct models (cf. Herbrand models for Prolog).
A signature is the declared type of a constant. For example, the empty list constructor [] has
signature List a, where a is a parameter and List is a type constructor. The list constructor #
(usually written infix) has signature @ — List a — List a." Thus # expects two arguments,
an element of type « and a list of type List «, and produces a new list of type List «. If a
constant C has signature «, we denote this by C : «.

The terms of the logic are the terms of the typed A-calculus, which are formed in the usual
way by abstraction, tupling, and application from constants in € and a set of variables. £
denotes the set of all terms (obtained from a particular alphabet). A term of type €2 is called
a formula. A function whose codomain type is €2 is called a predicate. In the logic, one
can introduce the usual connectives and quantifiers as functions of appropriate types. Thus
the connectives conjunction, A, and disjunction, Vv, are functions of type 2 — Q — Q. In
addition, if ¢ is of type €2, the abstraction Ax.f is written {x | ¢} to emphasise its intended
meaning as a set. There is also a tuple-forming notation (. ..). Thus, if {, ... , #,, are terms
of type 71, ...,T,, respectively, then (¢, ... ,t,) isaterm of type 7y X - -+ X T,.

Now we come to the key definition of basic terms. Intuitively, basic terms represent the
individuals that are the subject of learning (in Prolog, these would be the ground terms).
Basic terms fall into one of three kinds: those that represent individuals that are lists, trees,
and so on; those that represent sets, multisets, and so on; and those that represent tuples.
The second kind are abstractions. For example, the basic term representing the set {1, 2} is

Ax.if x =1then T else if x =2 then T else L,
and

Ax.if x = A then 42 else if x = B then 21 else 0
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is the representation of the multiset with 42 occurrences of A and 21 occurrences of B (and
nothing else). Thus we adopt abstractions of the form

Ax.if x =1t then sy else ... if x =t, then s, else sg
to represent (extensional) sets, multisets, and so on. The term s here is called a default term
and for the case of sets is L and for multisets is 0. Generally, one can define default terms
for each (closed) type. The set of default terms is denoted by © (full details on default terms
are given in Lloyd (2003)).

Definition 3.1 (Basic terms). The set of basic terms, B, is defined inductively as follows.

1. If C is a data constructor having signature 6y — --- — o, — (T ay...a;),t1, ... , t, €
Bm=>0),andrisC ty...1, € £, thent € B.
2. Ifty, ... ,t, €B,51,...,5,€B(n>0),s50€Dandtis

Ax.if x =1t then sy else ... if x =1t, then s, else sy € £,

then ¢t € B.
3.Ifty,...,t, €eBm>0andris(t,... ,t,) € £, thent € B.

Part 1 of the definition of the set of basic terms states, in particular, that individual
natural numbers, integers, and so on, are basic terms. Also a term formed by applying a
data constructor to (all of) its arguments, each of which is a basic term, is a basic term.
Consider again lists formed using the data constructors [] having signature List a, and #
having signature a — List a — List a. Then A#B#C#[] is the basic term of type List o
representing the list [A, B, C], where A, B, and C are constants having signature «. Basic
terms coming from Part 1 of the definition are called basic structures and always have a
type of the form T« . .. «.

The abstractions formed in Part 2 of the definition are “almost constant” abstractions
since they take the default term s as value for all except a finite number of points in the
domain. They are called basic abstractions and always have a type of the form 8 — y. This
class of abstractions includes useful data types such as (finite) sets and multisets (assuming
1 and 0 are default terms). More generally, basic abstractions can be regarded as lookup
tables, with s as the value for items not in the table. In fact, the precise definition of
basic terms in Lloyd (2003) is a little more complicated in that, in the definition of basic
abstractions, tq, ..., t, are ordered and sy, . . . , 5, cannot be default terms. These conditions
avoid redundant representations of abstractions.

Part 3 of the definition of basic terms just states that one can form a tuple from basic
terms and obtain a basic term. These terms are called basic tuples and always have a type
of the form a; X -+ X «,,.

Compared with Prolog, our knowledge representation offers a type system which can be
used to express the structure of the hypothesis space and thus acts as a declarative bias.
The other important extension are the abstractions, which allow us to use genuine sets
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and multisets. In fact, Prolog only has data constructors (functors), which are also used to
emulate tuples.

It will be convenient to gather together all basic terms that have a type more general than
some specific closed type. In this definition, if o and g are types, then « is more general
than B if there exists a type substitution £ such that 8 = «§.

Definition 3.2 (Basic terms of a given type). For each o € &€, define B, = {r € B | ¢
has type more general than «}.

The intuitive meaning of B, is that it is the set of terms representing individuals of type c.

For use in the definition of a kernel, we introduce some notation. If s € B4_,,, andt € By,
then V(s ) denotes the “value” returned when s is applied to ¢. (The precise definition is in
Lloyd (2003).) For example, if s is Ax.if x = A then 42 else if x = B then 21 else 0 and
tis A, then V(s 1) = 42. Also, if u € Bg_,,, the support of u, denoted supp(u), is the set
{veBg| V(uv) € D). Thus, for the s above, supp(s) = {A, B}.

As an example of the use of the formalism, for (directed) graphs, there is a type constructor
Graph such that the type of a graph is Graph v ¢, where v is the type of information in the
vertices and ¢ is the type of information in the edges. Graph is defined by

Graph v ¢ = {Label x v} x {(Label x Label) x ¢},

where Label is the type of labels. Note that this definition corresponds closely to the math-
ematical definition of a graph: each vertex is uniquely labelled and each edge is uniquely
labelled by the ordered pair of labels of the vertices it connects.

