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Abstract. Partitioning a data set of attributed graphs into clusters arises in different application areas of structural
pattern recognition and computer vision. Despite its importance, graph clustering is currently an underdeveloped
research area in machine learning due to the lack of theoretical analysis and the high computational cost of
measuring structural proximities. To address the first issue, we introduce the concept of metric graph spaces that
enables central (or center-based) clustering algorithms to be applied to the domain of attributed graphs. The key
idea is to embed attributed graphs into Euclidean space without loss of structural information. In addressing the
second issue of computational complexity, we propose a neural network solution of the K -means algorithm for
structures (KMS). As a distinguishing feature to improve the computational time, the proposed algorithm classifies
the data graphs according to the principle of elimination of competition where the input graph is assigned to the
winning model of the competition. In experiments we investigate the behavior and performance of the neural KMS
algorithm.

Keywords: attributed graphs, graph matching, K -means clustering, weighted maximum clique, Hopfield net-
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1. Introduction

In most areas of pattern recognition it is common practice to represent real world objects in
terms of static data structures as fixed dimensional feature vectors in an Euclidean vector
space. This kind of representation is convenient because the Euclidean space offers pow-
erful analytical tools for data analysis usually not available in other representations. Such
a representation, however, is too limited for many relevant application areas including do-
mains such as bioinformatics, chemistry, natural language processing, network analysis or
text mining, for example. Embedding data of structured domains into a fixed-dimensional
vector space either results in a loss of structural information or in high dimensional and
bulky vectors. A more versatile and expressive tool for representing structured data are
attributed graphs.

Attributed graphs are an underdeveloped research area due to (1) missing powerful an-
alytical techniques for data analysis and (2) high computational complexity when mea-
suring structural similarities between graphs. Referring to the former problem, it is not
clear how to embed dynamic data structures like graphs into a vector space without loss of
structural information. Therefore it is not straightforward to provide well defined char-
acterizations of basic concepts like the mean or variance of a set of graphs. The lat-
ter problem of measuring the structural similarity is more generally referred to as the
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graph matching problem. It is well known that the graph matching problem is NP-complete
(Garey & Johnson, 1979).

Thus, clustering large set of graphs is still widely unexplored and one of the most chal-
lenging problems in structural pattern recognition. Investigations on clustering of graphs
has been recently revitalized taking into account their practical importance (Günter &
Bunke, 2002a, 2002b; Hagenbuchner, Sperduti, & Tsoi, 2003; Lozano & Escolano, 2003a,
2003b; Luo et al., 2001a, 2001b; Luo, Wilson, & Hancock, 2003; Sanfeliu, Serratosa,
& Alquezar, 2002). Examples of graph clustering problems are the organization of large
structural databases (Sengupta & Boyer, 1995), discovering of shape categories (Luo et al.,
2001a) and the view structure of objects (Luo, Wilson, & Hancock, 2003), or in the construc-
tion of nearest neighbor classifiers for predicting the mutagenicity of aromatic compounds
(Schädler & Wysotzki, 1999). To illustrate the practical importance of clustering graphs
in more detail, we consider a simple example from computer vision, where it is common
practice to represent rotation- and translation invariant high level descriptions of images in
terms of attributed graphs. At a high description level, vertices may describe elementary
objects like houses, trees, or persons, and edges represent the spatial relationship of the cor-
responding objects. Usually noise occurs in images having the same semantic content due to
different light conditions and view angles. Unsupervised methods for learning the underly-
ing class structure on images represented in terms of attributed graph is of increasing impor-
tance in order to structure datasets with respect to semantic content or solve classification
tasks.

The lack of analytical methods in the domain of graphs led to the formulation of
clustering problem as pairwise clustering (Hofmann & Buhmann, 1997). This approach
partitions a set of graphs into clusters using pairwise proximity values. Since pairwise
proximities can be defined in any abstract space equipped with a proximity measure, this
procedure provides a bridge between standard and structural pattern recognition methods
(Goldfarb et al., 1995).

Once a set of pairwise distances between graphs are supplied, different directions to
extract the hidden cluster structure from a given data set have been pursued. Schädler
and Wysotzki applied a hierarchical cluster algorithm for grouping a dataset of chemical
compounds (Schädler & Wysotzki, 1999). Sanfeliu et al. also used hierarchical clustering of
attributed graphs for 3D object recognition (Sanfeliu, Serratosa, & Alquezar, 2000, 2002).
Hancock and his co-workers used an EM-style algorithm to discover shape categories (Luo
et al., 2001a) and to find view structures of polyhedral objects (Luo et al., 2001b). Adopting
the pairwise clustering approach, however, involves measuring the pairwise distances of the
graphs. Provided that the data set consists of N samples, pairwise clustering requires the
solution of O(N 2) NP-complete graph matching problems which might be intractable for
large data sets.

A simple way around the high computational cost of determining pairwise structural
distance values is to map the graphs to vectors in Euclidean space. After embedding the
graphs into Euclidean space, a whole plethora of clustering methods can be utilized. In Luo,
Wilson, and Hancock (2003), transformed graphs to vectors using spectral properties. The
resulting vectors were embedded in a pattern space for cluster analysis using multidimen-
sional scaling and principal as well as independent component analysis. Hagenbuchner,



CENTRAL CLUSTERING OF ATTRIBUTED GRAPHS 171

Sperduti, and Tsoi formulated self-organizing feature maps for directed acyclic graphs
(DAG) (Hagenbuchner, Sperduti, & Tsoi, 2003). The essential feature of their approach is to
encode DAGs into vectors using complex recursive neurons. Transforming graphs to pattern
vectors comes with a loss of structural information. For this reason it is not straightfor-
ward to map graphs to vectors maintaining the underlying cluster structure of the sample
graphs.

Probably one major reason for limited progress in clustering structured data inheres
in the elusiveness of applying conventional central clustering methods. A first step to
remove this barrier was initiated by Bunke and his collaborators. Jiang, Münger, and
Bunke (1999, 2001) introduced the fundamental concepts of a weighted mean of pairs
of graphs and a median graph.1 Furthermore Bunke, Münger, and Jiang (1999) proposed
a genetic algorithm for searching a median graph. Günter and Bunke applied the concept
of a weighted mean to cluster graphs using self-organizing feature maps (Günter & Bunke,
2002a, 2002b). Lozano and Escolano implicitly used the concept of a a weighted mean of a
set of graphs in their asymmetric clustering model for attributed graphs (Lozano & Escolano,
2003a, 2003b). Another direction to utilize central clustering for graphs is by means of a
weighted minimum common supergraph as proposed by Bunke et al. (2003). Nevertheless,
the sample mean as well as the weighted minimum common supergraph of a set of sample
graphs are not uniquely determined. In addition, central clustering algorithms applied on
graphs currently require K solutions of NP-complete graph matching problems each time
an input graph is presented to the clustering algorithm where K is the number of model
graphs.

This paper is concerned with both adverse effects of graphical representation in the context
of central clustering, the lack of a cohesive mathematical framework for data analysis and
the high computational complexity of the graph matching problem. In the first part of this
contribution, we introduce the theoretical framework of a metric graph space to extend
central clustering from the domain of real valued feature vectors to the domain of attributed
graphs using the K -means algorithm as our guiding example. To facilitate K -means for
structures (KMS) we adapt the two principal constituents of that algorithm, both based
on metric properties of real valued vector spaces: We provide and theoretically justify a
mechanism to (1) determine the optimal reference model of a given input graph with respect
to a distortion measure, and (2) adjust the models according to a learning rule. The concept
of metric graph space allows us to extend other central clustering methods to the domain
of graphs, like, for example, fuzzy clustering (Bezdek, 1981; Ruspini, 1969), competitive
learning (Ballard, Gardner, & Srinivas, 1987; Lippman, 1987), adaptive resonance theory
(Carpenter & Grossberg, 1987a, 1987b, 1988), or self-organizing feature maps (Kohonen,
1982). Moreover the concept of metric graph spaces can also be applied to extend supervised
neural learning machines from the domain of feature vectors to the domain of graphs (Jain
& Wysotzki, 2003).

In the second part we propose a neural network solution to the KMS algorithm. The
proposed approach avoids explicit calculation of structural distortion values to assign an
input graph to its optimal reference model. Classifying the data graphs to their optimal
reference models follows the principle of elimination of competition. The competitors are
the model graphs and the winning model of the competition is considered to be the optimal
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reference model of the current input graph. Competition among the models is implemented
by an extended winner-takes-all (X-WTA) network. Following this approach only one instead
of K solutions ofNP-complete graph matching problems is required each time an input graph
is presented to the neural KMS algorithm.

The paper is organized as follows: Section 2 introduces graph theoretic concepts and de-
fines terminology used throughout this paper. In Section 3 we review the K -means algorithm
for real valued feature vectors. Section 4 proposes a neural KMS algorithm. Experimental
results are presented and discussed in Section 5. Finally, Section 6 summarizes this contri-
bution and gives an outlook for further research.

2. Terminology

Basic notations

Let S be a set. By S [2] we denote the set of all ordered tuples (i, j) ∈ S2 with i �= j . By R

we denote the set of real numbers and by R+ the subset of all non-negative real numbers.
Vectors x ∈ R

n are denoted by bold faced lower case letters and n × m real valued matrices
X are denoted by upper case letters. We write xt and Xt for the transpose of a vector x and
a matrix X , respectively. The set of all n × m-matrices A = (ai j ) with entries ai j from a set
S is denoted by Mn×m(S).

Linear algebra

An inner product space over the field R is a vector space over R which is equipped with an
inner product.2

Let V be an inner product space over R of dimension n. A well known result from linear
algebra is that a matrix A ∈ Mn×n(R) represents an inner product if and only if it is positive
definite and symmetric. Let A be the matrix representing the inner product 〈 , 〉. Then we
have

〈x, y〉 = xt Ay

for all x, y ∈ V .
A matrix A ∈ Mn×n(R) is orthogonal if At A = AAt = In where In ∈ Mn×n(R) denotes

the identity matrix. A matrix A ∈ Mn×n(R) is orthogonal if and only if 〈Ax, Ay〉 = 〈x, y〉
for all x, y ∈ V . Thus an orthogonal matrix does not only preserve orthogonality but also
length. An example of orthogonal matrices are permutation matrices. A permutation matrix
is a matrix P = (πi j ) ∈ Mn×n({0, 1}) with

∑
i

πi j =
∑

j

πi j = 1.
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Let V be an inner product space over R with inner product 〈 , 〉. Then the direct sum Vm is
an inner product space over R with inner product

〈(x1, . . . , xm), (y1, . . . , ym)〉 = 〈x1, y1〉 + · · · + 〈xm, ym〉. (1)

Note, that a vector space Vm can be equipped with other inner products, which are not
induced by the inner product 〈 , 〉 of V as in (1).

Attributed graphs

Let A be a set of vertex and edge attributes containing a distinguished null attribute 0 ∈ A.
Here we assume that the attribute set A is an inner product space over R, for example
A = R

m . The null attribute of A is its zero element.
An attributed graph is a tuple X = (V, µ) consisting of a finite set V �= ∅ and a function

µ : V 2 → A. The elements of V are the vertices of the graph X and the pairs (i, j) ∈ V [2]

with µ(i, j) �= 0 are its edges. The function µ is the attribute function of X . An undirected
attributed graph is an attributed graph X = (V, µ) with µ(i, j) = µ( j, i) for all pairs
(i, j) ∈ V [2]. A weighted graph is an attributed graph with attributes from A = R. A
weighted graph X is a binary graph, if µ(V 2) = {0, 1}.

By GA we denote the set of attributed graphs with attributes from A. For notational con-
venience we sometimes drop the subscript A and write G instead of GA. By Gn we denote
the set of all attributed graphs with m ≤ n vertices. The vertex set of a graph X is referred
to as V (X ), its edge set as E(X ), and its attribute function as µX .

Vertex and edge attributes are elements of the same attribute set A, for notational con-
venience. If it is required to explicitly distinguish between vertex and edge attributes, the
attribute set A can be decomposed into two disjoint subsets.

We use a labeling of the vertex set V in order to deal with it conveniently. A labeling of
V is a bijection l : V → {1, . . . , |V |} which identifies each element of V with a certain
number between 1 and |V |. The number of vertices of a graph X is its order, written as |X |.

The (attributed) adjacency matrix of an attributed graph X of order n is a matrix A(X ) =
(xi j ) ∈ Mn×n(A) with entries xi j = µX (i, j).

A clique of an attributed graph X is a subset C ⊆ V (X ) with C [2] ⊆ E(X ). A clique C of
X is called maximal, if C is not a proper subset of any other clique of X . A maximum clique
of X is a clique with maximal number of vertices. Clearly, a maximum clique is maximal.
The converse statement, however, does not hold in general.

Let X be a weighted graph with adjacency matrix A(X ) = (xi j ). Then the weight ω(C)
of a clique C is defined by

ω(C) =
∑

i, j∈C

xi j

A maximum weighted clique is a clique with maximum weight.
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Let X and Y be two attributed graphs with adjacency matrices A(X ) = (xi j ) and
A(Y ) = (yi j ). We call the graphs X and Y isomorphic, in symbols X 	 Y , if there exists a
bijection

φ : V (X ) → V (Y ), i 
→ iφ

such that xi j = yiφ jφ for all i, j ∈ V (X ). Such a mapping φ is called isomorphism between
X and Y .

A permutation acting on X is a bijection π : V (X ) → V (X ) from V (X ) onto itself. The
image graph of a permutation π acting on X is denoted by Xπ . The setSX of all permutations
acting on X is called the symmetric group of X . A permutation π acting on X corresponds
to a relabeling of X and thus yields a reordering of its adjacency matrix. In general we have
A(X ) �= A(Xπ ). Let |X | = n. Since we assume a labeling V (X ) = {1, . . . , n}, we write Sn

instead of SX .

3. Central clustering of feature vectors

Suppose that we are given a set X = {x1, . . . , xN} of N samples drawn from a feature
space F ⊆ R

d . The basic task of central clustering is to find K cluster centers or models
Y = {y1, . . . , yK } ⊆ F such that a cost function also known as average distortion

E(M,Y,X ) = 1

N

K∑
j=1

N∑
i=1

mi jδ(xi , y j ) (2)

is minimized with respect to a given distortion measure δ. The matrix M = (mi j ) ∈
MN×K ({0, 1}) is a binary membership matrix with the constraints

K∑
j=1

mi j = 1 (3)

for all i = 1, . . . , N . The constraints assure that each data point is represented by a unique
model. Fuzzy clustering or topology preserving clustering methods like self-organizing
feature maps relax the hard constraints on the membership matrix M and demand entries
mi j in the range of [0, 1] subject to (3).

The choice of an appropriate distortion measure δ depends on the particular application
domain. A common choice of δ for K -means clustering is of the form

δ(xi , y j ) = ‖xi − y j‖2.

Alternatively, the clustering task can be formulated as a maximization task where the dis-
tortion δ is given by a similarity measure.

The cost function can be minimized by various deterministic or stochastic methods from
combinatorial and continuous optimization. We distinguish between two iterative methods
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Figure 1. Outline of the K -means algorithm.

of cluster optimization. Given a data point xi , hard optimizers only adjust the cluster center
yi∗ nearest to xi with respect to the distortion measure δ. Examples for hard optimizers are the
batch and online version of the K -means algorithm or simple competitive learning (Palmer
Hertz, & Krogh, 1991). The second approach to minimize the clustering cost function,
referred to as soft optimizers, iteratively adjust all cluster centers y j for which the current
assignment mi j > 0. This class of optimizers include, for example, self-organizing feature
maps or probabilistic partitioning algorithms.

To illustrate the main ideas of our exposition, we simply choose the K -Means algo-
rithm as a representative hard optimizer for the clustering cost function (2) as outlined in
figure 1.

4. Central clustering of attributed graphs

Clustering N structured objects which are represented by attributed graphs X = {X1, . . . ,

X M} ⊆ G amounts to partition the feature space G such that the average distortion of data
graphs to their cluster centers Y = {Y1, . . . , YK } ⊆ G is minimized. As in Section 3, the
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average distortion to be minimized is of the form

E(M,Y,X ) = 1

N

K∑
j=1

N∑
i=1

mi jδ(Xi , Y j ) (4)

where δ measures the structural distortion induced by the representation Yi∗ of data graph
Xi . This section extends the K -means algorithm from the domain of real valued feature
vectors to the domain of attributed graphs.

To utilize the K -means algorithm for structured objects two basic questions at issue must
be addressed:

1. How can we adjust a cluster center in the domain of attributed graphs as in Step (2c) of
the K -means algorithm. Section 4.1 is concerned with this question at issue.

2. The second question at issue arises from a practical point of view. One epoch (cycle
through the training set) of the K -means algorithm requires the computation of N · K
distortions. The time complexity of determining structural distortions of attributed graphs
is NP-complete. Also approximating structural distortions is a computational intensive
procedure. Thus, even though we know how to adjust the cluster centers, applying the
K -means algorithm in an unmodified form to attributed graphs might be intractable in a
practical setting. Section 4.2 suggest a solution to this issue.

4.1. Cluster optimization in a metric graph space

In Section 4.1.1 we define a metric graph space to establish a theoretical foundation for
central clustering. A metric graph space adopts properties of metric vector space required
for adjusting the cluster centers to minimize the cost function (4). For this purpose we
embed the domain of graphs X ∈ Gn into an inner product space An·n by means of their
adjacency matrices A(X ) ∈ Mn×n(A) without loss of structural information. A degenerated
form of an inner product is then defined on the adjacency matrices taking into account
the special numbering of the vertex sets. All other necessary requisites to apply cluster
optimization algorithms can be derived from the inner product under consideration. Note that
the theoretical foundation given in Section 4.1.1 is independent from the particular cluster
optimization algorithm. Section 4.1.2 exemplary illustrates how the properties of a metric
graph space can be utilized to formulate a generic k-means algorithm for structures (KMS).

4.1.1. Metric graph spaces. The high computational effort in measuring the proximity of
two given graphs arises from the large number of possible combinatorial arrangements of
the vertices to represent the same abstract graph. Thus any reasonable proximity measure
in the domain of graphs is independent of the particular labeling and rather evaluates
either common or distinct structural properties. In mathematical terms, a proximity measure
ξ : G × G → R should satisfy

X 	 X ′ ⇒ ξ (X, Y ) = ξ (X ′, Y ) (5)

for all X , X ′, Y ∈ G.
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In order to adopt metric and arithmetic properties of real valued vectors for graphs, such
that (5) is satisfied, we embed the domain of graphs of order n into the inner product space
space An·n by means of their adjacency matrices. Addition, scalar multiplication, the scalar
product, and the Euclidean distance of graphs are then defined in terms of their adjacency
matrices taking into account the particular labeling of the vertices.