4. Kernels for basic terms

Having introduced kernels (in Section 2) and our knowledge representation formalism (in
Section 3), we are now ready to define kernels for basic terms. In Section 4.1 we define a
default kernel on basic terms. In Section 4.2 we show that the kernel is positive definite.
In Section 4.3 we show how to adapt the default kernel to match more closely the domain
under investigation.

4.1. Default kernels for basic terms

Our definition of a kernel on basic terms assumes the existence of kernels on the various sets
of data constructors. More precisely, for each type constructor 7 € ¥, k7 is assumed to be a
positive definite kernel on the set of data constructors associated with 7. For example, for the
type constructor Nat, kny could be the product kernel defined by Ny (72, m) = nm. For other
type constructors, say M, the matching kernel could be used, i.e., kp (x, x") = ks(x, x').

Definition 4.1 (Default kernel for basic terms).  The function &k : 8 x 6 — R is defined
inductively on the structure of terms in B as follows.
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1. If s,t € B,,wherea =T « ..., forsome T, «y, ..., o, then
kr(C, D) if C#D
k(s, t) = “
(s, 1) kr(C,C) + Zk(si,ti) otherwise
i=1
where sisC sy...s,andris D ty ... t,,.

2. Ifs,t € B,, where« = 8 — y, for some S, y, then

k(s )= k(V(su), V(tv)k(u,v).

uesupp(s)
vesupp(t)

3. Ifs,t € B,, where ¢« = «; X --- X o, for some «y, ... , «,, then
n
ks, t) ="y k(si, i),
i=1

where s is (51, ...,s,)and ris (f1, ... , t,).
4. If there does not exist « € &€ such that s, t € B, then k(s, t) = 0.

Definition 4.1 generalises Definition 3.7.4 in Lloyd (2003) in that, for Part 2, the latter
definition restricts attention to the case where k is the matching kernel on B4 so that

ks,0)=" > k(V(su), V(tu),

uesupp(s)Nsupp(t)

for s, € Bg_,,. This extension is important in practice and each of the applications
described in Section 6 will use it.

We proceed by giving examples and some intuition of the default kernel defined above.
In the following examples we will be somewhat sloppy with our notation and sometimes
identify basic terms with the lists, sets, and multisets they represent.

Example 4.1 (Default kernel on lists). Let M be anullary type constructorand A, B, C, D:
M. Let# and [] be the usual data constructors for lists. Choose «j; and ki to be the matching
kernel. Let s be the list [A, B, C] € Brisw >t = [A, D], and u = [B, C]. Then

k(s, 1) = kLis((#), (#) + k(A, A) + k([B, C]. [D])

1+ km(A, A) + kLig((#), #) + k(B, D) + k([C], [])
=1+1+4+1+ku(B, D)+ kis((#), [1)

=3+0+0

=3.

Similarly, k(s, u) = 2 and k(t, u) = 3.
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The intuition here is that if we use the matching kernel on the list constructors and on the
elements of the lists, then we can decompose the kernel as k(s, ) = [ 4+ m + n where [ is
the length of the shorter list, m is the number of consecutive matching elements at the start
of both lists, and n = 1 if the lists are of the same length and O otherwise.

The kernel used in the above example is related to string kernels (Lodhi et al., 2002) in
so far as they apply to the same kind of data. However, the underlying intuition of list/string
similarity is very different. String kernels measure similarity of two strings by the number
of common (not necessarily consecutive) substrings. The list kernel defined above only
takes the longest common consecutive sublist at the start of the two lists into account. This
is more in line with the usual ILP interpretation of lists as head-tail trees, and the kind of
matching performed by anti-unification.

Example 4.2 (Default kernel on sets). Let M be anullary type constructorand A, B, C, D:
M. Choose «); and kg to be the matching kernel. Let s be the set {A, B, C} € By _q,
t ={A, D},and u = {B, C}. Then

k(s,t) = k(A, A)k(T, T)+k(A, D)k(T, T)+k(B, A)k(T, T)+ k(B, D)k(T, T)
+k(C, A)k(T, T)+ k(C, D)k(T, T)
=kp(A, A) +ky(A, D)+ ky(B, A) + ky(B, D)+ ky(C, A) + ky(C, D)
=140+0+0+4+0+4+0
=1.

Similarly, k(s, u) = 2 and k(¢, u) = 0.

The intuition here is that using the matching kernel for the elements of the set corresponds to
computing the cardinality of the intersection of the two sets. Alternatively, this computation
can be seen as the inner product of the bit-vectors representing the two sets.

Example 4.3 (Default kernel on multisets). Let M be a nullary type constructor and A, B,
C, D : M. Choose k) to be the matching kernel, and «ny; to be the product kernel. Let s
be (A, A, B,C,C,C) € By _.na (i-€., s is the multiset containing two occurrences of A,
one of B, and three of C),t = (A, D, D), and u = (B, B, C, C). Then

k(s,t) = k2, Dk(A, A) +k(2,2)k(A, D) + k(1, Dk(B, A) + k(1, 2)k(B, D)
+ k@3, Dk(C, A) + k(3, 2)k(C, D)
=2x14+4x04+1x04+2x04+3x04+6x0
=2.

Similarly, k(s, u) = 8 and k(t, u) = 0.