We start our treatment with some technical conventions and definitions:

1. In order to facilitate arithmetic operations on graphs by means of their adjacency matrices
we align graphs of different order to graphs of equal order as follows: Graphs X ∈ Gn

of order |X | = p < n are aligned to a graph X ′ ∈ Gn by inserting q = n − p
vertices of weight zero such that the adjacency matrix A(X ′) ∈ Mn×n(A) of X ′ is of the
form

A(X ′) =
(

A(X ) 0pq

0qp 0qq

)

where A(X ) is the adjacency matrix of X and 0rs ∈ Mr×s(A) is a matrix with identical
entries 0 ∈ A. Note, that a structure preserving alignment of graphs with respect to a
fixed order n does not confine the following considerations to graphs of bounded order.
It is rather a pure auxiliary construct to simplify mathematical technicalities.

2. Let A = (ai j ), B = (bi j ) ∈ Mn×n(A) and λ ∈ R. Then addition and scalar multiplication
of matrices are defined component-wise

(ai j ) + (bi j ) = (ai j + bi j )

λ · (ai j ) = (λ · ai j )

3. Let A, B ∈ Mn×n(A). The inner product 〈 , 〉 associated with An·n induces an inner
product on Mn×n(A) by

〈A, B〉 = 〈vec(A), vec(B)〉

where vec(A), vec(B) ∈ An·n are the vectors obtained by concatenating the rows of A
and B, respectively.

4. Let ‖ · ‖ be a norm defined on An·n . Then ‖A‖ = ‖vec(A)‖ is a norm on Mn×n(A).
5. Let X , Y ∈ Gn be attributed graphs and λ ∈ R. Then

X + Y = A(X ) + A(Y )

λ · X = λ · A(X )

Note, that in general X + Y �= X ′ + Y for isomorphic graphs X 	 X ′. In this general
form, the sum of two graphs is a pure syntactical construct without any graph theoretical
meaning.
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Fundamental for the following considerations and derivations is the Schur-Hadamard
inner product of pairs of graphs in Gn . The concept of a Schur-Hadamard inner product
of graphs can be regarded as a degenerated counterpart of the concept of an inner product
defined on vector spaces.

Definition 4.1 (Schur-Hadamard inner product on Gn). Let An·n be an inner product space
over R with associated inner product 〈 , 〉. Then

σ : Gn × Gn → R, (X, Y ) 
→ max
π∈Sn

〈A(Xπ ), A(Y )〉

is the Schur-Hadamard inner product induced by 〈 , 〉.

From the definition of the SH inner product directly follows that

σ (X, Y ) ≥ 〈A(Xπ ), A(Y )〉 (6)

for all π ∈ Sn . Permutations π ∈ Sn for which equality holds in (6) are the embeddings
from X into Y . By I(X, Y ) we denote the set of all embeddings from X into Y .

The SH inner product allows a geometrical interpretation. Any graph can be embedded
in the inner product space An·n as a set of vectors VX = {vec(A(Xπ )) : π ∈ Sn}. The cardi-
nality of VX depends on the number of automorphisms, that is the number of permutations
π ∈ Sn which act invariantly on the adjacency matrix of X . The SH inner product of X and
Y is the inner product of two vectors x ∈ VX and y ∈ VY with smallest enclosing angle.

The following result lists some properties of the SH inner product, which will be used
implicitly throughout this section.

Proposition 4.1. Let σ be a Schur-Hadamard inner product defined on Gn. Then the
following properties are satisfied for all X, Y, Z ∈ Gn

SH 1. σ (X, X ) = 〈A(X ), A(X )〉 ≥ 0
SH 2. σ (X, X ) = 0 ⇔ A(X ) = 0n,n

SH 3. σ (X, Y ) = σ (Y, X )
SH 4. σ (λ · X, Y ) = λ · σ (X, Y ) for all λ ∈ R+
SH 5. σ (X + Y, Z ) ≤ σ (X, Z ) + σ (Y, Z )

Proof: (SH 1): Let π ∈ I(X, X ) be an embedding. Then

σ (X, X ) = 〈A(Xπ ), A(X )〉
= ‖A(Xπ )‖ · ‖A(X )‖ · cos α

= 〈A(X ), A(X )〉 · cos α

≤ 〈A(X ), A(X )〉

where α is the angle between vec(A(Xπ )) and vec(A(X )). The equation in the third
line follows from ‖A(X )‖ = ‖A(Xπ )‖ for all π ∈ Sn . Since π is an embedding, we
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have 〈A(Xπ ), A(X )〉 ≥ 〈A(X ), A(X )〉. Combining both inequalities yields σ (X, X ) =
〈A(X ), A(X )〉. This together with 〈A(X ), A(X )〉 ≥ 0 proves property (SH 1).

(SH 2): Follows directly from the positive definiteness of 〈 , 〉.
(SH 3): Assume that π ∈ I(X, Y ) is an embedding from X into Y . Then by definition of

the Schur-Hadamard-inner product induced by 〈 , 〉 we have

σ (X, Y ) = 〈A(Xπ ), A(Y )〉

Since π ∈ Sn there exists a permutation matrix P ∈ Mn·n×n·n({0, 1}), such that

A(Xπ ) = Pt A(X )P

Permutation matrices are orthogonal and preserve length. Repeated application of the prop-
erties of an orthogonal matrix yields

σ (X, Y ) = 〈Pt A(X )P, A(Y )〉
= 〈P(Pt A(X )P), P A(Y )〉
= 〈(A(X )P)Pt , (P A(Y ))Pt 〉
= 〈A(X ), P A(Y )Pt 〉 = 〈P A(Y )Pt , A(X )〉

where the last equation follows from the symmetry of the inner product. From P A(Y )Pt =
A(Y φ) with φ = π−1 ∈ Sn follows that σ (X, Y ) ≤ σ (Y, X ). A similar argumentation
shows σ (Y, X ) ≤ σ (X, Y ). Combining both inequalities yields property (SH 3).

(SH 4): Let π ∈ I(X, Y ) be an embedding and λ ∈ R+. It is sufficient to show that
π ∈ I(λ · X, Y ). Since π ∈ I(X, Y ) is an embedding, it maximizes the Schur-Hadamard
inner product of adjacency matrices

〈A(Xπ ), A(Y )〉 = max
φ∈Sn

〈A(Xφ), A(Y )〉 .

From λ ≥ 0 and

λ · max
φ∈Sn

〈A(Xφ), A(Y )〉 = max
φ∈Sn

〈λ · A(Xφ), A(Y )〉

follows π ∈ I(λ · X, Y ).
(SH 5): Let π ∈ I(X + Y, Z ), φ ∈ I(X, Z ), and ψ ∈ I(Y, Z ) be embeddings into Z .

Then

σ (X + Y, Z ) = 〈A((X + Y )π ), A(Z )〉 = 〈A(Xπ ) + A(Y π ), A(Z )〉
= 〈A(Xπ ), A(Z )〉 + 〈A(Y π ), A(Z )〉
≤ 〈A(Xφ), A(Z )〉 + 〈A(Y ψ ), A(Z )〉 = σ (X, Z ) + σ (Y, Z ) .

�
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The SH inner product gives rise to the Euclidean length or norm of an attributed graph
X

‖X‖ =
√

σ (X, X ).

According to (SH 1) the length of a graph X can simply be computed by taking the square
root of the inner product 〈A(X ), A(X )〉. Although the SH inner product is in fact not an
inner product, the norm of an attributed graph induces a metric on Gn in the obvious
way.

Theorem 4.1. Let ‖ ‖ be the Euclidean length on Gn. Then the mapping

δ : Gn × Gn → R, (X, Y ) 
→ min
π∈Sn

‖Xπ − Y‖

is a distance metric on Gn.

Proof: First we show that δ(X, Y ) = ‖Xπ − Y‖ if and only if π ∈ I(X, Y ). We have

δ(X, Y )2 = min
π∈Sn

‖Xπ − Y‖2

= min
π∈Sn

〈A(Xφ) − A(Y ), A(Xφ) − A(Y )〉
= min

π∈Sn

{‖X‖2 − 2〈A(Xφ), A(Y )〉 + ‖Y‖2}
= ‖X‖2 − 2 max

π∈Sn

〈A(Xφ, A(Y )〉 + ‖Y‖2

= ‖X‖2 − 2σ (X, Y ) + ‖Y‖2.

Next we prove that δ satisfies the properties of a metric. Symmetry of δ follows from the
first part of this proof together with the symmetry of σ .

Now we show that δ(X, Y ) = 0 if and only if X 	 Y . Clearly, δ(X, X ) = 0. Let
π ∈ I(X, Y ) be an embedding. From

δ(X, Y ) = ‖Xπ − Y‖ = ‖A(Xπ ) − A(Y )‖ = 0

follows A(Xπ ) = A(Y ) and therefore Xπ = Y .
Finally we show that δ satisfies the triangle inequality. Let π ∈ I(X, Y ), ψ ∈ I(Z , Y ),

and φ ∈ I(X, Zψ ) be embeddings. Since φ is not necessarily an embedding from X to Y ,
we have

δ(X, Y ) = ‖Xπ − Zψ + Zψ − Y‖
≤ ‖Xφ − Zψ + Zψ − Y‖ = ‖A(Xφ) − A(Zψ ) + A(Zψ ) − A(Y )‖.
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Applying the triangle inequality of the norm ‖.‖ defined on An·n yields

‖Xφ − Zψ + Zψ − Y‖ = ‖A(Xφ) − A(Zψ ) + A(Zψ ) − A(Y )‖
≤ ‖A(Xφ) − A(Zψ )‖ + ‖A(Zψ ) − A(Y )‖
= ‖Xφ − Zψ‖ + ‖Zψ − Y‖.

From φ ∈ I(X, Zψ ) and ψ ∈ I(Z , Y ) follows

‖Xφ − Zψ‖ + ‖Zψ − Y‖ = δ(X, Z ) + δ(Z , Y ).

Putting all together we have proven the triangle inequality. �

We call the distance metric δ defined in Theorem 4.1 Euclidean metric with respect to
σ or simply Euclidean metric. The proof of Theorem 4.1 supplies two properties of the
Euclidean metric summarized in Corollary 4.1.

Corollary 4.1. Let X, Y ∈ Gn be attributed graphs. Then
1. δ(X, Y ) = ‖Xπ − Y‖ ⇔ π ∈ I(X, Y )
2. δ(X, Y ) =

√
‖X‖2 − 2σ (X, Y ) + ‖Y‖2

Under the assumption that the graphs are normalized we can show that maximizing the SH
inner product of two given graphs is equivalent to minimizing their Euclidean distance.

Corollary 4.2. Let X, Y, Z ∈ Gn be attributed graphs with ‖Y‖ = ‖Z‖.
1. σ (X, Y ) ≥ σ (X, Z ) ⇔ δ(X, Y ) ≤ δ(X, Z )
2. 〈A(Xφ), A(Y )〉 > 〈A(Xψ ), A(Y )〉 ⇒ ‖Xφ − Y‖ < ‖Xψ − Y‖

Proof: Follows directly from the second property of Corollary 4.1. �

Next we define the weighted mean M of graphs X and Y . The weighted mean is useful to
extend central clustering methods like self-organizing feature maps. In addition it can be
used to approximate a sample mean of a set of data graphs.

Definition 4.2 (Weighted mean). Let X , Y ∈ Gn be graphs, π ∈ I(X, Y ) an embedding,
and η ∈ [0, 1] be a constant. Any graph M ∈ Gn with

M 	 ηXπ + (1 − η)Y. (7)

is a weighted mean of X and Y .

Theorem 4.2 shows that M is indeed a weighted mean of X and Y in an Euclidean
sense.
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Theorem 4.2. Let π ∈ I(X, Y ) an embedding from X into Y and M = ηXπ + (1 − η)Y
be a weighted mean of graphs X and Y . Then the following equations hold

δ(X, M) = |1 − η| · δ(X, Y )

δ(M, Y ) = |η| · δ(X, Y )

Proof: We only show the first equation. The argumentation for the second equation is
similar. First we show that π ∈ I(X, M) is an embedding from X into M . For this pur-
pose it is sufficient to show that π maximizes the inner product 〈A(Xπ ), A(M)〉. Since
M = ηXπ + (1 − η)Y we have

A(M) = ηA(Xπ ) + (1 − η)A(Y ).

This gives

〈A(Xπ ), A(M)〉 = 〈A(Xπ ), ηA(Xπ ) + (1 − η)A(Y )〉
= η · 〈A(Xπ ), A(Xπ )〉 + (1 − η) · 〈A(Xπ ), A(Y )〉.

According to (SH 1) the first term in the second line is exactly σ (Xπ , Xπ ) and thus maximal.
By assumption π is an embedding from X into Y and thus the second term is also maximal.
Since both terms are maximal, the sum is maximal. Hence π is an embedding from X into
M . Now we are able to show the first equation. We have

δ(X, M) = ‖Xπ − M‖ = ‖Xπ − (ηXπ + (1 − η)Y )‖
= |1 − η| · ‖Xπ − Y‖ = |1 − η| · δ(X, Y ).

�

Note that a weighted mean of two graphs is in general not uniquely determined. Next
we adopt the notion of sample mean for attributed graphs. This concept is useful to for-
mulate central clustering algorithms like K -means. The sample mean of a set of vectors
in an Euclidean vector space can be alternatively expressed in terms of the Euclidean
distance as the vector having the smallest sum of distances over the data set. We use
this equivalent definition to define a sample mean of attributed graphs. For that purpose
let

E : Gn → R, Y 
→
N∑

i=1

δ(Xi , Y ). (8)

denote the function measuring the total distortion between a given attributed graph Y and
the samples Xi with respect to δ.
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Definition 4.3 (Sample mean). A sample mean of N graphs X1, . . . , X N ∈ Gn is a graph
M ∈ Gn with

M = arg min
Y∈Gn

E(Y ). (9)

As the weighted mean, the sample mean is, in general, not uniquely determined. The
following Theorem shows that a sample mean of a set of attributed graphs has a similar
form as its counterpart in an Euclidean vector space.

Theorem 4.3. Let M be a sample mean of X1, . . . , X N ∈ Gn. Then there are permutations
φ1, . . . , φN ∈ Sn such that

M 	 1

N

N∑
i=1

Xφi
i . (10)

Proof: Let

Ẽ : Gn → R, Y 
→ 1

2

N∑
i=1

δ(Xi , Y )2

be a function. Clearly, minimizing Ẽ is equivalent to minimizing E given in (8). By Ẽ∗ we
denote the minimum of Ẽ . Since M is a sample mean, there are embeddings φi ∈ I(Xi , M)
for all 1 ≤ i ≤ N such that

Ẽ∗ =
N∑

i=1

∥∥Xφi
i − M

∥∥2
.

For fixed embeddings φi , the function Ẽ is continuous and differentiable in Y . Thus a
necessary condition for Ẽ to have a minimum at Y = M is that

d Ẽ

dY
= −2

N∑
i=1

Xφi
i − Y = 0. (11)

Since Ẽ is convex, we find that M is a global minimum of Ẽ . Solving Eq. (11) for Y yields
the assumption. �

4.1.2. A generic K -means clustering algorithm for structures. Given the notion of a
metric graph space, we are now able to extend central clustering algorithms like the K -
means algorithm, simple competitive learning, self-organizing feature maps, or probabilistic
partitioning algorithms from the domain of feature vectors to the domain of attributed graphs.
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In this subsection, we exemplary illustrate how to utilize the results of 4.1.1 to apply central
clustering methods to the domain of attributed graphs. The chosen example is the well
known and simple K -means algorithm.

Let X = {X1, . . . , X N } be a set of data graphs and Y = {Y1, . . . , YN } the set of model
graphs. Then the essential elements of K -means are assignment of the patterns Xi to their
optimal reference models Yi∗ and recomputation of the models Y j given the new assignments
of the data. To assign a data graph Xi to its optimal reference model we use the nearest
neighbor rule

Yi∗ = arg min
Y j ∈Y

δ(Xi , Y j ) (12)

where δ is the Euclidean distance of attributed graphs. After each data graph is assigned
to its current optimal reference model, we may recompute model Y j in accordance with
Step (2c) of the K -means algorithm for feature vectors as outlined in figure 1. Assume that
Xi1 , . . . , Xin j

are assigned to model Y j . By Theorem 4.3 a recomputed model Y j is of the
form

Y j 	 1

n j

n j∑
k=1

X
φik
ik

where � j = {φi1 , . . . , φin j
} ⊆ Sn are permutations such that

Y j = arg min
Y∈Gn

n j∑
k=1

∥∥X
φik
ik

− Y
∥∥.

Unfortunately, all we know about� j is that eachφik ∈ � j is an embeddingφik ∈ I(Xik , Mik )
where

Mik =
∑
l �=k

X
φil
il

is the sum of the samples X
φil
il

without X
φik
ik

. The search space of all possible combinations
(φi1 , . . . φn j ) ∈ Sn j

n consists of (n!)n j elements, which is exponential in both, the number
of vertices of the Xik and the cardinality n j of the set of samples assigned to model Y j .
Thus in a practical setting we have to resort to approximations of a sample mean, because
determining permutations φi1 , . . . , φin j

which minimize the total distortion (8) is of very
large computational complexity. An experimental evaluation revealed that computation of a
sample mean is prohibitively time consuming even for a small number of graphs. One way
around this problem is a greedy-like approximation of a sample mean, called incremental
mean.
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Definition 4.4 (Incremental mean). Let X1, . . . , X N ∈ Gn be attributed graphs. An incre-
mental mean of X1, . . . , X N is a graph M 	 MN ∈ Gn recursively defined by

M1 = X1

Mk = k − 1

k
Mk + 1

k
Xπk

k (1 < k ≤ N )

where πk ∈ I(Xk, Mk) is an embedding.

An incremental mean M is not unique, because M depends on the ordering of the data
graphs Xi . Even if the ordering of the data graphs is assumed to be fixed, M is in general
not uniquely determined. The reason is that M 	 MN and each Mk is a weighted mean of
Mk−1 and Xk for all 1 < k ≤ N . From the non-uniqueness of a weighted mean directly
follows that an ordered incremental mean is not uniquely determined as well.

An incremental mean approach as an approximator of a sample mean is motivated by the
following consideration: Any minimizer Y of the total distortion (8) matches the samples Xi

of a data setX as largely as possible. A large match between Y and a sample Xi corresponds
to a large similar common substructure of both graphs. On the other hand an incremental
mean of X iteratively averages over common substructures of the elements of X . The larger
the averaged common substructures the less the total distortion (8) between an incremental
mean and the graphs ofX . Putting both observations together suggests to use an incremental
mean as an approximation of a sample mean.

Figure 2 summarizes the generic KMS algorithm, generic in the sense that the given
formulation is independent of the particular algorithm to determine the distortions δ(X, Yi )
and the embeddings π ∈ I(X, Yi∗ ).

Figure 2. Outline of the generic KMS algorithm.
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4.2. A neural network approach for the generic KMS algorithm

In Section 4.1 we proposed a generic KMS algorithm. This algorithm first classifies all
samples Xi ∈ X of a set of data graphs according to the nearest neighbor rule as shown
in figure 2, Step (2a). Then each model Y j ∈ Y is adjusted according to the learning rule
given in figure 2, Step (2b).