The intuition here is that using the product kernel for the elements of the multiset corresponds
to computing the inner product of the multiplicity vectors representing the two multisets.
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These examples were kept deliberately simple in order to illustrate the main points. The
kernel defined in Definition 4.1 provides much more flexibility in three important respects:
(1) it allows nesting of types, such that, e.g., sets can range over objects that are themselves
structured; (ii) it allows flexibility in the choice of the kernels on data constructors, such
that, e.g., elements of lists can partially match as in DNA sequences; and (iii) it allows
flexibility in the way in which examples are modelled in the framework, such that, e.g., a
list does not have to be represented by a head-tail tree if that does not match its semantics.

4.2.  Positive definiteness of the default kernel

Now we can formulate the main theoretical result of the paper.

Proposition 4.2 (Positive definiteness). Let k : B x B — R be the function defined in
Definition 4.1. For each a € &, it holds that k is a positive definite kernel on B, if the
kernels k1 on the data constructors associated with the same type constructor T are positive
definite.

The full inductive proof of this Proposition is given in the Appendix. A similar result for
a less general kernel function can be found in Lloyd (2003). The key idea of the proof is to
base the induction on a ‘bottom-up’ definition of 8. Here is the relevant definition.

Definition 4.3. Define {¥8,,},,cn inductively as follows.

By = {C | C is a data constructor of arity 0}
B ={Ct...t, € £] C is adata constructor of arity n and
tHy.oo oty € B,0m > 0)}
U {Ax.if x = £; then 57 else...if x = 1, then s, else 59 € £ |
ty.oo. t, €By,51,...,58, € B, and 59 € D}
U{(ty,...,t)e | ty,... ,t, € Byl

One can prove that °B,, € B, , form € N, and that ‘B = UmeN B

The intuitive outline of the proof of Proposition 4.2 is as follows: First, assume that those
kernels occurring on the right-hand side in Definition 4.1 are positive definite. Then the
positive definiteness of the (left-hand side) kernel follows from the closure properties of the
class of positive definite kernels. The kernel on basic structures is positive definite because
of closure under sum, zero extension, and direct sum, and because the kernels defined on
the data constructors are assumed to be positive definite. The kernel on basic abstractions is
positive definite as the function supp returns a finite set, and kernels are closed under zero
extension, sum, and tensor product. The kernel on basic tuples is positive definite because
of closure under direct sum.
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4.3.  Specifying kernels

The kernel defined in the previous section closely follows the type structure of the individuals
that are used for learning. As indicated, the kernel assumes the existence of atomic kernels
for all data constructors used. These kernels can be the product kernel for numbers, the
matching kernel which just checks whether the two constructors are the same, or a user-
defined kernel. In addition, kernel modifiers can be used to customise the kernel definition to
the domain at hand. In this section we first describe some commonly used kernel modifiers.
After that, we suggest how atomic kernels and kernel modifiers could be specified by an
extension of the Haskell language (Jones and Hughes, 1998).

To incorporate domain knowledge into the kernel definition, it will frequently be neces-
sary to modify the default kernels for a type. Below we formally describe these modifications
in terms of a function kmegifier : P = (X x X - R) - (X x X — R) that—given a
modifier and its parameters (an element of the parameter space P)—maps any kernel to the
modified kernel. For these modifiers, several choices are offered.

By default, no modifier is used, i.e.,

Kdetault (K)(x, X7) = k(x, x7).
Instead, a polynomial version of the default kernel can be used:

Kpotynomial (P, D(K)(x, x') = (k(x,x) +DP. (1 =0, peZ’)
Or a Gaussian version:

Kgaussian(Y)()(x, 1) = ¢ 7 IHEDZHEOHEDL (> 0)
Another frequently used modification is the normalisation kernel:

k(x, x")
VEG ORGT, XN

Knormalised (K)(x, x") =
Here +/k(x, x) is the norm of x in feature space, and thus the normalisation kernel is equal
to the cosine of the angle between x and x’ in feature space. Other modifiers can be defined
by the user, using the syntax below.
We suggest that kernels be defined directly on the type structure (specifying the structure
of the domain and the declarative bias). We introduce our suggested kernel definition syntax
by means of an example: the East/West challenge (Michie et al., 1994).

eastbound :: Train -> Bool

type Train = Car -> Bool with modifier gaussian 0.1
type Car = (Shape,Length,Roof,Wheels, Load)

data Shape = Rectangle | Oval
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data Length = Long | Short

data Roof = Flat | Peaked | None with kernel roofK
type Wheels = Int with kernel discreteKernel

type Load = (LShape, LNumber)

data LShape = Rectangle | Circle | Triangle

type LNumber = Int

The first line declares the learning target eastbound as a mapping from trains to the
booleans. A train is a set of cars, and a car is a 5-tuple describing its shape, its length,
its roof, its number of wheels, and its load. All of these are specified by data constructors
except the load, which itself is a pair of data constructors describing the shape and number
of loads.

The with keyword describes a property of a type, in this case kernels and kernel mod-
ifiers. The above declarations state that on trains we use a Gaussian kernel modifier with
bandwidth y = 0.1. By default, for Shape, Length and LShape the matching kernel is
used, while for LNumber the product kernel is used. The default kernel is overridden for
Wheels, which is defined as an integer but uses the matching kernel instead. Finally, Roo £
has been endowed with a user-defined atomic kernel which could be defined as follows:

roofK :: Roof -> Roof -> Real
roofK x x = 1
roofK Flat Peaked
roofK Peaked Flat
roofK xy = 0

o O
[G2BNE)]

This kernel counts 1 for identical roofs, 0.5 for matching flat against peaked roofs, and 0 in
all other cases (i.e., whenever one car is open and the other is closed).

Finally, the normalisation modifier could be implemented as the following higher-order
function:

normalised :: (t->t->Real) -> t -> t -> Real
normalised k x v = (k x y) / sgrt((k x x)*(k vy v))

In this section we have presented a kernel for structured data that closely follows the
syntactic structure of individuals as expressed by their higher-order type signature. The de-
fault setting assumes the product kernel for numbers and the matching kernel for symbols,
but this can be overridden to match the semantics of the data more closely. The approach
is very general in that it can be used with any kernel method. Furthermore, it is straight-
forward to transform a positive definite kernel into a pseudo-metric that can be used with
arbitrary distance-based methods, as we discuss in the next section. Therefore, our work
also contributes to the growing body of work on distance-based ILP.
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5. Distances for basic terms

In this section we will briefly review the relation between kernel functions and distances
satisfying the metric conditions. While technically straightforward, this relation is practi-
cally important as it extends the applicability of kernel functions to distance-based methods
such as k-nearest neighbour. The main insight is that the inner product in feature space, as
calculated by a positive definite kernel, can be used to define Euclidean distance in feature
space as the norm of the vector ¢(x) — ¢(x'), i.e., v/ {(P(x) — ¢(x'), ¢(x) — ¢p(x")). This leads
to the following definition.

Definition 5.1 (Distances from kernels). Letk : X x X — R be a kernel on X'. The
distance measure induced by k is defined as

di(x,x') = \/k(x, x) — 2k(x, x") + k(x', x)

If k is a valid kernel then d; is well-behaved in that it satisfies the conditions of a
pseudo-metric: (1) d(x, z)+d(z, x') > d(x, x") (triangle inequality), (2) d(x, x') = d(x’, x)
(symmetry), and (3) x = x’ = d(x,x’) = 0. (For a metric, this latter implication is
strengthened to an equivalence.)

Proposition 5.2 (Valid kernels induce pseudo-metrics). Letk : X x X — R be a kernel
on X, andletd; : X x X — R be the distance induced by k. If k is positive definite, then
dy is a pseudo-metric.

We omit the proof as this is a basic result from linear algebra.
Thus, we can use the embedding in a linear feature space provided by a kernel to define
a pseudo-metric for structured data expressed as basic terms.

Corollary 5.3 (Default distance for basic terms). Let k : 8 x B — R be the function
defined in Definition 4.1, and let d;, : B x B — R be the distance induced by k. If the
kernels k1 on the data constructors associated with the same type constructor T are positive
definite, then dy is a pseudo-metric on *B,.

We proceed by giving a few simple examples of our default distance for basic terms.

Example 5.1 (Default distance on lists). We continue Example 4.1, with s = [A, B, C],
t = [A,D],and u = [B, C]. We have k(s,s) = 7, k(t,t) = 5, and k(u, u) = 5. Then,
di(s,t) = Vk(s,8) = 2k(s, ) + k(t, 1) = VT —6+5 =2.45,di(s,u) = VT —4+5 =
2.83,and di(t,u) = /5—6+5=2.

As an intuition, when using the matching kernel on the list constructors and on the elements
of the lists, then k(s, s) = 2|s| 4+ 1 where |s| denotes the length of list s. Earlier we saw
that with the matching kernel k(s, ) = [ + m + n where [ is the length of the shorter list, m
is the number of consecutive matching elements when the lists are aligned from the head,
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and n = 1 if the lists are of the same length and 0 otherwise. Putting the two together, we
have that di (s, t) = +/2(m’ + n’) where m’ is the number of non-matching elements in the
longer list, and n” = 0 if the lists are of the same length and 1 otherwise.

Example 5.2 (Default distance on sets). We continue Example 4.2, with s = {A, B, C},
t = {A, D}, and u = {B, C}. We have k(s,s) = 3, k(¢t,t) = 2, and k(u, u) = 2. Then,
di(s,t) =/3=242=173,di(s,u) =~/3—4+2=1,andd;(t,u) =/2—-0+2 =
2.

Earlier we saw that with the matching kernel we get k(s, ) = |s N ¢| for sets s, ¢, and thus
di(s, 1) = /|s| = 2|s Nt] + [t], i.e., the square root of the cardinality of the symmetric
difference of s and ¢.

Example 5.3 (Default distance on multisets). We continue Example 4.3, with s = (A, A,
B,C,C,C),t=(A,D,D),andu = (B, B, C, C). We have k(s, s) = 14, k(¢t,t) = 5, and
k(u,u) = 8. Then, di(s,t) = /14 —4+5=3.87, di(s,u) = /14 — 16 + 8 = 2.45, and
di(t,u) =+/5—-04+8 =3.61.

It should be noted that the distance measure inherits the flexibility of the default kernel
for basic terms in that types can be nested and the kernels on the data constructors can be
adapted to the domain. Furthermore, we can use kernel modifiers such as the ones discussed
in Section 4.3.

Distance functions on discrete structures have been investigated for some time. However,
for most distance functions defined in the literature the metric properties do not hold. For
example, one well-known distance function on discrete structures is the RIBL distance,
described in Horvath, Wrobel, and Bohnebeck (2001), for which neither symmetry nor
the triangle inequality hold. Specifically, symmetry is violated if two sets have the same
cardinality. In Section 6.3 we show that a 1-nearest neighbour classifier using our default
metric considerably outperforms RIBL on the diterpene data set, on which RIBL achieved
the best result published so far.