The usual method to classify X is to first compute all K distortions δ(X, Yi ). Then a
comparative minimum selector (MS) identifies the optimal reference model Yi∗ of X with
respect to the nearest neighbor rule. The MS classifier approach is simple and easy to im-
plement in the domain of real valued feature vectors. In addition it guarantees to return an
optimal model with respect to the chosen distortion measure δ. In the domain of graphs,
however, determining a structural distortion of two given graphs is NP-complete (Garey
& Johnson, 1979). Due to the exponential computational complexity of the graph match-
ing problem, exact algorithms which guarantee to return an optimal solution are useless
in a practical clustering task for all but the smallest graphs. Therefore, we abandon the
guarantee of selecting the optimal reference model for a given data graph and resort to
heuristics which approximately solve the graph matching problem within an acceptable
time limit. Due to its applicability in various relevant application areas, many heuris-
tics have been devised to approximately solve the graph matching problem (Christmas,
Kittler, & Petrou, 1995; Cross, Wilson, & Hancock, 1997; Eshera & Fu, 1986; Gold &
Rangarajan, 1996; Herault et al., 1990; Pelillo, Siddiqi, & Zucker, 1999; Rangarajan, Gold,
& Mjolsness, 1996; Schädler & Wysotzki, 1999; Suganthan, Teoh, & Mital, 1995; Shapiro
& Haralick, 1981; Williams, Wilson, & Hancock, 1999; Wong & You, 1985; Yu & Tsai,
1992). Nevertheless, even approximating structural distortions of attributed graphs is a
computational intensive procedure compared to the time complexity of determining, for
example, the Minkowski distance of real valued vectors. Thus when clustering structured
objects via an MS classification procedure, one iteration step of the KMS algorithm requires
K computational intensive approximations of the distortion measure induced by the cur-
rent data graph and the K models. Therefore clustering structured objects can still remain
computational intractable in a practical setting, in particular for huge data sets of large
graphs.

In this Section we propose a neural network implementation of the KMS algorithm. We
replace the minimum selector rule of an MS classifier by the principle of successive elim-
ination of competition by means of an extended winner-takes-all (X-WTA) network. The
X-WTA architecture has been first introduced in Jain and Wysotzki (2001, 2002) and since
then enhanced in Jain and Wysotzki (in press, 2003a, 2003b). Here we customize the X-WTA
architecture for the KMS algorithm. The basic procedure of X-WTA network simultaneously
matches the input data X with the K models Yi using K Hopfield networks Hi , called
subnets. Following the principle elimination of competition the X-WTA network focuses on
promising subnets and disables unfavorable subnets until one subnet wins the competition
and all other subnets are disabled. The input X is assigned to the model corresponding to
the winner. As opposed to the minimum selector rule of an MS classifier, the X-WTA proce-
dure circumvents the computational intensive approximations of K distortions and selects
a winner without completing the computation of a single subnet.
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In Section 4.2.1 we describe a special Hopfield network for approximately solving the
graph matching problem. Section 4.2.2 deals with inhibitory winner-takes-all networks for
maximum selection. In Section 4.2.3 we propose the X-WTA network. Finally, Section 4.3
assembles the individual parts to an KMS algorithm.

4.2.1. Graph matching with neural networks. In this subsection we describe how to
compute the Schur-Hadamard inner product of two attributed graphs A and Y using neural
networks. From the Schur-Hadamard inner product we can simply derive the Euclidean
distance of X and Y (Corollary 4.1). Thus this approach is also able to deal with clustering
methods like simple competitive learning which select the best matching model of a given
input with respect to the maximal inner product.

Following the seminal paper of Hopfield and Tank (1985), the general approach to solve
combinatorial optimization problems by using neural networks maps the objective function
of the optimization problem onto an energy function of the network. The constraints of the
problem are included in the energy function as penalty terms, such that the global minima of
the energy function correspond to the solutions of the combinatorial optimization problem.

Here the combinatorial optimization problem is the problem of finding an embedding.
Thus by definition of an embedding the objective function to maximize is the SH inner
product. To solve that problem we introduce a neural network approach, which is derived
from the maximum clique detection in an association graph (Ballard & Brown, 1982).
The classical association graph P of two graphs X and Y is an auxiliary structure coding
each (maximal) common induced subgraph of X and Y into a (maximal) clique of P . This
maps the search for a maximum common induced subgraph of X and Y to the problem of
finding a maximum clique in P . Since a maximum common subgraph and an embedding
are similar concepts in the sense that they both describe a structural overlap of X and Y ,
we shall customize the maximum clique approach to the problem of finding an embedding
from X into Y .

Maximum weighted cliques and the SH inner product

This section transforms the problem of computing the SH inner product to the problem of
finding a maximum weighted clique in an inner product graph. A detailed description of
this approach is given in Jain and Wysotzki (in press).

To simplify technicalities and to keep the main ideas clear we restrict the following
consideration to the canonical SH inner product represented by the identity matrix.

Inner product graphs

Let X , Y ∈ Gn be graphs with adjacency matrices A(X ) = (xi j ) and A(Y ) = (ykl),
respectively. For any pair i = (i, k), j = ( j, l) of elements of the Cartesian Product
V (X ) × V (Y ), the symbol χi j denotes the compatibility index of i and j

χi j =
{

1 if (i �= j ∧ k �= l) ∨ (i = j ∧ k = l)

0 otherwise
(13)
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If we regard each pair i = (i, k) as a mapping i 
→ k of vertex i ∈ V (X ) to vertex
k ∈ V (Y ), then two pairs i = (i, k) and j = ( j, l) are compatible if and only if the union
of the mappings i 
→ k and j 
→ l is bijective.

The inner product graph Z = X♦N Y of X and Y is a weighted graph defined on the
Cartesian Product V (Z ) = V (X ) × V (Y ). The edge set

E(Z ) = {(i, j) ∈ V (Z ) : χi j = 1}.

is the set of all pairs (i, j) of vertices from V (Z ) which are compatible. The weights of Z
are

µZ (i, j) = χi j · N (〈xi j , ykl) (14)

for all pairs of vertices i = (i, k) and j = ( j, l) of Z . The function N (·) is a bijective linear
transformation such that 0 < µZ (i, j) ≤ 1 for all i, j ∈ V (Z ) with χi j = 1.

Note that, although N (·) is not uniquely determined, the structure of the inner prod-
uct graph is independent of the particular choice of N (·). The transformation N (·) yields
a weighted graph Z such that all vertices and edges of Z have positive weight. Non-
edges of Z correspond to pairs (i, j) of vertices with χi j = 0 and therefore have weight
zi j = 0.

The following Theorem states that the problem of determining the SH inner product is
equivalent to the problem of finding a maximum weighted clique.

Theorem 4.4 (Weighted clique correspondence theorem). Let X♦N Y be the inner product
graph of attributed graphs X, Y ∈ Gn. Then:
1. There is a bijective mapping

�∗ : C∗
X♦N Y → I(X, Y ) (15)

from the set C∗
X♦N Y of maximum weighted cliques to I(X, Y ).

2. There is a bijective mapping

�+ : C+
X♦N Y → SX (16)

from the set C+
X♦N Y of maximal cliques of X♦N Y to the set SX of all permutations acting

on X.
3. We have

N−1(ω(C)) = σ (X, Y ) (17)

for all maximum weighted cliques C ∈ C∗
X♦N Y of X♦N Y .
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4. For each maximal clique C ∈ C+
X♦N Y of X♦N Y there is a permutation π ∈ SX such that

N−1(ω(C)) = 〈A(Xπ ), A(Y )〉. (18)

Proof: Jain and Wysotzki (in press). �

From Theorem 4.4 follows that the inner product graph X♦N Y is a compact representation
of all possible inner products of A(Xπ ) and A(Y ) where π passes through the whole set of
permutations SX . Each permutation π ∈ SX is uniquely encoded in the inner product graph
X♦N Y as a maximal clique Cπ such that the inner product 〈A(Xπ ), A(Y )〉 can be determined
from the weight ω(Cπ ) of the corresponding maximal clique. Moreover, the embeddings
π ∈ I(X, Y ) are in an one-to-one correspondence with the maximum weighted cliques.

A hopfield clique network

Let Z ∈ Wn be a weighted graph with adjacency matrix A(Z ) = (zi j ). Without loss of
generality we can assume that Z is normalized.3

The Hopfield clique network (HCN) HZ associated with Z consists of n fully intercon-
nected units. The synaptic weights wi j between distinct units i and j are given by

wi j =
{

w+
i j ≥ 0 if (i, j) ∈ E(Z ) (excitation)

−w−
i j < 0 if (i, j) /∈ E(Z ) (inhibition)

Thus Z uniquely determines the topology of HZ (up to isomorphism). For this reason we
identify the units of HZ with the vertices of Z and excitatory connections between two units
with edges between their corresponding vertices. Inhibitory connections in HZ represent
non-edges in Z .

The dynamical rule of HZ is of the form

xi (t + 1) = xi (t) +
∑
j �=i

wi j o j (t) + θi (19)

where xi (t) denotes the activation of unit i at time step t and θi is a constant external input
applied to unit i . The output oi (t) of unit i is computed by a piecewise linear limiter transfer
function of the form

oi (t) =




1 xi (t) ≥ τt

0 xi (t) ≤ 0

xi (t)/τt otherwise

(20)

where τt is a time dependent control parameter called pseudo-temperature. The output
function oi (t) has a lower and an upper saturation point at 0 and 1, respectively. Starting
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with a sufficient large initial value τ0 the pseudo-temperature is decreased according to an
annealing-schedule to a final value τ f .