Several other distances are summarised in Horvath, Wrobel, and Bohnebeck (2001) and
Ramon and Bruynooghe (2001) where it is shown that most distances suggested so far are
either non-metric or unsuited for real-world problems. An exception to this is Ramon and
Bruynooghe (2001). The distance function suggested there (the RB distance) is based on
the idea of computing a legal flow of maximal flow value and minimal cost in a weighted
bipartite graph. It can be shown that this distance satisfies all properties of a metric. It has
(to the best of our knowledge) not yet been shown whether for the RB distance there exists
a positive definite kernel that induces it. On the other hand, the RB distance is more general
than ours in that it allows non-ground terms.

6. Applications and experiments

In this section, we empirically investigate the appropriateness of our kernel definitions on
a variety of domains. The implementation and application of most algorithms mentioned
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below has been simplified by using the Weka data mining toolkit (Witten and Frank, 2000).
In the tables presented in this section we will use the acronym ‘KeS’ (kernel for structured
data) to refer to a support vector machine using our kernel for basic terms, and the acronym
‘DeS’ (distance for structured data) to refer to a nearest neighbour algorithm using our
distance for basic terms.

6.1. East/West challenge

We performed some experiments with the East/West challenge data set introduced earlier in
Section 4.3. We used the default kernels for all types, i.e., the product kernel for all numbers,
the matching kernel for all other atomic types, and no kernel modifiers. As this toy data set
only contains 20 labelled instances, the aim of this experiment was not to achieve a high
predictive accuracy but to check whether this problem can actually be separated using our
default kernel. We applied a support vector machine and a 3-nearest neighbour classifier to
the full data set. In both experiments, we achieved 100% training accuracy, verifying that
the data is indeed separable with the default kernels.

6.2. Drug activity prediction

Multi-instance problems have been introduced under this name in Dietterich, Lathrop, and
Lozano-Pérez (1997). However, similar problems and algorithms have been considered
earlier, for example in pattern recognition (Keeler, Rumelhart, and Leow, 1991). Within
the last couple of years, several approaches have been proposed to upgrade attribute-value
learning algorithms to tackle multi-instance problems. Other approaches focused on new
algorithms specifically designed for multi-instance learning.

If examples are represented by subsets of some domain X', concepts are functions cge :
2% — {—1,+1}. There are 22" different concepts on sets. Such concepts are sometimes
referred to as multi-part concepts. Multi-instance concepts are a specific kind of these
concepts.

Definition 6.0. A multi-instance concept is a function cyy : 2% {—1, +1} defined as:

+1 ifdxe X :clx)=+1
emi(X) = .

—1 otherwise
where ¢; : X — {—1,+1} is a concept on an instance space (often referred to as the
‘underlying concept’), and X € X is a set.

There are 24! different multi-instance concepts. The difficulty in this task is not just to
generalise beyond examples, but also to identify the characteristic element of each set. Any
learning algorithm that sees a positive set cannot infer much about the elements of the set,
except that one of its elements is positive in the underlying concept. With large sets, this
information is of limited use.
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A popular real-world example of a multi-instance problem is the prediction of drug
activity, introduced in Dietterich, Lathrop, and Lozano-Pérez (1997). A drug is active if it
binds well to enzymes or cell-surface receptors. The binding strength is determined by the
shape of the drug molecule. However, most molecules can change their shape by rotating
some of their internal bonds. The possible shapes of a molecule, i.e., a combinations of the
angles of the rotatable bonds of the molecule, are known as conformations. A drug binds
well to enzymes or cell-surface receptors if one of its conformations binds well. Thus the
drug activity prediction problem is a multi-instance problem. A molecule is represented
by a set of descriptions of its different conformations. The shape of each conformation is
described by a feature vector where each component corresponds to the length of one ray
from the origin to the molecule surface.

The musk domain introduced in Dietterich, Lathrop, and Lozano-Pérez (1997) involves
predicting the strength of synthetic musk molecules. The class labels were provided by hu-
man domain experts. Two overlapping data sets are available. Musk1 contains 47 molecules
labelled as ‘Musk’ (if the molecule is known to smell musky) and 45 labelled as ‘Non-
Musk’. The 92 molecules are altogether described by 476 conformations. Musk2 contains
39 ‘Musk’ molecules and 63 ‘Non-Musk’ molecules, described by 6598 conformations al-
together. 162 uniformly distributed rays have been chosen to represent each conformation.
Additionally, four further features are used that describe the position of an oxygen atom in
the conformation.

The formal specification of the structure of the musk data set along with the kernel applied
in Girtner et al. (2002) is as follows:

type Molecule = Con -> Bool with modifier normalised
type Con = (Rays,Distance,Offset)

with modifier gaussian 107-5.5
type Rays = (Real,Real,...,Real)
type Offset = (Real,Real,Real)
type Distance = Real

Table 1 compares the results achieved with a support vector machine using this kernel
(labelled KeS) to the results reported in Andrews, Tsochantaridis, and Hofmann (2003). All
results have been achieved by multiple ten-fold cross-validations.? The algorithms compared
are EMDD (Zhang and Goldman, 2002), maxDD (Maron and Lozano-Pérez, 1998), MI-
NN (Ramon and De Raedt, 2000), IAPR (Dietterich, Lathrop, and Lozano-Pérez, 1997),
mi-SVM and MI-SVM (Andrews, Tsochantaridis, and Hofmann, 2003). The parameter of
the Gaussian modifier is chosen by leave-one-out cross-validation within each training fold.

Table 1. Classification accuracy (in %) on Musk1 and Musk?2.

EMDD maxDD MI-NN TIAPR MI-SVM mi-SVM KeS

1 84.8 88.0 88.9 92.4 89.0 84.0 81.0
2 84.9 84.0 82.5 89.2 85.3 78.9 85.5
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As the musk data set is rather small, for other parameters better results can be achieved.
For example, choosing a parameter of 107>+ leads to an accuracy of 86.4% on Musk1 and
88.0% on Musk?2.

It has been mentioned in the literature that multi-instance problems capture most of
the complexity of relational learning problems (De Raedt, 1998). This experiment demon-
strates that our general approach is competitive with special-purpose algorithms applied to
structured data. Furthermore, our kernel-based approach has the additional advantage that
learning problems other than simple classification can also be tackled by simply changing
to a different kernel method.

6.3. Structure elucidation from spectroscopic analyses

The problem of diterpene structure elucidation from '*C nuclear magnetic resonance (NMR)
spectra was introduced to the machine learning community in DZeroski et al. (1998). There,
different algorithms were compared on a data set of 1503 diterpene '*C NMR spectra.
Diterpenes are compounds made up from 4 isoprene units and are thus terpenes—the general
term used for oligomers of isoprene. Terpenes are the major component of essential oils
found in many plants. Often these oils are biologically active or exhibit some medical
properties, most of which are due to the presence of terpenes.

NMR spectroscopy is one of the most important techniques in analytical chemistry. It
is used as a tool in the search for new pharmaceutical products to help in determining the
structure-activity relationships of biologically active compounds. Once these have been
determined, it is clear which variations of the compound do not lose the biological activity.
In NMR experiments the sample is placed in an external magnetic field and the nuclei are
excited by a pulse over a range of radio frequencies. The signal emitted by the nuclei as
they return to equilibrium with their surrounding is analysed to obtain an NMR spectrum
of radio frequencies.

In the data set considered in DZeroski et al. (1998), each spectrum is described by the
frequency and multiplicity of all peaks. Depending on the number of protons connected to
the carbon atom, the multiplicity of a peak is either a singulet (no proton), a doublet (one
proton), a triplet (two protons), or a quartet (three protons). The formal specification of the
data and the kernel is as follows:

type Spectrum = Frequency -> Multiplicity
type Frequency = Real with modifier gaussian 0.6
data Multiplicity = s | d | t | g | 0 with default 0

In addition to the multiplicities s(ingulet), d(oublet), t(riplet), and q(uartet) we introduced
also the multiplicity O and declared it as the default data constructor of the type Multi-
plicity. The abstraction Spectrum then maps every frequency (every real number)
that is not emitted by the molecule to 0 and every emitted frequency to the multiplicity of
the corresponding carbon atom.

The data set consists of 1503 spectra of diterpenes, classified into 23 different classes
according to their skeleton structure as follows (number of examples per class in brackets):
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Table 2. Classification accuracy (in %) on diterpene data.

Foil Icl Tilde Ribl KeS DeS

46.5 65.3 81.6 86.5 94.7 97.1

Trachyloban (9), Kauran (353), Beyeran (72), Atisiran (33), Ericacan (2), Gibban (13),
Pimaran (155), 6,7-seco-Kauran (9), Erythoxilan (9), Spongian(10), Cassan (12), Labdan
(448), Clerodan (356), Portulan (5), 5,10-seco-Clerodan (4), 8,9-seco-Labdan (6), and seven
classes with only one example each.

The accuracies reported in literature range up to 86.5%, achieved by RIBL (Emde
and Wettschereck, 1996). Other results were reported for FOIL (Quinlan, 1990), TILDE
(Blockeel and De Raedt, 1998), and ICL (De Raedt and Van Laer, 1995). See Table 2
for details. After including some manually constructed features, 91.2% accuracy has been
achieved by the best system—a 1-nearest neighbour classifier using a first-order distance
(RIBL).

We applied a support vector machine (see column ‘KeS’) using the above presented kernel
function to the diterpene data set without the manually constructed features and achieved
results between 94.74% and 95.48% accuracy over a range of parameters (the parameter of
the Gaussian modifier was chosen from {0.6, 0.06, 0.006} and the default C = 1 complexity
parameter of the SVM was used). We also applied a 1-nearest neighbour algorithm (see
column ‘DeS’) to this domain and achieved accuracies between 97.07% and 98.07% on the
same set of parameters. For the overview in Table 2 and for the following experiments, the
parameter of the Gaussian modifier was fixed to 0.6.

To further strengthen our results, we performed a kernel principal component analy-
sis of the diterpene data and plotted a ROC curve. Kernel principal component analysis
(Scholkopf, Smola, and Miiller, 1999) is an algorithm that finds those directions in feature
space in which the data has the highest variance. To allow for a useful illustration we re-
stricted the data to molecules with structure classes Labdan and Clerodan. Figure 1 (left)
shows the projection of molecules of these two classes onto the first two principal com-
ponents. It can be seen that already the first two principal directions separate the classes
Labdan and Clerodan quite well.

ROC curves, introduced into the machine learning community by Provost and Fawcett
(2001), are often used to investigate the performance of learning algorithms under chang-
ing conditions such as misclassification costs or class distributions. ROC analysis can be
applied to any binary classifier and illustrates the classifier’s tradeoff between correctly
classified positive examples (y-axis) and incorrectly classified negative examples (x-axis).
The lower left corner corresponds to an algorithm classifying all examples as negative and
the upper right corner corresponds to an algorithm classifying all examples as positive. The
area under the ROC curve is a measure of how well an algorithm behaves under chang-
ing conditions. Figure 1 (right) shows the ROC curve obtained for a 1-nearest neighbour
algorithm on Labdan and Clerodan diterpenes in a leave-one-out experiment. The area un-
der this curve is 0.9998. This is very close to the optimal area under the ROC curve of
1.0.
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Figure 1. Left: Projection of the diterpenes with structure type Labdan and Clerodan onto their first two principal
directions. Right: ROC curve for the binary classification problem of separating Labdan and Clerodan diterpenes
using a 1-nearest neighbour algorithm.