The energy function of the network to be minimized is then of the form

E(t) = −1

2

∑
i

∑
j �=i

wi j oi (t)oj (t) −
∑

i

θi oi (t). (21)

To simplify the following considerations we introduce some technical terms and
notations:

1. Excitatory and inhibitory degree: Let degE (i) be the number of excitatory connections
incident to unit i . We call

degE = max{degE (i) | 1 ≤ i ≤ n}

the excitatory degree of HZ and

degI = max{n − degE (i) − 1 | 1 ≤ i ≤ n}

the inhibitory degree of HZ .
2. By θ∗ = maxi {zii } we denote the maximum vertex weight of Z .
3. Let w+, w− > 0 be positive constants bounded by

w+ <
2

n + degI (degE −1)

w− > degE w+ + θ∗

Provided an appropriate parameter setting is given Theorem 4.5 states that the dynam-
ical rule (19) performs a gradient descent with respect to the energy function E where
the global (local) minima of E correspond to the maximum weighted (maximal) cliques
of Z .

Theorem 4.5 (Hopfield clique network theorem). Let Z be a normalized weighted graph
and HZ be a HCN associated with Z. Assume that τt ≥ 1 for all t ≥ 0. If

w+
i j = zi j · w+ (22)

w−
i j = w− (23)

θi = zii · w+ (24)

for all i, j ∈ V (Z ), then:
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1. E(t + 1) ≤ E(t) for all t ≥ 0.

2. There is a bijective mapping between the local minima of E and the maximal cliques of
Z.

3. There is a bijective mapping between the global minima of E and the maximum weighted
cliques C of Z.

Proof: Jain and Wysotzki (in press). �

From the first statement together with the fact that E is bounded follows that HZ con-
verges. Since the local minima of E(t) correspond to maximal cliques, we can not guar-
antee that the network HZ converges to an optimal solution corresponding to a maxi-
mum weighted clique. In addition the network can converge to unstable saddle points
u ∈ R

n of E(t). Due to their instability, imposing random noise onto HZ may shift the
state vector o(t) away from u. An example of an unstable saddle point is the trivial solution
0 ∈ R

n .
It is easy to verify that the following inequalities hold:

w+
i j <

2

n + degI (degE −1)

w−
i j > degE w+ + θ∗

The upper bound of w+
i j ensures that HZ performs a gradient descent with respect to E . The

lower bound of w−
i j in guarantees that HZ converges to an admissible solution provided that

saddle points are avoided by imposing random noise onto the network.
Given a parameter setting satisfying the bounds of Theorem 4.5, then the HCN operates

as follows: An initial activation is imposed on the network. Finding a maximum weighted
clique then proceeds in accordance with the dynamical rule (19) until the system converges
to a stable state. During evolution of the network any unit is excited by all active units with
which it can form a clique and inhibits all other units. After convergence the stable state
corresponds to a maximal clique C of Z . The units corresponding to the vertices of C can
be identified by their respective non-negative activation.

4.2.2. Winner-takes all networks for maximum selection. This section describes winner-
takes-all (WTA) networks as a neural network implementation of a maximum selector.

Let V = {v1, . . . , vK } be a set consisting of distinct values vi ∈ R. One way to se-
lect the maximum from V within a connectionist framework are winner-takes-all (WTA)
networks. The WTA net consists of K mutually inhibitory connected units. The activation
zi (t) of unit ci is initialized with vi . After initialization the WTA network updates its state
according to

zi (t + 1) = zi (t) − w ·
∑
j �=i

[z j (t)]0 + Ii (t) (25)
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where −w < 0 represents the synaptic weight of the inhibitory connections and Ii (t) is the
external input of unit ci . For z ∈ R the function

[z]0 :=
{

z z > 0

0 z ≤ 0

denotes the linear threshold function with lower saturation 0.
An admissible solution of the WTA network is a stable state where only one unit ci∗ has a

positive activation zi∗ (t) > 0 and all other units c j �= ci∗ are inhibited, i.e. z j (t) ≤ 0. The
next result is due to Koutroumbas and Kalouptsidis (1994) and Lippman (1987). It shows,
that under some assumptions, the WTA network converges to an admissible solution within
finite time.

Theorem 4.6. Let I(t) = 0 ∈ R
K and z(0) ∈ R

K be the initial activation of the dynamical
system (25). Suppose that z(0) has a unique maximum zi∗(0) > z j (0) for all j �= i∗. If

0 < w <
1

K − 1

then z(t) converges within finite time to an admissible solution.

For selecting the maximum of a given set V of input values it does not matter how
the winner-takes-all character is implemented. In a practical setting one prefers a simple
search algorithm for finding the maximum. However, a neural network implementation of
the winner-takes-all selection principle is a fundamental prerequisite to accelerate decision
making in classification and pattern recognition tasks of structures.

4.2.3. Extended winner-takes-all networks for attributed graphs. It is easiest to first in-
troduce the architecture of X-WTA and then present X-WTA as an algorithm before describing
the network implementation.

The X-WTA network. Let X ∈ X be a data graph, Y = {Y1, . . . , YK } be a set of model
graphs.

A X-WTA network is a neural network consisting of two layers, a matching layer and
an output layer. The matching layer has K subnets Hi = HX♦Yi , each of which is a HCN
for matching an input X with model Yi . The output layer is a competitive WTA network
for maximum selection consisting of K inhibitory connected units ci . Each subnet Hi is
connected to output ci .

The X-WTA network proceeds first by initializing the inhibition w of the WTA network
and the subnets Hi with respect to the graphs X and Yi of consideration. Once the X-WTA
network has been initialized, it repeatedly executes three basic steps, similarity matching,
competition, and adaption until one output unit wins the competition and all other output
units are inhibited:
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1. Similarity Matching. The X-WTA network simultaneously updates the current state vector
xi (t) of each subnet Hi according to the dynamical rule (19) giving xi (t + 1) as the new
state of Hi . Subsequently the X-WTA system computes interim values σi (t + 1) of the
unknown SH inner products σ (X, Yi ). An interim value σi (t + 1) is an approximation of
σ (X, Yi ) given the current state xi (t + 1) of Hi at time step t + 1.

2. Competition. The interim values σi (t) provide the basis for competition among the
subnets via the WTA network. The classifier updates the current state z(t) of the WTA
network according to the dynamical rule (25) giving z(t + 1) as its new state vector. The
external input Ii (t) applied to unit ci is of the form

Ii (t) = I (σi (t))

where I is a function transforming the interim values in a suitable form for further
processing by the WTA network.

3. Adaption. The X-WTA network disables all subnets Hi for which zi (t + 1) ≤ 0. Once a
subnet is disabled it is excluded from the competition. A disabled subnet, which has not
converged, aborts its computation and terminates before reaching a stable state.

Intertwined execution of the three basic steps, similarity matching, competition, and
adaption implements the principle elimination of competition. This principle is based on
the policy that a large SH inner product σ (X, Yi ) emerges from a series of increasing large
interim values σi (t) at an early stage of the computation of Hi . In detail the X-WTA network
proceeds as follows:

Algorithm. Let X be a data graph and Y = {Y1, . . . , YK } a set of model graphs. Choose
a value for the inhibition w satisfying

0 < w <
1

K − 1
.

1. Enable all subnets Hi . Each subnet can be enabled or disabled. Only if Hi is enabled it
may proceed with its computation. Once Hi is disabled it resigns from the competition
and is no longer in use.

2. Set t = 0.
3. Repeat

(a) For each enabled subnet Hi do

(i) Update Hi according to the dynamical rule (19) giving xi (t + 1).
(ii) Compute an interim value σi (t) of σ (X, Yi ).4

(iii) Compute the external input Ii (t) = I (σi (t)) of output unit ci .

(b) Update the WTA network according to the dynamical rule (25) giving z(t + 1).
(c) Disable and terminate all subnets Hi for which the activation zi (t + 1) ≤ 0.
(d) Set t = t + 1.

until zi (t) > 0 for only one output unit ci .
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4. Let ci∗ be the winning unit. Assign X to the category represented by model Yi∗ .

Theorem 4.7 proves that, under some assumptions, the X-WTA classifier converges to an
admissible solution after a finite number of iterations. An admissible solution refers to a
uniquely defined winning unit of the X-WTA classifier algorithm.

Theorem 4.7. Assume that the subnets H1, . . . ,HK converge to a stable state within
finite time. Then the WTA classifier converges after a finite number of iteration steps to an
admissible solution.

Proof: Jain and Wysotzki (in press). �

Example 4.1. Let Z1, Z2, and Z3 be binary graphs. In this case the concepts of a maximum
weighted clique and a maximum clique are equivalent. By Hi we denote the HCN associated
with Zi for i = 1, 2, 3. Figure 3 depicts a functional diagram of the X-WTA network for
K = 3. Excitatory connections are represented by solid lines and inhibitory connections by
dotted lines. The subnets H1, H2, and H3 in the matching layer are excitatory connected to
the output units c1, c2, and c3 via on-off switches. The switches enable or disable a subnet
for or from further computation. The subnets H1 and H3 are enabled, while H2 is disabled.
The shading of an output unit ci indicates its activation zi (t). Brighter shading corresponds
to lower activation and vice versa. A white shading represents output units ci with activation
zi (t) ≤ 0. Thus unit c1 has the largest activation and unit c2 the lowest. The white shading
of unit c2 indicates that z2(t) ≤ 0. In this case subnet H2 is disabled as illustrated by the
off-position of the corresponding switch. In contrast the switches connecting H1 and H3

Figure 3. Architecture of a WTA classifier.
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with c1 and c3, resp., are in an on-position. Thus the subnets H1 and H3 are enabled and
further participate in the competition. This instantaneous state of the X-WTA network is
consistent with the results we would expect if the subnets Hi converge to optimal solutions
corresponding to maximum cliques. For each subnet a maximum clique of the associated
graph is highlighted.