6.4. Spatial clustering

The problem of clustering spatially close and thematically similar data points occurs, for
example, when given demographic data about households in a city and trying to optimise
facility locations given this demographic data. The location planning algorithms can usually
only deal with a fairly small number of customers (less than 1000) and even for small cities
the number of households easily exceeds 10,000. Therefore, several households have to
be aggregated so that as little information as possible is lost. Thus the households that
are aggregated have to be spatially close (so that little geographic information is lost) and
similar in their demographic description (so that little demographic information is lost).
The problem is to automatically find such an aggregation using an unsupervised learning
algorithm.

Due to the difficulty in obtaining suitable data, we investigated this problem on a
slightly smaller scale. The demographic data was already aggregated for data protection
and anonymity reasons such that information is given not on a household level but on a
(part of) street level. The data set describes roughly 500 points in a small German city by its
geographic coordinates and 76 statistics, e.g., the number of people above or below certain
age levels, the number of people above or below certain income levels, and the number of
males or females living in a small area around the data point.

The simplest way to represent these data is a feature vector with 78 entries (2 for the x, y
coordinates and 76 for the statistics). Drawing the results of a simple k-means algorithm on
this representation clearly shows that although the spatial coordinates are taken into account,
spatially compact clusters cannot be achieved. This is due to the fact that the semantics of
the coordinates and the demographic statistics are different.

A better representation along with the kernel specification is as follows.
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Figure 2. Plots of households spatially clustered with different parameters (left: 0.1, right: 0.02). Spatial com-
pactness increases as the parameter is decreased.

type Neighbourhood = Coords -> Statistics
type Coords=(Real,Real) with modifier gaussian 0.1
type Statistics = (Real,Real,...,Real)

with modifier normalised

Here, the type Coords is used for the geographical coordinates and the type Statis-
tics is used for the statistics of a neighbourhood of households. A neighbourhood is
represented by an abstraction of type Coords -> Statistics that maps the coordi-
nates of that neighbourhood to its statistics and the coordinates of all other neighbourhoods
to the default term (0,0, ..., 0). Thus each abstraction is a lookup table with a single
entry corresponding to the neighbourhood represented by the abstraction. These abstrac-
tions capture the functional dependency that the coordinates determine the statistics of the
neighbourhoods. It also means that the kernel on neighbourhoods multiplies the kernel on
the coordinates with the kernel on the statistics. (See Part 2 of Definition 4.1.)

It is worth noting that this use of abstractions is a convenient method for getting back-
ground knowledge into a kernel. Generally, each abstraction has a single entry consisting
of an individual as the item and the features of that individual as the value of that item. The
features, represented as a feature vector of booleans, for example, would be constructed
from the background knowledge for the application. In the application of this section, the
individuals are the coordinates of neighbourhoods and the features are their statistics.

Using this representation and applying a version of the k-means algorithm® with the
given kernel shows that the clusters are spatially compact (compactness depending on the
choice of the kernel parameter). Two sample illustrations can be found in figure 2. Instances
belonging to the same cluster are represented by the same symbol.*

7. Conclusions and future work

Bringing together kernel methods and structured data is an important direction for practical
machine learning research. This requires defining a positive definite kernel on structured
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data and thus embedding structured data into a linear space. In this paper we defined such
a kernel, proved that it is positive definite, and showed that it works well in practice.

Our kernel definition follows a ‘syntax-driven’ approach, making use of a knowledge
representation formalism that is able to accurately and naturally model the underlying
semantics of structured data. It is based on the principles of using a typed syntax and rep-
resenting individuals as (closed) terms. The typed syntax is important for pruning search
spaces and for modelling as closely as possible the semantics of the data in a human- and
machine-readable form. The individuals-as-terms representation is a simple and natural
generalisation of the attribute-value representation and collects all information about an in-
dividual in a single term. In spite of this simplicity, the knowledge representation formalism
is still powerful enough to accurately model highly structured data.

The definition of our kernel, along with the example applications presented above, show
that structured data can reasonably be embedded in linear spaces. The main theoretical
contribution of this paper is the proof that the kernel is positive definite on all basic terms
(of the same type). The appropriateness of the kernel has been verified on some real-
world domains. For instance, on the diterpene data set a support vector machine and a
1-nearest neighbour classifier using a kernel function from the framework presented in this
paper improved over the best accuracy published in literature by more than 8% and 10%,
respectively. This corresponds to making less than a third of the errors of the best algorithm
applied to this problem so far.

Future work will consider both extending and specialising the kernel function presented
above. Extending the kernel definition means, for example, considering more general ab-
stractions than the finite lookup tables considered in this paper. Specialising the framework
implies the definition of specialised kernel functions for some type constructors that have
special semantics. For instance, sequences occur in text mining, in bioinformatics, in speech
processing, etc., but they have a different semantics in each of these domains. Rather than a
single default kernel handling sequences, we need specialised kernel definitions for each of
these domains. We believe that the approach we followed in this paper, using a declarative
language for kernel specifications, provides a useful framework for defining domain-specific
kernels.