In the remainder of this section we briefly discuss some issues of the X-WTA network
algorithm. For a more detailed presentation we refer to Jain and Wysotzki (in press).

Interim values. To motivate interim values consider that decision making can be regarded
as a process of sufficiently reducing uncertainty and doubt about alternatives to allow a
reasonable choice to be made from among them. In this context the interim values of
all subnets Hi model an information gathering function of decision making to reduce
uncertainty. Progressing evolution of the subnets Hi provide interim values, which aim at
reducing that uncertainty.

The Role of inhibition. The choice of the inhibitory weight −w in the WTA network is
essential for the gain in speed without substantial loss of classification accuracy with respect
to the canonical MS classifier. A large value for w will tend to fast convergence and hence
give a large error rate. We can decrease the error rate by decreasing w, but if this is taken
too far, the convergence time of a X-WTA classifier approaches the convergence time of a
MS classifier, which may be intractable in a practical setting. This trade-off between speed
and classification accuracy is crucial for applying a X-WTA classifier to practical problems.

Synchronization of the subnets. The number of time steps until a HCN H converges to a
stable state depends on the number of units of H. Different sizes and relaxation times of
the subnets of the X-WTA classifier may may bias decision making. One way around this
problem is to synchronize the relaxation of the subnets. Slower subnets may update their
state more often than faster subnets before performing the next update step of the units in
the output layer.

4.3. A KMS algorithm using X-WTA networks

This section assembles the results of the previous sections to formulate a K -means algorithm
for structures by means of a X-WTA network and concludes with a discussion about the
limitations and benefits of the proposed neural KMS algorithm.

Let X = {X1, . . . , X M} be a set of data graphs. First initialize a set Y = {Y1, . . . , YK }
of model graphs. After initialization of Y repeat the following steps until termination:

1. To classify all samples X ∈ X apply each X to the X-WTA network. Applying X to X-WTA
involves construction of K inner product graphs Zi = X♦Yi to map the task of computing
σ (X, Yi ) to the task of finding a maximum weighted clique Ci with ω(Ci ) = σ (X, Yi ).
To find a maximum weighted clique in Zi transform the inner product graphs Zi to
subnets Hi .
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After initialization let the X-WTA network evolve until convergence to select a winning
model Yi∗ . Assign X to the cluster represented by Yi∗ .

2. After each sample graph has been classified recompute the incremental means of the
current clusters according to Step (2c) of figure 2. Suppose that Xi1 , . . . , Xin j

have been
assigned to model Y j by the X-WTA network in the previous step. Initially set Y j,1 = Xi1 .
Then iteratively embed the samples Xik to the current incremental mean Y j,k−1 to obtain

Y j,k = k − 1

k
Y j,k−1 + 1

k
X

πik
ik

where πik ∈ I(Xik , Y j,k−1) is an embedding. To find an embedding, construct an inner
product graph Zik , j = Xik ♦ Y j,k−1 and transform the inner product graph Zik , j to a
Hopfield Clique network Hik , j . The task of the Hopfield network is to find a maximum
weighted clique of Zik , j corresponding to an embedding from Xik to Y j,k−1. According
to Theorem 4.5 the clique C found by Hik , j is a maximal clique and in the ideal case
a maximum weighted clique. By (15) and (16) of Theorem 4.4 the maximal clique C
corresponds to a permutation πC ∈ Sn which is an embedding from Xik to Y j,k−1 if and
only C is a maximum weighted clique.

Figure 4 summarizes the KMS algorithm.

Limitations and benefits. Besides the well known limitations of the K -means algorithms
in the domain of feature vectors, additional problems arise when dealing with attributed
graphs. From a theoretical point of view, the main drawback of central clustering in the
domain of graphs is that the notion of a sample mean is not uniquely determined. This makes
an analysis of convergence properties difficult and may result in an instable or oscillating
behavior of central clustering algorithms like KMS.

From the point of view of computational complexity, determining a sample mean of
a set of data graphs is in fact futile even for small sets of data graphs due to the high
combinatorial explosion. Thus any practical applicable central clustering algorithm will
resort to approximations of the sample mean at the expense of finding a global minimum of
the cost function defined in (4). In addition, solving a large number of NP-complete graph
matching problems to identify the optimal reference model of a given input graph and to find
an embedding for recomputing the means may hinder the practical use of central clustering
of graphs. The same way out of this problem is to use heuristics which find suboptimal
solutions within an acceptable time scale. Provided the given data set carries an explicit
cluster structure, then the general assumption of using approximations of the sample mean
and structural distortion values is that elements of the same clusters share large parts of
similar substructures which will be largely identified even by suboptimal approaches.

Nevertheless, even approximately solving the graph matching problem is a computa-
tional intensive procedure which appears to be intractable for practical graph clustering
problems. The X-WTA mechanism is a first step to reduce the number of graph matching
problems to be actually solved. Given an input graph, hard optimizers like the KMS algo-
rithm require the explicit computation (or approximation) of only one instead of K structural
distortions.
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Figure 4. Outline of the KMS algorithm using X-WTA networks.

One limitation of the X-WTA network is its restricted use to soft optimizers. When applied
to soft optimizers like self-organizing feature maps, fuzzy clustering or stochastic clustering
algorithms derived from the maximum entropy principle, the gain in computational time
becomes less or even is lost. This is due to the fact that in general soft optimizers adjust
more than one model for a given input graph and therefore require the explicit calculation
of more than one structural distortion.

A second limitation of the X-WTA network is that its classification accuracy is poor if
the models are pairwise similar. This requires a more careful initialization of the models
than in clustering methods which rely on the nearest neighbor rule. In addition grouping
a set of similar data graphs with an explicit cluster structure fails when using an X-WTA
network to assign the data graphs to their respective optimal reference models. To illustrate
this problem consider as an extreme case a data set consisting of several isomorphic copies
of K similar model graphs. This data set carries a trivial cluster structure which might not
be extracted by the proposed neural KMS algorithm.

From the above discussion follows that an X-WTA network is best suited for hard opti-
mizers to solve central clustering problems of data sets of attributed graphs, where element
belonging to the same cluster are similar and elements from different clusters are signifi-
cantly dissimilar.
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It is left to discuss the use of Hopfield networks. Although Hopfield networks have been
applied with varied success to approximately solve combinatorial approximation problems,
they possess some attractive features which justify their use in the context of central clus-
tering: (1) As any neural network, Hopfield networks are error tolerant and robust against
noise. Error tolerance is required when dealing with graphs where structural errors occur
due to missing vertices or edges. Robustness against noise is necessary to cope with noisy
vertex and edge attributes. (2) There is a solid theoretical foundation, in particular for solv-
ing the weighted maximum clique problem. (3) It is quite natural and straightforward to
imbed Hopfield network into an X-WTA scheme. It is in fact the third feature which is the
crucial factor to apply Hopfield network for Step (2b) of the neural KMS algorithm.

The particular choice of heuristic to approximately solve graph matching algorithms to
determine the embeddings in Step (2c) is problem dependent. For sake of simplicity and
convenience of presentation we stick to Hopfield networks.

5. Experiments

The aim of this section is to demonstrate that central clustering methods like the neural KMS
algorithm can be applied to graph clustering problems despite the elusiveness of formulating
analytical concepts in the domain of graphs. The experiments are intended not so much as
a comprehensive study but rather as an illustration of the specific properties of the KMS
algorithm. As a consequence results are presented with an emphasis on conceptual issues
rather than experimental exhaustion. In Section 5.1 we apply theKMS algorithm to synthetical
data and in Section 5.2 to images of arm postures.

All algorithms were implemented in Java using JDK 1.2. The experiments were run on
a multi-server Sparc SUNW Ultra-4.

5.1. Synthetic characters

The aim of our first experiment is to show that central clustering of attributed graphs is
capable to simultaneously perform an inner clustering of the attribute vectors and an outer
clustering of the structural variation of the graphs.

We used synthetic data to emulate clustering of handwritten characters as they typically
occur in pen technology of small hand-held devices, for example PDAs. We do not apply
additional on-line information. First we have drawn all 26 characters {A, . . . , Z} using an X
windows interface. The contours of each image were discretized and expressed as a set of
points in the 2D plane.

For each character we generated N = 10 corrupted data characters as follows: First we
randomly rotated the model image by an angle αk ∈ [−37◦, +37◦]. Then to each point
we added N (0, σ ) Gaussian noise with standard deviation σ = 2. Each point had 10%
probability to be deleted. From each point set we randomly selected points such that the
pairwise normalized distances between the chosen points is larger than a given threshold
θ . We transformed this point set P to a fully connected attributed graph. The vertices v(p)
represent the points p ∈P and the edges represent an abstract line between two points. To
each vertex v(p) we assigned a three dimensional attribute vector a = (a1, a2, a3). The
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Figure 5. Examples of model and corrupted data characters.

first attribute a1 is the normalized distance of the point p to the center of gravity of the
corrupted image. The second attribute a2 is the mean distance of the normalized distances
from point p to all other points q ∈P . Finally, the third attribute a3 is the variance of the
normalized distances between p an all other points q ∈P . To each edge connecting vertex
v(p) and v(q) we assigned a two dimensional attribute vector b = (b1, b2). The first attribute
is the normalized distance between p and q. The second attribute measures the normalized
distance between the center of gravity of the corrupted image and the abstract line passing
through p and q . Thus each graph is a representation of a character, which is invariant to
rotation, translation, and scaling.

Given the dataset consisting of 260 corrupted samples we computed the pairwise distances
of the samples to identify a subset of characters for which their respective samples form a
cluster. Figure 6 visualizes the dissimilarity matrix where the samples are lexicographically
ordered. Dark gray levels correspond to high dissimilarity. From figure 6 we see that there
are only few compact clusters of samples representing the same character. Based on this
distribution we selected the well-behaved characters Y = {A, C, E, F, I, L, V}. The model
images of the first four characters are shown in figure 5(a).

We created two datasets, each consisting of 70 sample graphs. For each dataset and each
of the K = 7 chosen model characters Y ∈ Y we generated N = 10 corrupted images
and transformed these images to attributed graphs following the same scheme as described
for the whole alphabet. The first dataset D2 was sampled by using Gaussian noise with
standard deviation σ = 2. The second dataset D4 was created by imposing Gaussian noise
with standard deviation σ = 4. Figure 5(b) and (c) show examples of corrupted images of
both datasets.

Table 1 shows the structural variation of the graphs of dataset D2 and D4, respectively.
For both tables, the first row specifies the mean, the second row the variance, the third
row the minimal, and the fourth row the maximal number of vertices of the sample graphs
representing the character specified by the column identifier.

We applied the neural KMS algorithm to both datasets. For dataset D2 the algorithm
converged after two and for D4 after six epochs into a local minimums of the average
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Figure 6. 2D visualizations of pairwise dissimilarities between all 260 attributed graphs representing corrupted
images of the alphabet. Dark gray levels correspond to high dissimilarity.

distortion E(M,Y,X ). The convergence time of KMS applied on D2 was about 20 seconds
and on D4 about 3 minutes. The results indicate that more difficult clustering problems
require much more time even if the order of the sample graphs is much smaller. In contrast,
the approach proposed by Gold, Rangarajan, and Mjolsness (1996) applied on 64 weighted
graphs of order 10 and 4 cluster centers required about 10 minutes until convergence.
Unfortunately, almost no experimental work on graph clustering using graph matching
methods addressed the issue of computational time required for grouping the data.

Table 2 shows the confusion matrices after clustering the samples of D2 and D4, respec-
tively. Each row shows the distribution of the samples of a characters into the seven clusters.
According to the nearest neighbor rule, the models obtained by the clustering procedure
misclassified four samples of dataset D2 and only three samples of D4. The results show
that the neural KMS algorithm is able to simultaneously extract an inner statistical cluster
structure of the vertex and edges attribute vectors and an outer structural cluster structure
of the graphs.

Table 1. Structural variations of sample graphs of dataset D2 (upper part) and D4 (lower part).

A C E F I L V

D2

µ 44.4 70.2 42.6 48.2 44.5 39.3 53.6

σ 2 1.8 10.4 4.8 11.4 5.3 4.2 6.4

min 42.0 64.0 39.0 45.0 41.0 35.0 50.0

max 46.0 75.0 46.0 57.0 47.0 42.0 59.0

D4

µ 24.4 37.5 25.2 27.7 25.8 24.8 30.5

σ 2 2.6 2.5 2.2 3.0 5.2 5.0 2.5

min 22.0 35.0 23.0 24.0 22.0 21.0 28.0

max 27.0 40.0 28.0 31.0 29.0 29.0 34.0
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Table 2. Confusion matrices. Each row shows the distribution of all samples of a character into clusters. The
upper part refers to the dataset D2 and the lower part to the dataset D4.

CA CC CE CF CI CL CV

D2

A 10 0 0 0 0 0 0

C 0 10 0 0 0 0 0

E 0 0 9 0 1 0 0

F 0 0 0 9 0 0 1

I 1 0 0 0 9 0 0

L 1 0 0 0 0 9 0

V 0 0 0 0 0 0 10

D4

A 10 0 0 0 0 0 0

C 0 10 0 0 0 0 0

E 0 0 9 0 0 0 1

F 0 0 0 10 0 0 0

I 0 0 0 0 8 1 1

L 0 0 0 0 0 10 0

V 0 0 0 0 0 0 10

5.2. Sensing people

One fundamental problem in computer vision and human-machine interaction is to sense
gestures and postures of peoples for directing computers or robots. This problem arises
in many areas like, for example, policemen giving signs to regulate the traffic, directing a
crane, guiding a vehicle into a parking lot, or medical monitoring of patients in a hospital
or nursing home.

In this experiment we apply the KMS algorithm to cluster arm postures of a person as
shown in figure 7. Five different classes of 235 postures are considered: (P0) UNKNOWN,
(P1) NOARMS, (P2) RIGHTARM, (P3) LEFTARM, and (P4) BOTHARMS, each referring to the
lifted arms of a person. Table 3 gives a concise class description where 0 denotes an arm

Figure 7. Sample images of arm postures.
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Table 3. Class description of arm postures.

Class Right arm Left arm Class distribution

P0 ∗ ∗ 37

P1 0 0 50

P2 1 0 50

P3 0 1 50

P4 1 1 48

pointing downwards and 1 denotes an arm pointing straight out from the shoulders parallel
to the floor. By ∗ we denote the don’t care symbol.

Each image was obtained by automatically localizing a person in video data from a
camera. The localized person is enclosed in a bounding box. Position of head and both
hands of the person are identified by skin color. We transformed each image to a fully
connected attributed graph. The vertices represent upper corners of the bounding box and
the identified body parts. To each vertex we attach a three dimensional binary attribute
vector a = (a1, a2, a3) ∈ {0, 1}3. Attribute a1 refers to the left corner of the bounding box,
a2 to the right corner, and a3 to one body part, that is to the head or one hand. The value 1
of an attribute ai denotes the presence and the value 0 the absence of the i-th feature. Edges
between two vertices are weighted by the distance between the corresponding components
in the image.

Figure 8 shows two different presentations of the matrix of pairwise Euclidean distances
between the different attributed graphs. Dark gray levels correspond to high distance values.
The patterns are ordered with respect to their classes. From figure 8(a) we that the patterns
resolve into 5 clusters each corresponding to one of the 5 postures. Patterns of class P1, P2,

Figure 8. Different presentations of 2D visualizations of pairwise dissimilarities between all 235 arm postures.
Dark gray levels correspond to high dissimilarity.
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Figure 9. Results of clustering arm postures: (a) Average distortion as a function of the number of epochs.
(b) Distance matrix between models representing the clusters C1, . . . , C4 and the input samples ordered by arm
posture P0, . . . , P4.

patterns of class P2, P4 and patterns of class P3, P4 do not exhibit a clearly marked cluster
structure. This is best seen when enhancing contrast as shown in figure 8(b).

We randomly selected five patterns from the dataset to initialize the models. After seven
epochs the average distortion E(M,Y,X ) has converged to a local minimum.
Figure 9(a) shows the average distortion as a function of the number of epochs. A small
increase of the cost function occured after the fifth epoch. This effect is due to the ap-
proximative nature of the proposed algorithm and the non-uniqueness of the incremental
mean.

The quality of the cluster structure discovered by KMS is visualized in figure 9(b). From
that figure we see that the cluster structure of the data set was recognized. The cluster centers
of C1, . . . , C4, however, are pairwise more similar than expected from the visualization of
the pairwise distance values in figure 8(a).

Table 4 shows the confusion matrices before and after clustering. The i th row of both
confusion matrices shows the distribution of members of class Pi into clusters C1, . . . , C4.
In terms of classification accuracy using the nearest neighbor rule, the randomly chosen
initial models misclassified about 30% and the models obtained by the clustering procedure
misclassified about 8% of the samples.

Table 4. Confusion matrices. Each row shows the distribution of all samples of a posture Pi into clusters. Left:
Before clustering. Right: After clustering.

C0 C1 C2 C3 C4 C0 C1 C2 C3 C4

P0 30 5 2 0 0 35 0 0 2 0

P1 0 25 25 0 0 0 43 0 7 0

P2 0 0 50 0 0 0 0 49 0 1

P3 0 0 0 12 38 0 3 0 45 2

P4 0 0 0 0 48 0 0 5 0 43
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6. Conclusion

The first part of this paper addressed the issue of missing analytical methods in the domain
of attributed graphs. We presented a mathematical framework of metric graph spaces to
place central clustering of attributed graphs on a principled footing. The metric graph space
is equipped with an Euclidean distance of graphs induced by the Schur-Hadamard inner
product. The Euclidean distance gives rise to introduce concepts as weighted mean and
sample mean of a set of data graphs, which constitute the basis of central clustering in the
domain of graphs. As an example how to utilize the properties of a metric graph space for
central clustering we formulated a generic K -means algorithm for structures.

The second addressed the issue of computational complexity of central clustering al-
gorithms applied on graphs. We proposed a neural network solution for the generic KMS
algorithm. The distinguishing feature of the proposed algorithm is the use of an X-WTA
network which assigns a given input graph to its reference model without explicitly com-
puting structural distortions. The underlying principle of this approach is elimination of
competition where the models constitute the competitors and the winning model of the
competition is considered as the optimal reference model of the current input graph. Fol-
lowing this approach, the overall gain in computational time is reduced from K to one
complete calculation of structural distortions between the models and the current input
graph. This hypothesis is supported by our preliminary experiments. Moreover, the exper-
iments show that central clustering of graphs simultaneously performs an inner cluster-
ing of the attributes and an outer structural clustering of the structural variations of the
graphs.

In forthcoming papers we use the Schur-Hadamard inner product to extend supervised
neural learning machines from the domain of feature vectors to the domain of graphs.
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Notes

1. The median graph as defined by Bunke et al. also intuitively complies to a sample mean of a set of graphs.
2. An inner product is a positive definite, symmetric bilinear form 〈 , 〉 : V × V → R.
3. If Z is not normalized, we can first transform Z to a normalized graph Z ′, compute the solution in Z ′, and

back-transform the solution to Z .
4. For convenience of presentation the interim values σi (t) are computed with respect to xi (t) rather than xi (t +1).
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