Appendix A: Proof of Proposition 4.2

Letk : B x B — R be the function defined in Definition 4.1. We will show that for each
o € G&¢, the following holds:

k is a positive definite kernel on B,, if the kernels «7 on the data constructors associated
with the same type constructor 7" are positive definite.

Proof: First the symmetry of k on each B, is established. For each m € N, let SYM(m)
be the property:

For all« € G€ and s, t € B, N*B,,, it follows that k(s, 1) = k(¢, s).
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It is shown by induction that SYM(m) holds, for all m € N. The symmetry of k on each B,
follows immediately from this since, given s, t € B, there exists an m such that s, t € B,,
(because B = J,,cy B and B,, € B4, forall m € N).

First it is shown that SYM(0) holds. In this case, s and ¢ are data constructors of arity 0
associated with the same type constructor 7', say. By definition, k(s, ) = «7(s, t) and the
result follows because 7 is symmetric.

Now assume that SYM(m) holds. It is proved that SYM(m + 1) also holds. Thus suppose
that « € &¢ and s, € B, N B,4;. It has to be shown that k(s,t) = k(t,s). There
are three cases to consider corresponding to o having the form T «; ..., § — y, or
o) X -+ X oy In each case, it is easy to see from the definition of k and the induction
hypothesis that k(s, r) = k(t, s). This completes the proof that k is symmetric on each
By.

For the remaining part of the proof, for each m € N, let PD(m) be the property:

Foralln € Z*,a € &°,11,... .1, € By N B, and ¢, ..., ¢, € R, it follows that
Zi,jé{l ..... n} cicjk(t;, t;) = 0.

It is shown by induction that PD(m) holds, for all m € N. The remaining condition for
positive definiteness follows immediately from this since, given #,... ,, € ‘B, there
exists an m such that ¢, ... ,t, € B,,.

First it is shown that PD(0) holds. In this case, each #; is a data constructor of arity 0
associated with the same type constructor 7', say. By definition, k(t;, t;) = «r(t;, t;), for
each i and j, and the result follows since «7 is assumed to be positive definite.

Now assume that PD(m) holds. It is proved that PD(m + 1) also holds. Thus suppose
thatn € ZT, a0 € &%, 11, ... ,t, € B NB,11,andcy, ..., c, € R. It has to be shown that
Zi,je{l’___’n} cicjk(t;, t;) = 0. There are three cases to consider.

1. Leta =T « ...ax. Suppose thatt; = C; tim A

lmi), where m; > 0, fori =1,...,n.
LetC={C,|i=1,...,n}. Then

Z CiCjk(ti,tj) = Z CiCjKT(Ci,Cj)

ijell,... .n} ijell,... .}

+ cej Yy k(1))

i,jell,....n} 1e{l,... ,arity(C})}
Ci=C;

Now

Z cicikr(Ci, C;) =0

i,je(l,... .n}



KERNELS AND DISTANCES FOR STRUCTURED DATA 229

using the fact that x7 is a positive definite kernel on the set of data constructors associated
with 7. Also

Y o Y KE.Y)

i,je{l,...,n} Le{l,..., arity(Ci)}

=y > > k(1))

CeC i,je{l,..n}) l€{l,...,arity(C)}

Ci=Cj=C
S k()

CeC Iefl,...,arity(C)} i,j

209

by the induction hypothesis.
2. Leta = B — y.Then

Z cicik(t;, t;)

= E CiCj E k(V(t; u), V(tj v)) - k(u, v)
i,je{l,...,n} uesupp(t;)
vesupp(t;)

D cicik(V (g w), V(t; ) - k(u, v)

i,j€{l,....n} uesupp(t;)
vesupp(t;)

= Z C,‘Cjk(V(Z‘i u), V(fj v)) - k(u, v)

(@@.u),(j,v)e
{(k,w) | k=1,..., n and wesupp(t;)}

> 0.

Il
N

For the last step, we proceed as follows. By the induction hypothesis, k is positive definite
on both Bg N B, and B, N B,,. Hence the function

h: ((%ﬂ N %m) X (%y N %m)) X ((%ﬂ N %m) X (%y N %m)) - R
defined by
h((u, y), (v, 2)) = k(u, v) - k(y, 2)

is positive definite, since % is a tensor product of positive definite kernels (Scholkopf
and Smola, 2002). Now consider the set

{u, Vt; ) |i=1,...,nand u € supp(t;)}
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of points in (Bg N B,,) x (B, N*B,,) and the corresponding set of constants
{ciuli=1,... ,nand u € supp(t;)},

where ¢;, = ¢;, foralli = 1,... ,nand u € supp(t;).
3. Leta = a1 X --- X a,. Suppose that t; = @, ... ,ti(m)), fori =1,...,n. Then

i

Z C[Cjk(ll',lj) = Z }Cicj<zk(ti(l)’t;l))>

ijell,..n) ijell, ..., =1

> ack(r. )

=1 ije{l,..n}

I
M=

by the induction hypothesis.
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Notes

1. This could be read as a x Lista — List a.

2. Actually, KeS has been evaluated using leave-ten-out cross-validation. However, as the number of instances in
both cases is roughly 100, ten-fold and leave-ten-out cross-validation are equivalent for all practical purposes.

3. Note that performing k-means in feature space requires some modifications of the algorithm. A description is
beyond the scope of this paper.

4. Coloured illustrations with other parameters can be found at http://www.ais.fraunhofer.de/
~thomasg/SpatialClustering/
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